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ABSTRACT

New phase-shifting techniques have recently been proposed

to suppress the complex-conjugate ambiguity in frequency-

domain optical-coherence tomography. A phase shift is intro-

duced, in an elegant fashion, by incorporating a small beam

offset at the scanning mirror. The tomogram is then computed

by using a combination of Hilbert and Fourier transforms.

This is a marked deviation from the conventional approaches,

wherein each A-scan is reconstructed independently of the

others. In this paper, we formulate the problem in a signal

processing framework and provide theoretical proofs for max-

imal and partial suppression of complex-conjugate ambiguity.

To supplement the theoretical derivations, we provide exper-

imental results on in vivo measurements of a human finger

nail.

Index Terms— frequency-domain optical-coherence to-

mography, complex-conjugate ambiguity, Hilbert transform,

Bedrosian theorem.

1. INTRODUCTION

The foundation for frequency-domain optical-coherence to-

mography (FDOCT) is the inverse scattering theorem, which

states that the inverse Fourier transform of the spectral inter-

ference pattern yields the axial sample structure [1, 2, 3]. This

property enables the reconstruction of depth profiles based on

measurements made at the surface without a need for scan-

ning [2]. Tomographic reconstruction is achieved by simple

Fourier transformation. Since the measurements are inten-

sities, which are inherently real-valued, their Fourier trans-

forms have Hermitian symmetry. This gives rise to the so-

called “complex-conjugate ambiguity”. Quite often, the am-

biguity is resolved by placing the zero-delay plane of the in-

terferometer outside the specimen. However, this solution

has some limitations; for example, the farther the object is

∗This work is supported by the Hasler foundation.

from the zero-delay plane, the poorer is the sensitivity. The

best signal quality is achieved when the zero-delay plane lies

within the specimen. In principle, this arrangement doubles

the accessible depth. The downside of this configuration is

the complex-conjugate ambiguity. The commonly employed

approaches to overcome this problem are based on phase-

shifting interferometry. In this approach, a second set of mea-

surements is acquired, preferably in quadrature phase, and the

complex-conjugate function is canceled by a suitable combi-

nation of the two measurements. A disadvantage of these ap-

proaches is that phase shifters often tend to have chromatic

aberrations. The problem is more complicated for in vivo ex-

periments because mild movement of the sample may alter the

phase relation. Yet another disadvantage of the phase-shifting

approaches is that twice the number of measurements are re-

quired for accurate reconstruction.

We briefly review some recently proposed techniques that

enable optimal reconstruction. Bachmann et. al [4] intro-

duced a frequency-shifting technique that allows for a com-

plete achromatic heterodyne signal reconstruction. Vakoc et.

al. [5] proposed a technique for eliminating depth degener-

acy by instantaneously acquiring two phase-shifted signals.

Their system employs a passive optical demodulation circuit

and a chirped digital acquisition clock derived from a voltage-

controlled oscillator. Although this procedure suppresses the

artifacts, the complexity of the system increases. Wang [6]

proposed an alternative that eliminates the need to acquire

multiple measurements, and showed applications for in vivo
imaging, both in real time and at video rate. A drawback

of this technique is that it requires an additional device—a

piezoelectric stage. This not only makes the system more

expensive, but also increases the complexity in terms of the

synchronization electronics. In particular, for common-path

configurations [7], the reference arm is included in a fiber-

coupled handheld device, which makes it difficult to add phase-

shifting components. Recently, we developed a new system

to overcome such limitations [8]. Our approach does not need
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additional phase-shifting devices, and can be implemented

easily by incorporating a small offset at the beam-scanning

mirror. We reported results on in vivo measurements in a

FDOCT system employing a handheld scanner. The recon-

struction technique is the same as that in [6]. Embedded in

these techniques are some of the fundamental properties of

the Fourier and Hilbert transforms. Our objective in this paper

is to gain a better understanding of the new method by formu-

lating a signal processing model, which not only predicts the

reconstruction quality, but also helps in optimizing the system

parameters. We provide experimental results based on in vivo
measurements, and compare the optimal reconstruction to the

conventional and suboptimal ones.

2. SIGNAL MODEL

Consider FDOCT in a Michelson interferometric configura-

tion (see [9] for a schematic of the setup). The measured sig-

nal is the light reflected from the object, and is coherently

amplified by the reference-arm signal. The measurements are

recorded by a spectrometer, as a function of the wavelength λ.

In the standard Fourier transform notation, the measurements

take the form

I ′(x, ωz) = S(ωz)
∣∣∣∣1 +

∫ +∞

−∞
a(x, z)e−j ωz zdz

∣∣∣∣
2

, (1)

where S(ωz) is the source power spectrum, ωz = − 4πn

λ
, n

being the average refractive index of the specimen, and where

a(x, z) is the scattering function. The objective is to recover

a(x, z) from I ′(x, ωz). Developing the squares in (1), we

have that

I ′(x, ωz) = S(ωz) + S(ωz)A(x, ωz) + S(ωz)A∗(x, ωz)

+S(ωz) |A(x, ωz)|2 , (2)

where A(x, ωz) =
∫ +∞

−∞
a(x, z)e−j ωz zdz. The function

S(ωz) can be suppressed by subtracting the measured source

intensity. Let us assume that S(ωz) |A(x, ωz)|2 is negligible

in comparison to the other terms, and that the source coher-

ence function can be approximated by a Dirac impulse. The

latter assumption only simplifies the calculations, and does

not affect our conclusions. The signal of interest in (2) is

therefore

I(x, ωz) = A(x, ωz) + A∗(x, ωz). (3)

Without loss of generality, we assume that a(x, z) is real. The

inverse Fourier transform of I(x, ωz), calculated along ωz is

given by

i(x, z) = a(x, z) + a(x,−z), (4)

which is the sum of two functions with disjoint support pro-

vided that the zero-delay plane is outside of the specimen. In

the scenario considered here, the zero-delay plane is inside

the specimen; therefore, a(x, z) is not causal along z and the

complex-conjugate ambiguity in i(x, z) cannot be resolved.

Next, let us consider the scenario described in [8], where a

phase shift is introduced by incorporating a small offset at the

beam-scanning mirror. The resulting effect is best described

as phase modulation, and often a linear one, provided that the

offset is small. The measurements in the new scenario can be

expressed as

I(x, ωz) = 2
∫ +∞

−∞
a(x, z) cos(ωzz + φ(x))dz, (5)

where φ(x) = ωc x, ωc being the carrier frequency. Without

loss of generality, we set φ(0) = 0.

The new approach to retrieve a(x, z) from I(x, ωz) is to

compute the Hilbert transform of I along x, construct an an-

alytic signal, and then apply a Fourier transform along ωz .

We next show that this method yields accurate reconstruction

only under certain conditions.

3. THEORETICAL ANALYSIS

The notation used is as follows. The symbols F , F−1 and

H denote the Fourier, inverse Fourier, and Hilbert transforms,

respectively. Since the signals involved in our analysis are

functions of two variables, we use the subscript to denote

the variable with respect to which the transformation is per-

formed. For example, the expression F−1
ωz

{A}(x, z) denotes

the inverse Fourier transform of A calculated along ωz; the

result is a function of the two variables x and z. To indicate

even and odd functions, we use the subscripts e and o, respec-

tively. With the help of this notation, A(x, ωz) can be written

as A(x, ωz) = Ae(x, ωz)+jAo(x, ωz), where Ae and Ao are

the cosine and the sine transforms, respectively. The subscript

as is used to denote the analytic version of the corresponding

signal.

For the sake of clarity, we consider the cases of optimal

and suboptimal reconstruction separately.

Proposition 1. Let Ias(x, ωz) = I(x, ωz) + jHx{I}(x, ωz).
If Fx{A}(ωx, ωz) = 0, for ωx > ωc , then F−1

ωz
{Ias}(x, z) =

2ej φ(x)a(x, z).

Proof. We rewrite (5) as

I(x, ωz) = 2 cos φ(x)Ae(x, ωz) − 2 sinφ(x)Ao(x, ωz). (6)

Consider the Hilbert transform of I(x, ωz) calculated along

x:

Hx{I}(x, ωz) = 2Hx{cos φAe}(x, ωz)
+2Hx{sin φAo}(x, ωz). (7)

To proceed further, we use a property related to the Hilbert

transform of the product of two functions, popularly known
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as the Bedrosian theorem [10]. The theorem states that if two

functions f(x) and g(x) have lowpass and highpass spectra,

respectively, and they are nonoverlapping, then

Hx{f g}(x) = f(x)Hx{g}(x); (8)

that is, the lowpass function can be factored out of the Hilbert

transform operation.

Since Fx{A}(ωx, ωz) = 0, for ωx > ωc, Ae and Ao

also satisfy this property. Therefore, the Bedrosian theorem

is applicable in (7), which then reduces to

Hx{I}(x, ωz) = 2 sinφ(x)Ae(x, ωz)
+2 cos φ(x)Ao(x, ωz). (9)

The corresponding analytic signal Ias(x, ωz) is given by

Ias(x, ωz) = 2ej φ(x) (Ae(x, ωz) + jAo(x, ωz))
= 2ej φ(x)A(x, ωz). (10)

From (10), we have that

F−1
z {Ias}(x, z) = 2ej φ(x) a(x, z). (11)

Thus, we have shown that a(x, z) can be determined un-

ambiguously from I(x, ωz), provided that Fx{A}(ωx, ωz) =
0 for ωx > ωc. Next, we consider the case where this condi-

tion is violated.

Proposition 2. If Fx{A}(ωx, ωz) �= 0 for ωx > ωc , then
a(x, z) cannot be determined uniquely from I(x, ωz).

Proof. Let Ae = Ae1 +Ae2 such that Fx{Ae1}(ωx, ωz) = 0,

for ωx > ωc , and Fx{Ae2}(ωx, ωz) = 0, for ωx < ωc.

Consider a similar lowpass-highpass decomposition for Ao;

i.e., Ao = Ao1 + Ao2 . In terms of these functions, we rewrite

(6) as

I(x, ωz) = 2 cos φ(x) (Ae1(x, ωz) + Ae2(x, ωz))
−2 sinφ(x) (Ao1(x, ωz) + Ao2(x, ωz)) .

(12)

The Hilbert transform of I(x, ωz) computed along x is

Hx{I}(x, ωz) = 2 sinφ(x)Ae1(x, ωz)
+2 cos φ(x)Hx{Ae2}(x, ωz)
+2 cos φ(x)Ao1(x, ωz)
−2 sinφ(x)Hx{Ao2}(x, ωz). (13)

Note that we have used the Bedrosian theorem in arriving at

the above equation. The corresponding analytic signal Ias(x, ωz)
is given by

Ias(x, ωz) = 2ej φ(x)

⎛
⎜⎝Ae1(x, ωz) + jAo1(x, ωz)︸ ︷︷ ︸

A1(x,ωz)

⎞
⎟⎠

+2 cos φ(x)Ae2as
(x, ωz)

−2 sinφ(x)Ao2as
(x, ωz). (14)

The inverse Fourier transform of (14) is given by

F−1
z {Ias}(x, z) = 2ej φ(x)a1(x, z) − 2 cos φ(x)a−e2

(x, z)
−2 sinφ(x)a−o2

(x, z), (15)

where F−1{A1}(x, z) = a1(x, z). The functions that bear

the superscript “− ” are anti-causal along z, and are given by

a−e2
(x, z) = F−1{Ae2}(x, z); a−e1

(x, z) = F−1{Ae1}(x, z).
Note that a1(x, z) is a two-sided function.

From (15), it is clear that a(x, z) cannot be determined

uniquely from I(x, ωz).

4. EXPERIMENTAL RESULTS

In Figure 1, we show a schematic of the fiber-based FDOCT

system developed at the Biomedical Optics Laboratory (EPFL).

A broadband light source (LS) is used with the center wave-

length at 1300 nm and a spectral full-width at half-maximum

(FWHM) of 70 nm. The axial resolution is 10 μm in air. The

70:30 fiber coupler transmits 30% of the light to the sample-

arm fiber equipped with a handheld device, which contains

the adjustable reference arm. The length of the reference arm

can be fine-tuned by a translation stage (TS). Within the de-

vice, a nonpolarizing beam-splitter is used to divide the light

into sample-arm and reference beams. The sample-arm beam

is deflected by a single-point two-dimensional scanner and

focused via a 50 mm achromatic lens (L0) into the sample.

The spectrometer at the exit of the fiber coupler consists of a

collimator (L1), a transmission grating (G) (1200 lines/mm,

Wasatch Inc.), and a line array (charge-coupled device, Sen-

sors Unlimited, 512 pixel, 12 bit). The camera objective is an

achromatic lens combination (L2, L3) with an effective focal

length of 100 mm. The spectrometer resolution is 0.28 nm,

allowing for a system depth range of 1.5 mm. The actual ex-

posure time is 22 μs with a frame rate of 18.9 kHz or T=53 μs.

Corresponding to a power of 2 mW at the sample, the sensi-

tivity is about 105 dB close to the zero delay, and it decreases

at a rate of 12 dB/mm. The beam offset is adjusted by a di-

agonal translation (r) of the scanner, which keeps the beam at

the center of the focusing optics.

Using the setup described above, we acquired measure-

ments on a finger nail of the first author of this paper, for dif-

ferent values of the phase shift. In Figure 2(a), we show the

results obtained by the conventional reconstruction; the diffi-

culty in resolving the complex-conjugate function ambiguity

is evident from this figure. This problem is solved quite satis-

factorily by using an optimal carrier frequency (cf. Proposi-

tion 1, Section 3) as shown in Figure 2(b). In Figure 2(c), we

show the reconstructed tomogram corresponding to a subopti-

mal carrier; in this case, one achieves only partial suppression

of the mirror term as predicted by Proposition 2 (Section 3).
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Fig. 1. Schematic of the FDOCT experimental setup employ-

ing a handheld scanner. Please refer to Section 4 for explana-

tion.

5. CONCLUSIONS

We have addressed the problem of complex-conjugate am-

biguity in frequency-domain optical-coherence tomography.

We have given theoretical proofs for optimal and suboptimal

reconstruction in the context of a newly developed handheld

scanning system. The results are also applicable to other

phase-shifting techniques. Our analysis is supported by ex-

perimental validation on in vivo measurements of a human

finger nail. The results show that, by making an optimal

choice of the carrier frequency, one can achieve a significant

improvement in the reconstruction quality compared with the

conventional Fourier technique. In our analysis, we have as-

sumed that the functions are defined on continuous domains.

In practice, the effects of sampling must also be taken into

account. These results will be reported separately.
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