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ABSTRACT

We address the problem of estimating the fundamental
frequency of voiced speech. We present a novel solution
motivated by the importance of amplitude modulation in
sound processing and speech perception. The new algo-
rithm is based on a cumulative spectrum computed from
the temporal envelope of various subbands. We provide
theoretical analysis to derive the new pitch estimator
based on the temporal envelope of the bandpass speech
signal. We report extensive experimental performance
for synthetic as well as natural vowels for both real-
world noisy and noise-free data. Experimental results
show that the new technique performs accurate pitch es-
timation and is robust to noise. We also show that the
technique is superior to the autocorrelation technique for
pitch estimation.

1. INTRODUCTION

The problem of estimating the fundamental frequency
of voicing [1], F0, is important in many speech applica-
tions, such as compression, speech synthesis, enhance-
ment in the presence of noise etc. Precise estimates
of F0 are very useful in natural sounding synthesized
speech and speech signal compression for efficient trans-
mission. Also, F0 tracking is an important technique
in the analysis of stressed speech since it is associated
with various factors such as emotions, change in muscle
activity, blood pressure, heart rate [2] etc. Pitch esti-
mation and tracking is also useful in extracting melody
patterns in music signals, which are useful in query-by-
humming audio retrieval systems [3]. Several algorithms
have been proposed in the past for the problem of pitch
estimation [1, 4] and newer techniques or modifications
to existing techniques continue to appear in the liter-
ature indicating that the problem is still of immense
research interest [5, 6]. In this paper, we propose a new
technique motivated by the auditory peripheral process-
ing of the acoustic stimuli.

We briefly review the auditory processing of acous-
tic stimuli. The current models for the inner ear [7, 8]
describe the mechanical motion at every point along the
basilar membrane as the output of a bandpass filter with
frequency response determined by the mechanical tun-
ing characteristics at that location. The shearing move-
ment between the tectorial membrane and the basilar
membrane causes the inner hair cell cilia to bend re-
sulting in an electric discharge in the auditory nerve
fibres, in a nonlinear manner. The nerve fibres, broadly
characterized into medium, low and high rate fibres, are

characterized by a threshold level and spontaneous rate
of firing. The instantaneous discharge rate of auditory
nerve fibres is found to be maximum during the ini-
tial 15ms of the acoustic stimulation and then decreas-
ing, until it reaches a steady-state, about 50ms after
the stimulus onset. The decrease in the fibre response
rate is the result of adaptation to the temporal envelope
of the subband output. In addition to the temporal
envelope dynamics of the response, the response also
includes the detailed timing behaviour of the response
to each input cycle [7]. The auditory nerve fibres tend
to fire in a phase-locked manner to low-frequency peri-
odic stimuli. However, the fibres responsive to the high-
frequency components of a signal tend to synchronize
only to the amplitude modulation/envelope of the sig-
nal [7]. The envelope-synchronized nerve firing happens
at the signal’s fundamental frequency. The envelope is
also a measure of the average nerve fibre discharge rate
response in that channel.

A set of research results on the importance of
the subband temporal envelope processing mechanism
[9, 10] for improved speech perception strongly supports
the existence of auditory pathways, exclusive and highly
specialized to process subband signal amplitude modula-
tion. It is not clearly known if these modulation-specific
auditory pathways also capture the pitch information
apart from improving speech perception.

Another recent research on the neuronal representa-
tion of pitch and pitch perception [11] has shown the
existence of neurons in the auditory cortex of marmoset
monkeys that respond to both pure tones and missing
fundamental harmonic complex sounds with the same
fundamental frequency providing a neural correlate for
pitch constancy. Perhaps, it is due to this feature
that the pitch is perceived even in the case of sounds
with missing fundamental such as those encountered in
speech transmission over telephone channel.

Our research reported in this paper is motivated by
these results on auditory sound processing and pitch
perception and is strongly supported by some interesting
observations on the temporal properties of the bandpass
signals of periodic/voiced sounds. We show that the sig-
nal’s fundamental frequency can be estimated from the
temporal envelope of the bandpass signal. We develop
the new technique for fundamental frequency estimation
and study its accuracy by considering synthetic voiced
data. We also show its robustness to noise by consider-
ing synthetic and natural voiced sounds in the presence
of various kinds of noise and different signal to noise
ratio (SNR).



2. TEMPORAL ENVELOPE OF BANDPASS
SPEECH SIGNAL

In the source-filter model for speech production, the
voiced sounds are modeled as the output of a multi-pole
autoregressive system driven by a quasi-periodic excita-
tion. Let g(t) denote the quasi-periodic excitation. and
v(t) denote the vocal tract impulse response. The out-
put of the vocal tract is given by s(t) = v(t) ∗ g(t). In
order to avoid mathematical complication, we assume
that g(t) is periodic and write g(t) =

∑

k p(t + kT0)
where T0 is the pitch period and p(t) is the fundamental
period of g(t).

2.1 At resonance

Consider the speech signal s(t), bandpass-filtered
around a formant to yield sk(t). We can write sk(t) =
s(t) ∗ hk(t), where hk(t) is the impulse response of a fil-
ter centered about a formant. The filter could be one
of the filters in a typical auditory filterbank. The filter
output is periodic and given by

sk(t) =

(

v(t) ∗
∑

k

p(t + kT0)

)

∗ hk(t)

=

(

v(t) ∗ hk(t)

)

∗

(

∑

k

p(t + kT0)

)

. (1)

v(t) ∗ hk(t) is a decaying sinusoid of the form
e−αkt sin(ωkt+φk)u(t) where u(t) is the unit-step func-
tion, αk is the damping factor and determines the for-
mant bandwidth and ωk is the formant frequency in ra-
dians. In writing so, we have assumed that the effect of
the neighbouring formants is negligible. Therefore,

sk(t) ≈ e−αkt sin(ωkt+φk)u(t)∗

(

∑

k

p(t + kT0)

)

. (2)

In the impulse train excitation model, p(t) = δ(t),

sk(t) =
∑

m

e−αk(t+mT0) sin(ωk(t+mT0)+φk)u(t+mT0).

(3)
Without loss of generality, assume φk = 0. To enable
further analysis, let us consider the complex form of
sk(t), given by,

ask
(t) = e−(αk+jωk)t

∑

m

e−(αk+jωk)mT0u(t + mT0).

(4)

The imaginary part of ask
(t) is sk(t). If the damp-

ing factor αk, is such that the leakage of the vocal tract
impulse response into neighbouring pitch periods is neg-
ligible, then, over a pitch period, only one term in the
summation is significant. Therefore, over [0, T0],

ask
(t) ≈ e−(αk+jωk)t)[u(t) − u(t − T0)]. (5)

corresponding to a pitch pulse at an arbitrary position
t = 0. In general, over [mT0, (m + 1)T0], we can write,

ask
(t) = e−(αk+jωk)te−(αk+jωk)mT0

(

u(mT0) − u(t − (m + 1)T0)
)

. (6)

For t ∈ [mT0, (m + 1)T0)], the envelope is given by

e−αk(t+mT0)
[

u(t − mT0) − u(t − (m + 1)T0)
]

. (7)

Thus, the envelope can be written approximately as,

ek(t) ≈
∑

m

e−αk(t+mT0)
[

u(t−mT0)−u(t− (m+1)T0)
]

,

(8)
which is periodic with period T0. We can rewrite ek(t)
as:

ek(t) = ẽ−αkt ∗
∑

m

δ(t + mT0), (9)

where
ẽ−αkt = e−αkt

(

u(t) − u(t − T0)
)

. (10)

The spectrum of ek(t) is given by

Ek(ω) = Ẽk(ω)
1

T0

∑

m

δ

(

ω −
2π

T0
m

)

, (11)

where Ẽk(ω) = F(ẽ−αkt), where F(.) denotes the
Fourier transform.

Consider ek(t) windowed by w(t), over a certain du-
ration [0, T1]. The spectrum of ek(t)w(t) is given by,

Ẽ(ω)
1

T0

∑

m

W

(

ω −
2π

T0
m

)

, (12)

where W (ω) = F(w(t)). To reduce the effect of the
term ẽ−αkt, we perform differentiation of the envelope,
w(t)ek(t) to yield

d[w(t)ek(t)]

dt
=

d

dt

[

(

ẽ−αkt ∗ δ(t + mT0)
)

w(t)

]

. (13)

The spectrum of d[w(t)ek(t)]
dt

is given by,

jωẼ(ω)
1

T0

∑

m

W

(

ω −
2π

T0
m

)

. (14)

The peak location of the spectrum is an estimate
of the fundamental frequency, 1

T0

. We use the Hilbert
transform technique for computing the temporal enve-
lope. In discrete-time implementation, the differentia-
tion operation is replaced by the difference operator with
Z-transform: 1 − z−1. This boosts the high frequency
component energy and compensates for the decaying fre-
quency response Ẽk(ω), resulting in a dominant peak
corresponding to the fundamental frequency.

2.2 Off resonance

Consider the bandpass spectrum in regions that are
away from formant resonances. Performing approximate
analysis, we show that the envelope is related to the fun-
damental frequency. Let the output be given by

sk(t) = A1 cos(mω0t) + A2 cos((m + 1)ω0t)

+A3 cos((m + 2)ω0t), (15)
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Figure 1: Cumulative Envelope Spectrum (CES) computation.
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Figure 2: Cumulative envelope spectrum for a natural
vowel.

i.e., the harmonic frequencies present are mω0, (m +
1)ω0, (m + 2)ω0 rad/s where ω0 = 2π

T0

. The ampli-
tudes A1, A2 and A3 depend on the filter responses
as well as the corresponding input strengths. Given
the frequency-selective nature of the auditory filters,
we can write, A2 ≈ 2A1 ≈ 2A3, i.e., we have as-
sumed that the spectrum component at (m + 1)ω0 is
nearly twice as dominant as the components at mω0

and (m + 2)ω0. This simplifying assumption and gives
good insight into the envelope relation with the pitch
period. The output can then be simplified to yield,
sk(t) ≈ 2 cos((m + 1)ω0t) (1 + cos(ω0t)). The envelope
is given by ek(t) = 2(1 + cos (ω0t)). Its derivative is
dek(t)

dt
= −2ω0 sin(ω0t), which is periodic and its spec-

trum has a peak at the frequency ω0.

3. CUMULATIVE ENVELOPE SPECTRUM

In the above analysis, we have shown that the subband
temporal envelopes, at or off-formant resonance, are pe-
riodic with the same period as the pitch period and
hence can be estimated by a periodicity analysis of the
temporal envelope. To avoid the problem of formant
frequency estimation, which is not known apriori [5], we
take an auditory filterbank based frontend processing
approach for F0 estimation. We approximate the pe-
ripheral auditory filterbank analysis system by 19 band-

Vowel Clean 10dB 20dB
µ σ µ σ

IY 150.4 162.9 29.4 151.2 0.8
IH 150.0 150.9 2.1 150.3 0.6
EH 149.5 149.0 1.8 148.7 0.6
AE 149.4 148.6 1.4 148.7 0.4
AH 149.5 150.9 11.5 148.8 1.1
AA 149.2 148.7 6.8 147.1 2.5
AO 149.2 154.2 17.9 147.2 2.3
UH 149.9 165.7 33.8 148.0 2.8
UW 148.8 196.5 38.9 150.3 17.5
ER 149.4 149.8 4.9 148.9 0.9

Table 1: F0 estimation performance using the CES al-
gorithm for synthetic vowel data.

pass filters, which collectively cover the frequency range
from 100Hz to 4000Hz. The bandwidth of the channels
is half-Bark, where a Bark is the critical bandwidth.
The filters are implemented using the Malcolm Slaney’s
Auditory Toolbox [12]. w(t)ek(t) is the envelope of the
kth subband signal and Ek(ω) = F

(

d
dt

w(t)ek(t)
)

. We
used the rectangular window function w(t).

The subband envelope spectra are combined to yield
the cumulative envelope spectrum as:

E(ω) =
M
∑

k=1

|Ek(ω)|2, (16)

where M is the number of equivalent rectangular band-
width (ERB) filters. In practice, we have sampled-data
and hence we use the discrete Fourier transform. The
sequence of operations is shown in the form of a block
diagram in Fig. 1. The pre-emphasis filter has a Z-
transfer function given by 1 − 0.95z−1. This approxi-
mately models the broad outer-ear resonances causing a
10-20dB boost in energy between 1.5-5kHz. As a result,
the spectrum dynamic range is reduced and the subband
temporal envelopes in this frequency range get a higher
weightage relative to those at the output of the filters
with lower center frequency. The cumulative envelope
spectrum is actually a time-varying spectrum since it is
computed over a short duration. Therefore, we repre-
sent it as E [ℓ, m] where ℓ refers to the frame index and
m refers to the DFT index. The DFT can be efficiently
implemented using the FFT algorithm. Alternatively,



Clean 10dB 20dB
CES AUTO CES AUTO CES AUTO

Vowel F0 F0 µ σ µ σ µ σ µ σ
AAnderstand (understand, female) 171.6 168.5 171.8 4.3 144.7 40.8 171.5 0.7 168.9 0.9

attEHined (attained, male) 135.9 129.4 136.4 0.9 123.5 20.3 136.1 0.2 129.5 0.4
portugIYEse (portugese, male) 123.4 121.5 128.2 23.4 119.2 33.7 123.4 0.1 121.4 0.7

AApon (upon, male) 105.4 106.4 104.7 1.1 99.1 23.8 105.4 0.3 103.9 12.1
cEIves (caves, female) 165.3 157.4 173.7 19.1 151.7 22.2 165.4 0.7 157.5 0.6
gUHd (good, female) 155.5 148.1 170.4 20.2 138.9 28.3 155.2 1.5 148.3 0.3

cAEpitalised (capitalised, male) 131.2 129.6 131.1 1.1 120.4 37.6 131.2 0.3 125.5 16.7
ERned (earned, male) 127.9 130.3 127.3 1.6 119.9 25.9 127.8 0.5 126.9 17.5
sUWn (soon, female) 143.2 142.2 143.4 1.2 141.9 0.8 143.2 0.3 141.9 0.4

dAHtch (dutch, female) 139.1 136.0 139.5 1.7 129.5 58.1 139.1 0.3 133.3 13.5
britIHsh (british, male) 120.8 119.8 123.1 17.4 118.4 37.3 120.9 0.2 119.8 0.3

pAO (paw, female) 132.4 133.0 134.9 14.6 124.8 40.9 131.2 1.3 132.6 6.7
lIHved (lived, female) 165.3 161.8 173.7 17.4 143.6 34.5 165.1 2.4 161.8 0.4

Table 2: F0 estimation performance of the CES and autocorrelation algorithms for natural data in cordless phone
channel noise. The vowel portion is indicated in uppercase. The gender of the speaker and the word are also
indicated.

Clean 10dB 20dB
CES AUTO CES AUTO CES AUTO

Vowel F0 F0 µ σ µ σ µ σ µ σ
AAnderstand (understand, female) 171.6 168.5 171.5 3.6 154.5 33.5 171.5 0.6 168.9 0.7

attEHined (attained, male) 135.9 129.4 136.3 0.9 126.3 15.3 136.1 0.2 129.5 0.4
portugIYEse (portugese, male) 123.4 121.5 126.9 20.4 127.9 38.8 123.4 0.1 121.4 0.7

AApon (upon, male) 105.4 106.4 104.7 1.1 103.8 37.2 105.4 0.3 104.3 10.8
cEIves (caves, female) 165.3 157.4 170.3 17.6 151.0 22.8 165.4 0.6 157.5 0.5
gUHd (good, female) 155.5 148.1 164.1 17.9 140.2 26.8 155.3 1.4 148.2 0.3

cAEpitalised (capitalised, male) 131.2 129.6 131.0 0.9 124.0 28.7 131.1 0.3 127.7 11.9
ERned (earned, male) 127.9 130.3 127.3 1.7 120.5 26.7 127.8 0.5 128.4 13.9
sUWn (soon, female) 143.2 142.2 143.4 1.2 141.9 0.8 143.2 0.3 141.9 0.4

dAHtch (dutch, female) 139.1 136.0 139.5 1.5 137.3 58.3 139.1 0.3 134.9 9.7
britIHsh (british, male) 120.8 119.8 123.1 17.2 117.8 28.3 120.8 0.2 119.8 0.3

pAO (paw, female) 132.4 133.0 133.0 11.1 127.5 35.9 131.2 1.3 132.9 4.7
lIHved (lived, female) 165.3 161.8 169.1 15.2 147.1 32.6 169.9 1.9 161.8 0.4

Table 3: F0 estimation performance of the CES and autocorrelation algorithms for natural data in mobile phone
channel noise. The vowel portion is indicated in uppercase. The gender of the speaker and the word are also
indicated.

Clean 10dB 20dB
CES AUTO CES AUTO CES AUTO

Vowel F0 F0 µ σ µ σ µ σ µ σ
AAnderstand (understand, female) 171.6 168.5 171.2 3.0 153.5 34.9 171.5 0.6 169.0 0.8

attEHined (attained, male) 135.9 129.4 136.3 0.8 125.4 16.7 136.1 0.2 129.5 0.4
portugIYEse (portugese, male) 123.4 121.5 127.6 21.9 128.9 42.9 123.4 0.1 121.3 0.6

AApon (upon, male) 105.4 106.4 104.8 1.1 107.5 41.9 105.4 0.3 104.3 10.4
cEIves (caves, female) 165.3 157.4 169.1 14.8 145.9 30.8 165.4 0.6 157.5 0.5
gUHd (good, female) 155.5 148.1 160.5 16.0 139.7 27.8 155.4 1.3 147.9 4.9

cAEpitalised (capitalised, male) 131.2 129.6 131.1 0.9 121.1 28.9 131.2 0.3 127.4 12.8
ERned (earned, male) 127.9 130.3 127.2 1.6 119.9 27.3 127.8 0.5 128.6 13.3
sUWn (soon, female) 143.2 142.2 143.3 1.1 141.9 0.8 143.2 0.3 141.9 0.4

dAHtch (dutch, female) 139.1 136.0 139.6 1.5 136.6 60.6 139.1 0.3 135.1 15.3
britIHsh (british, male) 120.8 119.8 122.5 14.9 116.2 26.9 120.9 0.2 119.8 0.3

pAO (paw, female) 132.4 133.0 131.9 8.9 123.9 38.3 131.2 1.2 133.0 4.7
lIHved (lived, female) 165.3 161.8 167.7 15.1 147.1 32.9 164.9 1.7 161.9 0.4

Table 4: F0 estimation performance of the CES and autocorrelation algorithms for natural data in landline
telephone channel noise. The vowel portion is indicated in uppercase. The gender of the speaker and the word
are also indicated.



the Goertzel’s algorithm can be used since we need not
compute the spectrum from 0 to Fs

2 Hz. In our simula-
tions we restrict the DFT computation to [90 , 250] Hz
spectrum region. This can be varied depending on any
apriori information about the speaker population.

The pitch period for the ℓth frame is estimated as:
T̂0(ℓ) = 1

F̂0(ℓ)
. where F̂0(ℓ) = arg maxm E [ℓ, m]. To re-

duce the errors due to sampling, we perform quadratic-
curve fitting about the sampled spectrum maximum to
yield a better estimate of F0. The cumulative envelope
spectrum for a natural vowel is shown in Fig. 2. Note
the well-defined peak at F0.

4. EXPERIMENTAL RESULTS

To assess the accuracy of the CES pitch estimation al-
gorithm, we perform experiments on synthetic as well
as natural data. The synthetic vowel data is generated
using the auditory toolbox, at a sampling frequency of
8kHz, with the fundamental frequency chosen as 150Hz.
We use 20ms window for processing. The results of pitch
estimation using the CES algorithm are shown in Ta-
ble. 1. To assess the robustness of the CES pitch esti-
mator, we add noise of a required variance to generate
a noisy signal (generated using a pseudorandom, white
Gaussian noise generator) of a desired signal-to-noise
ratio (SNR). Based on 100 such realizations, we obtain
the mean (µ) and the standard deviation (σ) of the F0

estimate (in Hz). The results are shown in Table. 1 for
two different values of the SNR. We observe that the
new CES pitch estimator is robust to noise. The aver-
age values of the fundamental frequency are quite close
to the actual pitch value (150Hz) even at 10dB global
SNR. The synthetic data performance analysis is to en-
able a comparison to the actual value of the pitch. This
is not possible with natural data. The vowel for which
the algorithm showed consistent performance is /AE/.
The vowel for which poor performance was obtained is
/UW/.

The performance of the algorithm for natural vowels
in real-world noises is investigated next. We used the
Carnegie Mellon University’s database [13] for the ex-
periments . We manually sliced out portions containing
vowel data in the natural speech recording. We used
the cordless phone, mobile phone and landline phone
noise data from the Indian Institute of Science - BPL
database (noisy speech database created in the Speech
and Audio Lab, Indian Institute of Science). The mean
and standard deviation in fundamental frequency esti-
mates, for natural data, are shown in Tables. 2,3 and 4.
The pitch estimates for noise-free data are also shown
for the purpose of comparison. The results are obtained
from 100 realizations of the noisy data. The results show
that the new technique (CES) is quite robust to noise
and superior to the autocorrelation (AUTO) technique
for F0 estimation.

Ideally, it is desired that F0 estimation be indepen-
dent of the vowel formant frequencies. However, the
variation of the F0 estimation accuracy from one vowel
to another (synthetic and natural) shows that the pitch
estimation algorithm is dependent on the formant fre-
quencies. The exact nature of the dependency requires
further investigation.

5. CONCLUSIONS

Motivated by the importance of amplitude modulation
in temporal processing of speech signals, we presented a
novel F0 estimation algorithm. Using synthetic data,
we showed that the technique is very accurate. We
also demonstrated that the technique is robust to noise
and superior in performance to the autocorrelation tech-
nique for both synthetic and real-world noisy speech
data. We can also modify the technique to improve its
performance. For example, weighing the subband en-
velope spectrum by the subband SNR increases noise-
robustness. The cumulative envelope spectrum tech-
nique is also suitable for application in speech coding
and query-by-humming audio retrieval systems. These
results will be reported separately.

REFERENCES

[1] W. Hess, “Pitch determination of speech signals”,
Springer Verlag, 1983.

[2] K. Gopalan, “Pitch estimation using a modulation
model of speech”, Proc. 5th Intl. Conf. on Sig.
Proc., WCCC-ICSP, Vol. 2, pp. 786-791, Aug 2000.

[3] R.J.McNab, L.A. Smith, I.H. Witten, C.L. Hender-
son, S.J. Cunningham, “Towards the digital music
library: Tune retrieval from acoustic input”, Proc.
Digital Libraries, pp 11-18, 1996.

[4] T.V. Sreenivas and P.V.S. Rao, ‘Pitch extraction
from corrupted harmonics of the power spectrum’,
J. Acoust. Soc. of America, Vol.65, No.1, pp 223-
228, Jan 1979.

[5] T. Shimamura and H. Kobayashi, “Weighted au-
tocorrelation for pitch estimation of noisy speech”,
IEEE Trans. Speech and Audio Proc., Vol. 9, No.
7, pp. 727-730, Oct. 2001.

[6] K. Kasi and S.A. Zahorian, “Yet another algo-
rithm for pitch tracking”, Proc. IEEE Intl. Conf.
on Acoust. Speech and Sig. Proc. (ICASSP), Vol. 1,
pp. 361-364, May 2002.

[7] S. Seneff, “A joint synchrony/mean-rate model of
auditory speech processing”, Jl. of Phonetics, Vol.
16, pp. 55-76, 1988.

[8] J. Tchorz and B. Kollmeier, “A model of auditory
perception as front end for automatic speech recog-
nition”, Jl. Acoust. Soc. Am. 106(4), pp. 2040-2050,
Oct. 1999.

[9] R.V. Shannon, “Evidence from auditory brainstem
implants of a modulation-specific auditory pathway
that is critical for speech recognition”, DeVault Lab
Colloquium, 15 April 2005, Indiana University.

[10] Q.J-Fu, “Temporal processing and speech recogni-
tion in cochlear implant users”, Neuro Report, pp.
1-5, vol. 13, no. 13, Sep 2002.

[11] D. Bendor and X. Wang, “The neuronal represen-
tation of pitch in primate auditory cortex”, Letters,
Nature, Vol. 436, pp. 1161-1165, 25 Aug 2005.

[12] M. Slaney, “Auditory Toolbox”, Version 2, Source:
http://rvl4.ecn.purdue.edu/ malcolm/interval/1998-
010/

[13] http://www.festvox.org/cmu arctic


