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ABSTRACT 

We address the problem of exact signal recovery in frequency-domain optical-coherence tomography 
(FDOCT). The standard technique for tomogram reconstruction is the inverse Fourier transform. How­
ever, the inverse Fourier transform is known to yield autocorrelation artifacts which interfere with the 
desired signal. We propose a new transformation for computing an artifact-free tomogram from inten­
sity measurements. Our technique relies on the fact that, in the FDOCT measurements, the intensity 
of the total signal reflected from the object is smaller than that of the reference arm. Our technique 
is noniterative, nonlinear, and it leads to an exact solution in the absence of noise. The reconstructed 
signal is free from autocorrelation artifacts. We present results on synthesized data as well as on 
experimental FDOCT measurements of the retina of the eye. 
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1. INTRODUCTION 

Frequency-domain optical-coherence tomography (FDOCT) is an effective and noninvasive interfero-
metric technique that is suitable for three-dimensional imaging of biological specimens. Using FDOCT, 
one can acquire the information of the depth scan of the specimen within a single exposure. FDOCT 
is becoming increasingly popular because it is significantly faster than its counterpart—time-domain 
optical coherence tomography (TDOCT). FDOCT has higher sensitivity and signal-to-noise ratio com­
pared to TDOCT.1,2 FDOCT is also amenable to high-resolution imaging by using the principles of 
phase-shifting interferometry.3 The primary applications of FDOCT have been in dermatology4 and 
opthalmology.5,6 

In the FDOCT experiments, the measurements are spectral intensities, from which we desire to con­
struct a tomogram of the object. The commonly-employed technique is the inverse Fourier transform; 
however, it is known to introduce autocorrelation artifacts that can seriously degrade the resolution 
of the tomogram. The most-advanced method to date uses minimum-phase functions and provides an 
iterative reconstruction.7 This algorithm is similar to the Fienup iterative algorithm8,9 with a causality 
constraint in the spatial domain. 

In this paper, we propose a new noniterative technique that enables exact signal recovery. The 
technique completely eliminates autocorrelation artifacts and produces interference-free tomograms. 
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2. S I G N A L A C Q U I S I T I O N 

In Fig. 1, we show a schematic of the FDOCT data-acquisition setup. A broadband source is used for 
illumination. The output of the source is optically split into two beams which are directed towards the 
two arms of a Michelson interferometer: 

1. A broadband reference mirror is placed at the end of the reference arm. The light reflected from 
the broadband mirror is the reference signal. 

2. The specimen to be imaged is placed at the end of the object arm. The object largely absorbs, 
scatters, and attenuates the incident light; only a small fraction is reflected back. Therefore, the 
reflected light intensity is small compared to that of the reference. 

The two reflected signals are combined in a collinear fashion and directed to an optical spectrum an­
alyzer which performs a spectral decomposition of the signal as a function of the wavelength A. Since 
the light from the object is weak compared to that from the reference, it manifests itself as a spectral 
fringe riding on top of the source spectrum. The offset distance ZQ between the zero-phase delay plane 
and the surface of the object (see Fig.I) is always positive in our experimental setup. 

For volume-imaging applications, the specimen is scanned in the lateral direction. The measure­
ments are processed on a scan-by-scan basis. The scattering functions recovered from all the scans are 
put together to form the tomogram. 

3. S I G N A L M O D E L 

The measured output of the optical spectrum analyzer is a function of the wavelength and it is mapped 
onto the wavenumber scale k. The resulting interference signal I(k) is given by the following equation 
(see the chapter by Lindner et.al.10 for details): 

where 

n{z) is the refractive index as a function of the depth z, 

a{z) is the amplitude of the wave backscattered from the object, and 

S{k) is the spectrum intensity distribution of the broadband light source for a given wavenumber. 

We ignore the dispersion in the specimen. We also make the zeroth-order approximation n(z) = n. 
This assumption is widely used and holds when the bandwidth of the source is moderate. We also 
make the substitution UJ = —2kn, so that 

The tomogram-reconstruction problem now simplifies to recovering a(z) given I(u). The source spec­
trum S(u) can be measured by blocking the object arm. Therefore, the term of interest is 

which is the measurement normalized with respect to the source spectrum. 
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Figure 1. Schematic of the Fourier-domain optical-coherence tomography system. 

4. AUTOCORRELATION ARTIFACTS 

Define A(u) = / a(z)e~^wzdz. Developing the squares in (3), we get 
Jo 

Taking the inverse Fourier transform of both sides of (4), we get 

where a(z) is the desired term and where a(—z) is its mirror image. raa(z) is the autocorrelation term 
which interferes with a(z) and a(—z) thereby causing artifacts in the tomogram. If zo > 0, a(z) = 0 
for z < ZQ and does not overlap with its mirror image a(—z). 

5. LOGARITHMIC TRANSFORMATION TECHNIQUE 

The intensity of the signal reflected from the object is much smaller than the reference intensity. 
Therefore, we have that |A(w)| <C 1, Vw. The autocorrelation artifact is the result of the multiplicative 
interaction between A(uo) and its conjugate. To convert the multiplicative interaction to an additive 
one, let us consider the logarithm of H(uo): 

where O denotes the Landau symbol. The second equality above has been obtained by using a Taylor 
series expansion under the hypothesis that |A(w)| <C 1. 

We note that A(uo) has a causal inverse. Therefore, An(uo) also has a causal inverse for n > 1. 
Similarly, A(uo) and A*n(uo) have non-causal inverses. Thus, the logarithm neatly separates the signal 
into causal and non-causal parts. Retaining the causal part in the inverse of \og{H(uo)) and applying a 
Fourier transform, we get log(l + A(uo)). A(uo) can be recovered from log(l + A(uo)) by complex expo­
nentiation. The desired function a(z) can be computed from A(u) by inverse Fourier transformation. 
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Figure 2. (a) The synthesized scattering function of a three-layer specimen, (b) The scattering function recovered 
by the inverse Fourier transform, (c) The scattering function obtained by using the logarithmic-transformation 
technique. 

Thus, the logarithmic transformation enables exact recovery of a(z) from H{u). 
In practice, the Fourier transform can be implemented by using the fast-Fourier-transform (FFT) al­

gorithm. The logarithm and exponential operations are nonlinear; therefore, oversampling is necessary 
to suppress aliasing errors. Typically, oversampling by a factor of two suffices for practical applications. 

6. E X P E R I M E N T A L RESULTS 

We validate our technique on both synthesized and experimental data. We synthesized a multilayer 
biological specimen with a scattering function as shown in Fig. 2(a). We assume that the source power 
spectrum is perfectly flat. The tomogram constructed by using the standard inverse-Fourier-transform 
technique is shown in Fig. 2(b). Note that autocorrelation artifacts interfere with the structure of the 
specimen. The scattering function recovered by using the logarithmic transformation is shown in Fig. 
2(c). Note that the autocorrelation artifacts have been completely suppressed. 

Next, we report the performance on F D O C T measurements of the human-eye retina. The exper­
imental setup is shown in Fig. 3. The broadband light source is synthesized by using two superlumi-
nescent diodes (EXALOS) with center wavelengths 853nm and 827nm. The respective full-width-at-
half-maximum values (FWHM) are 34nm and 25nm, resulting in an overall FWHM of 36nm, a central 
wavelength of 833.5nm, and an axial resolution of 8.5/im in air. The dispersion compensation in the 
reference arm matches the sample-arm optics as well as the water chamber of the eye. The light in the 
sample path passes an X-Y galvo scanning stage (Cambridge Technology) and illuminates the eye via a 
telescope with angular magnification of two. At the cornea, the optical power is 300/iW and the beam 
waist is 1.8mm which results in a theoretical spot size of 14/im at the retina. The recombined reference 
and sample-arm light is guided through a single-mode fiber to the spectrometer module. The latter 
is equipped with a volume-transmission-diffraction grating (Wasatch, 12001ines/mm) and an objective 
lens with focal length of 135mm. The CCD line-scan camera (ATMEL AVIIVA, 2048 pixel, 12bit) is 
driven at a line rate of 17.4kHz with an integration time of 43/is. The measured sensitivity is 98dB 
close to the zero-offset distance. 

We processed the acquired data by both techniques. In the standard inverse-Fourier-transform tech­
nique, it is common practice to suppress the source (background) term by subtraction, so as to increase 
contrast. The resulting image is shown in Fig. 4(a). The tomogram obtained with the logarithmic-
transformation technique described in Sec. 5 is shown in Fig. 4 (b). Note that the artifacts have been 
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Figure 3. FDOCT experimental setup. SLD stands for superluminescent diode, CCD stands for charge-coupled-
device camera. 

suppressed and that the structure of the specimen is also neatly resolved. Since the CCD camera had 
a noise floor of 40dB, we retained only the top 40dB for display purposes. The two tomograms were 
also adjusted to the same dynamic range. 

7. CONCLUSION 

We proposed a new technique for exact signal recovery in a FDOCT system. The technique is nonit-
erative, nonlinear, and offers an exact solution in the absence of noise. It is also computationally more 
efficient than the iterative techniques reported in the literature. Simulation results on synthesized and 
experimental data showed that the technique offers superior quality and artifact-free reconstruction. 
The technique can also be extended to higher dimensions which may be useful for holographic imaging 
applications.11'12 
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