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This paper deals with a concept and description of a RC network as an electro-analog model
of diffusion process which enables to simulate heat dissipation under different initial and
boundary conditions. It is based on well-known analogy between heat and electrical
conduction. In the paper are compared analytical solution together with numerical
solution and experimentally measured data. For the first time a fractional order model of
diffusion process and its modeling via lumped RC network has been used. Simple examples
of simulations, measurements and their comparison are shown.
� 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/3.0/).
1. Introduction

Fractional calculus and fractional differential equations have been used in various areas of the applications, for instance
bioengineering [4], physics [2,23], chaos theory [11], viscoelasticity [5], control system engineering [1,7,13,22], fractional
signal processing techniques [18] and many others areas (see e.g. [8,10,17]). One of the another important area of
applications is the electrical engineering.

This article describes how to model diffusion using a RC network as an electro-analog model of diffusion process. Paper is
based on well-known analogy between heat and electrical conduction. Such approach was already used for modeling the
diffusion process described by integer-order differential equation [3]. In this article a fractional-order model of the diffusion
process and its modeling via RC network is used. Experimentally obtained results are compared with analytical and
numerical solution of the fractional order diffusion equation. For numerical computation of the fractional-order partial
differential equation a matrix approach has been used [15,16].

2. Fractional calculus

Fractional order differential calculus is a generalization of integer order integral and derivative to real or even complex
order. This idea has first emerged at the end of 17th century, and has been developed in the area of mathematics throughout
18th and 19th century in the works of e.g. Liouville, Riemann, Cauchy, Abel, Grünwald and many others. More recently, by
the end of 20th century, it turned out that some physical phenomena are modeled more accurately when fractional calculus
is in use. There exist two (in fact three) main definitions of the fractional order integrals, derivatives and differences:
Riemann–Liouville, Caputo, and Grünwald–Letnikov [6,8,10,13]. Some other, are also present in literature, but less
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commonly used in the applications. To be precise, the Riemann–Liouville and Caputo definitions concern both fractional
derivative and integral.

To define the fractional order differ-integral, the definition of the CðxÞ function is needed. The CðxÞ function is given in the
following way [13]:
CðxÞ ¼
Z 1

0
e�ttx�1dt; ð1Þ
where RðxÞ > 0.
In this article we will consider the Caputo’s definition, which can be written as [13]:
0Da
t f ðtÞ ¼ 1

Cðn� aÞ

Z t

0

f ðnÞðsÞ
ðt � sÞa�nþ1 ds; ð2Þ
for n� 1 < a < n. The initial conditions for the fractional order differential equations with the Caputo derivatives are in the
same form as for the integer-order differential equations. For the Caputo partial fractional derivative of order a of a function
f ðt; kÞwith respect to variable t we will use the notation of the form @af ðt; kÞ=@ta, which is often used in the related literature.

The Laplace transform method is used often for solving engineering problems. The formula for the Laplace transform of
the Caputo fractional derivative (2) has the form [13]:
Z 1

0
e�st

0Da
t f ðtÞdt ¼ saFðsÞ �

Xn�1

k¼0

sa�k�1f ðkÞð0Þ ð3Þ
for n� 1 < a 6 n, where s 2 C denotes the Laplace operator, and C denotes a set of complex numbers.

3. Description of diffusion process

One of a good example of diffusion process is a heat transfer action, when a heat (energy, temperature) is transported
through a material. The description of such a processes can be meet in Sierociuk et al. [19]. Let us assume the heat transfer
process in semi-infinite beam, with respect to the temperature (we will be able to control temperature at the beginning of
the beam and observe also temperature at each point of the beam). The analog equivalent of this process is a transmission
line presented in Fig. 1. The voltage in each stage of RC-line represents a temperature in heat transfer process, and similarly
the current represents a heat flux.

From the analog model the diffusion equation can be obtained very shortly. The voltage between two stages is a voltage
on the resistor, and is proportional to the current in this stage. This can be written as follows:
uðx; tÞ � uðxþ dx; tÞ ¼ Riðx; tÞ ð4Þ
what, in limit for dx! 0, can be rewritten as
@

@x
uðx; tÞ ¼ Riðx; tÞ ð5Þ
Similar, the voltage of the capacitor in each stage can be described
iðx; tÞ � iðxþ dx; tÞ ¼ C
@

@t
uðx; tÞ ð6Þ
what, in limit for dx! 0, can be rewritten as
@

@x
iðx; tÞ ¼ C

@

@t
uðx; tÞ ð7Þ
This two equations (for resistor and capacitor) can be written together in the form of diffusion equation:
@2

@x2 uðx; tÞ ¼ RC
@

@t
uðx; tÞ ð8Þ
R1 R2

C1 C2u(x, t)

i(x, t) i(x + dx, t)

u(x + dx, t)

Fig. 1. Scheme of transmission line.
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3.1. Evaluation of diffusion process equation

For a case of the ideal heating process, without energy loss, of a semi-infinite beam that equation can be written in the
following form
@

@t
Tðt; kÞ ¼ 1

a2

@2Tðt; kÞ
@k2 ; ð9Þ
with the following boundary conditions:
Tð0; kÞ ¼ 0; Tðt; 0Þ ¼ uðtÞ; ð10Þ
where Tðt; kÞ is a temperature of the beam at time instant t and space coordinate (distance) k, and 1
a2 is a beam material

conductivity.
As it was presented in Podlubny and Sierociuk et al. [13,19] the following relation between the heat flux and the

temperature at the desired point holds (it can be obtained during solving the Eq. (9) in Laplace domain):
Hðt; kÞ ¼ 1
a
@0:5

@t0:5 Tðt; kÞ: ð11Þ
Analytical solution for Tðs;0Þ ¼ c1ðtÞ and a ¼ 1 is
Tðt; k1Þ ¼ c erfc
k1a
2
ffiffi
t
p

� �
ð12Þ
3.2. Evaluation of diffusion process equation for loss case

Let as assume the situation that in each point of diffusive material length a part of the heat flux is dissipated. Moreover,
the value of this dissipation flux is proportional to the temperature of this point. In order to achieve it, let us expand the
Eq. (11), in the same way as in Sierociuk et al. [19], into the following form:
@

@k
Hðt; kÞ ¼ 1

a
@0:5

@t0:5 Hðt; kÞ þ bHðt; kÞ; ð13Þ
where a is the same beam material conductivity as for ideal diffusion case and, b is a coefficient of heat flux dissipation.
This can be expressed as the analog model presented in Fig. 2, where losing of heat flux is represented by additional

resistors connected parallel to capacitors.
The diffusion equation, in this case, has the following form
@2

@k2 Tðt; kÞ ¼ a2 @

@t
Tðt; kÞ þ 2a3b

@0:5

@t0:5 Tðt; kÞ þ a4b2Tðt; kÞ ð14Þ
Solution of this equation in Laplace domain has the following form
Tðs; k1Þ ¼ e�k1 as0:5þa2bð ÞTðs; 0Þ: ð15Þ
what can be rewritten as
Tðs; k1Þ ¼ e�k1a2be�k1as0:5
Tðs;0Þ: ð16Þ
Analytical solution for Tðs;0Þ ¼ c1ðtÞ and a ¼ 1 is
Tðt; k1Þ ¼ ce�k1a2berfc
k1a
2
ffiffi
t
p

� �
ð17Þ
R R

r rC Cu(x, t)

i(x, t) i(x + dx, t)

u(x + dx, t)

Fig. 2. Scheme of transmission line with heat dissipation.
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4. Matrix approach for solving fractional order diffusion equations

This approach is based on the fact that operation of the fractional calculus can be expressed by matrix [16]. It follows from
Podlubny [14], that the left-sided Riemann–Liouville or Caputo fractional derivative v ðaÞðtÞ ¼ 0Da

t vðtÞ can be approximated in
all nodes of the equidistant discretization net t ¼ js (j ¼ 0;1; . . . ;n) simultaneously with the help of the upper triangular strip
matrix BðaÞn as:
v ðaÞn v ðaÞn�1 . . . v ðaÞ1 v ðaÞ0

h iT
¼ BðaÞn vn vn�1 . . . v1 v0½ �T ; ð18Þ
where
BðaÞn ¼
1
sa

xðaÞ0 xðaÞ1
. .

. . .
.

xðaÞn�1 xðaÞn

0 xðaÞ0 xðaÞ1
. .

. . .
.

xðaÞn�1

0 0 xðaÞ0 xðaÞ1
. .

. . .
.

. . . . . . . . . . .
. . .

. . .
.

0 . . . 0 0 xðaÞ0 xðaÞ1

0 0 . . . 0 0 xðaÞ0

2
66666666666664

3
77777777777775

ð19Þ

xðaÞj ¼ ð�1Þj a
j

� �
; j ¼ 0;1; . . . ;n: ð20Þ
Similarly, the right-sided Riemann–Liouville or Caputo fractional derivative v ðaÞðtÞ¼tD
a
bvðtÞ can be approximated in all

nodes of the equidistant discretization net t ¼ js (j ¼ 0;1; . . . ;n) simultaneously with the help of the lower triangular strip
matrix FðaÞn :
v ðaÞn v ðaÞn�1 . . . v ðaÞ1 v ðaÞ0

h iT
¼ FðaÞn vn vn�1 . . . v1 v0½ �T ð21Þ

FðaÞn ¼
1
sa

xðaÞ0 0 0 0 . . . 0

xðaÞ1 xðaÞ0 0 0 . . . 0

xðaÞ2 xðaÞ1 xðaÞ0 0 . . . 0

. .
. . .

. . .
. . .

.
. . . . . .

xðaÞn�1
. .

.
xðaÞ2 xðaÞ1 xðaÞ0 0

xðaÞn xðaÞn�1
. .

.
xðaÞ2 xðaÞ1 xðaÞ0

2
6666666666664

3
7777777777775

ð22Þ
The symmetric Riesz derivative of order b can be approximated based on its definition as a combination of the approx-
imations (18) and (21) for the left and right-sided Riemann–Liouville derivatives, or using the centered fractional differences
approximation of the symmetric Riesz derivative suggested recently by Ortigueira [9]. The general formula is the same:
v ðbÞm v ðbÞm�1 . . . v ðbÞ1 v ðbÞ0

h iT
¼ RðbÞm vm vm�1 . . . v1 v0½ �T ð23Þ
In the first case, the approximation for the left-sided Caputo derivative is taken one step ahead, and the approximation for
the right-sided Caputo derivative is taken one step back. This leads to the matrix
RðbÞm ¼
h�a

2 �1Um þ þ1Um½ � ð24Þ
In the second case (Ortigueira’s definition) we have the following symmetric matrix:
RðbÞm ¼ h�b

xðbÞ0 xðbÞ1 xðbÞ2 xðbÞ3 . . . xðbÞm

xðbÞ1 xðbÞ0 xðbÞ1 xðbÞ2 . . . xðbÞm�1

xðbÞ2 xðbÞ1 xðbÞ0 xðbÞ1 . . . xðbÞm�2

. .
. . .

. . .
. . .

.
. . . . . .

xðbÞm�1
. .

.
xðbÞ2 xðbÞ1 xðbÞ0 xðbÞ1

xðbÞm xðbÞm�1
. .

.
xðbÞ2 xðbÞ1 xðbÞ0

2
6666666666664

3
7777777777775

ð25Þ
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xðbÞk ¼
ð�1ÞkCðbþ 1Þ cosðbp=2Þ

Cðb=2� kþ 1ÞCðb=2þ kþ 1Þ ; k ¼ 0;1; . . . ;m: ð26Þ
Both these approximations of symmetric Riesz derivatives give practically the same numerical results and in case of
numerical solution of partial fractional differential equations lead to a well-posed matrix of the resulting algebraic
system.

Similarly, if in addition to fractional-order time derivative we also consider symmetric fractional-order spatial deriva-
tives, then we have to use all nodes at the considered time layer from the leftmost to the rightmost spatial discretization
node.

Let us consider the nodes ðih; jsÞ; j ¼ 0;1;2; . . . ;n, corresponding to all time layers at ith spatial discretization node. It has
been shown in Podlubny [14] that all values of ath order time derivative of uðx; tÞ at these nodes are approximated using the
discrete analogue of differentiation of arbitrary order:
uðaÞi;n uðaÞi;n�1 . . . uðaÞi;2 uðaÞi;1 uðaÞi;0

h i
¼ BðaÞn ui;n ui;n�1 . . . ui;2 ui;1 ui;0

� �T
: ð27Þ
In order to obtain a simultaneous approximation of ath order time derivative of uðx; tÞ in all nodes, we need to arrange all
function values uij at the discretization nodes to the form of a column vector unm ¼ ½. . .�T , which has the structure described in
Podlubny et al. [16].

In visual terms, we first take the nodes of nth time layer, then the nodes of ðn� 1Þth time layer, and so forth, and put them
in this order in a vertical column stack.

The matrix that transforms the vector Unm to the vector UðaÞt of the partial fractional derivative of order a with respect to
time variable can be obtained as a Kronecker product of the matrix BðaÞn , which corresponds to the fractional ordinary deriv-
ative of order a (recall that n is the number of time steps), and the unit matrix Em (recall that m is the number of spatial
discretization nodes):
TðaÞmn ¼ BðaÞn � Em ð28Þ
Similarly, the matrix that transforms the vector U to the vector UðbÞx of the partial fractional derivative of order b with
respect to spatial variable can be obtained as a Kronecker product of the unit matrix En (recall that m is the number of spatial
discretization nodes), and the matrix RðbÞm , which corresponds to a symmetric Riesz ordinary derivative of order b [9], (recall
that m is the number of time steps):
SðaÞmn ¼ En � RðbÞm : ð29Þ
Having these approximations for partial fractional derivatives with respect to both variables, we can immediately discret-
ize the general form of the fractional diffusion equation by simply replacing the derivatives with their discrete analogs.
Namely, the equation
C
0D

a
t u� v @bu

@jxjb
¼ f ðx; tÞ ð30Þ
is discretized as
BðaÞn � Em � vEn � RðbÞm

n o
unm ¼ f nm: ð31Þ
In the case of diffusion process with heat flux dissipation, the Eq. (14) can be rewritten into general discrete form using
the Podlubny’s matrix approach as
v1BðaÞn � Em þ v2BðbÞn � Em þ v3In � Em � En � RðcÞm

n o
unm ¼ f nm: ð32Þ
Initial and boundary conditions must be equal to zero. If it is not so, then an auxiliary unknown function must be intro-
duced, which satisfies the zero initial and boundary conditions. In this way, the non-zero initial and boundary conditions
moves to the right-hand side of the equation for the new unknown function.
R1 R2

C1 C2u(t)

i1(t) in(t)

u1(t) un(t)

Fig. 3. Analog model of diffusion process with heat dissipation.



Fig. 4. A circuit board of the diffusion process with heat dissipation.

Fig. 5. Comparison of analog modeling and analytical solution.

Table 1
The squared error for diffusion process with heat flux dissipation. The bold font in the Table stays for the sum of errors for all sensors.

Analog vs. analytical Analog vs. numerical Analytical vs. numerical

Sensor 2 1.0524e � 04 1.1270e � 04 16.0752e � 07
Sensor 3 2.6270e � 04 2.6622e � 04 6.3378e � 07
Sensor 4 4.9037e � 04 4.8290e � 04 15.6129e � 07
Sensor 5 7.0636e � 04 6.9736e � 04 10.7388e � 07
Sensor 6 9.1195e � 04 9.1108e � 04 9.8623e � 07
Sensor 7 13.4889e � 04 13.7164e � 04 13.6162e � 07
Sensor 8 17.3842e � 04 18.0666e � 04 24.9588e � 07
Sensor 9 22.3321e � 04 23.8260e � 04 51.8428e � 07
Sensor 10 28.4296e � 04 31.2802e � 04 110.4091e � 07
Sensor 11 39.1501e � 04 44.4508e � 04 232.4328e � 07
Sensor 12 7.9172e � 04 9.2346e � 04 479.2257e � 07P

error 153.4682e � 04 165.2770e � 04 .9711e � 04
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5. Results of diffusion process modeling using three different representations

In this section the data originating from physical system for diffusion process with dissipation are compared with the
results obtained using analytical and numerical models.

Experimental setup is based on analog model of diffusion process with heat dissipation shown in Fig. 3, the analytical
solution is presented in Section 3 and the numerical algorithm is presented in Section 4.

5.1. Experimental setup of the electrical circuit

In general the analog model of diffusion process is based on half order impedance implementation studied in Refs. [12,20,21].
It contains 200 elements and was designed and made according to the scheme presented in Fig. 3 with the following values
of the passive elements: R1 ¼ 2:4 kX, R2 ¼ 8:2 kX, C1 ¼ 330 nF and C2 ¼ 220 nF. Due to decrease a noise ratio of the dSPACE
A/D converters, which improve the accuracy of dSPACE card analog inputs, their input resistance was slightly reduced and
comparable with resistors used in analog diffusion model. In this fact, when the voltages u1; . . . ;un from Fig. 3 are directly
connected to cards’ inputs the setup stays a diffusion process with dissipation.
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The experimental setup contains:

1. dSPACE DS1104 PPC card mounted in PC,
2. electrical circuit – the analog model of the diffusion process.

The experimental data were gathered by sensors connected to every 8th node of the analog model. To clarify the first
voltage the sensors were placed into the input circuit terminals, the next measurement were gathered by second sensor
(ADC channel) connected to the 8th node of domino ladder structure, and next sensors were connected to each next 8th node
(e.g. 16;24; . . .).

The overview of the circuit boards for diffusion process with dissipation is presented in Fig. 4.
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5.2. Comparison of the results of analog, analytical and numerical representations of diffusion process with dissipation

Results of analog modeling for diffusion process with dissipation were collected based on the experimental system
presented in Figs. 3 (scheme) and 4 (real view). Based on numerical minimization of square error between experimental data
and analytical solution, given by Eq. (17), the following parameters were obtained:
a ¼ 0:281073708524755; b ¼ 1:674579293537321; ð33Þ
Due to used numerical algorithm, the identified parameters were obtained for minimization error for 3th–8th sensors.
Experimental data for diffusion process with dissipation, for sensors 1–11 and its comparison to the analytical solution

given by Eq. (17), using identified parameters a and b, are presented in Fig. 5 and Table 1. The modeling error for analog and
analytical results is presented in Fig. 6.

For numerical solution the model Eq. (14) was evaluated, and the fractional derivatives were calculated using the
Podlubny’s matrix approach. It was written in the discrete form Eq. (32), where the used parameters were
a ¼ 1; b ¼ 1=2; v1 ¼ a2; v2 ¼ 2a3b; v3 ¼ a4b2. The numerical results were compared to the analog samples, shown in
Fig. 7 (the smooth surface in the front is representing the numerical solution and the measured samples are represented
by the grid surface behind), as well as to the analytical model Fig. 9 (numerical solution in the front, analytical solution
behind). The error surfaces for all the comparisons of different approaches for describing heat transfer can be found in Figs. 6,
8, 10, respectively.

The full list of least squared errors between the measured analog samples, analytical solution and numerical solution of
the diffusion process with heat flux dissipation can be found in Table 1, where again the error for each sensor as well as the
total error is given.

As it can be seen the error between analog and analytical results at the beginning of the plots is very limited and increase
with the time and number of sensors. It is caused by the fact, that analytical solution is obtained for an assumption that the
diffusion media (e.g. the heating beam) is infinite. The analog realization has only finite length, what has an effect in the
dynamics of the system, the finite length domino ladder can be charged faster that infinite one. This can be observed at
the point that the voltage value start to be constant when the analytical model still increase this value.

For the case of comparison between numerical and analytical solutions we can recognize that both solutions are very
close. It confirms correctness of used matrix approach for solving such a type of fractional order partial differential equations.

6. Conclusions

The paper presents detailed formulation of diffusion process with dissipation and its description in the form of fractional
order partial differential equation. For heat transfer case the diffusion with dissipation occurs when a part of the heat flux
dissipate to environment in the whole length of the beam, what can be met when the beam is not ideally insulated from the
environment. The realization of such a process was given also in the form of analog circuit and numerical algorithm. The
analog model of diffusion equation was build based on modified domino ladder approximation of half order impedance.
Numerical solution was obtained based on matrix approach for fractional order partial differential equations. The
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experimentally obtained results were compared with analytical and numerical solution, both based on fractional calculus
and numerical solution. Comparison of results confirm high accuracy of used methods and important differences between
used approach. The analytical and numerical solution are very close and can describe an infinite length case, while analog
realization could describe only finite length case. The results presented in this paper allows to better understand the
diffusion process with (heat flux, current) dissipation and its analog and numerical realizations.
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