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Dictionary Learning for Two-Dimensional Kendall Shapes\ast 

Anna Song\dagger , Virginie Uhlmann\ddagger , Julien Fageot\S , and Michael Unser\P 

Abstract. We propose a novel sparse dictionary learning method for planar shapes in the sense of Kendall,
namely configurations of landmarks in the plane considered up to similitudes. Our shape dictionary
method provides a good trade-off between algorithmic simplicity and faithfulness with respect to
the nonlinear geometric structure of Kendall's shape space. Remarkably, it boils down to a clas-
sical dictionary learning formulation modified using complex weights. Existing dictionary learning
methods extended to nonlinear spaces map the manifold either to a reproducing kernel Hilbert space
or to a tangent space. The first approach is unnecessarily heavy in the case of Kendall's shape
space and causes the geometrical understanding of shapes to be lost, while the second one induces
distortions and theoretical complexity. Our approach does not suffer from these drawbacks. Instead
of embedding the shape space into a linear space, we rely on the hyperplane of centered configu-
rations, including preshapes from which shapes are defined as rotation orbits. In this linear space,
the dictionary atoms are scaled and rotated using complex weights before summation. Furthermore,
our formulation is more general than Kendall's original one: it applies to discretely defined config-
urations of landmarks as well as continuously defined interpolating curves. We implemented our
algorithm by adapting the method of optimal directions combined to a Cholesky-optimized order
recursive matching pursuit. An interesting feature of our shape dictionary is that it produces visually
realistic atoms, while guaranteeing reconstruction accuracy. Its efficiency can mostly be attributed
to a clear formulation of the framework with complex numbers. We illustrate the strong potential
of our approach for the characterization of datasets of shapes up to similitudes and the analysis of
patterns in deforming two-dimensional shapes.
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1. Introduction. Shape analysis is highly relevant to biomedical imaging and computer
vision. Among many other applications, it may be deployed to retrieve the main features from
a collection of shapes, compare shapes as in morphometrics [3, 12], classify or recognize objects
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[10, 41], describe the dynamics of a moving object or organism [50, 6], or study the distribution
of data in a shape space [13, 46] relative to a mean shape [49]. Depending on the application,
the concept of shape has different meanings [10, 60, 35]. Traditionally, shapes are handled as
vectors x1, . . . ,xK \in \BbbR d and, for instance, correspond to silhouettes of objects outlined with
landmarks. Standard signal analysis tools such as principal component analysis (PCA) can
then be used to find the main modes of variation in the dataset of shapes [4, 13, 49, 50].

Alternatively, one can improve results obtained with PCA by using more refined tools, such
as sparse dictionary learning [14, 31, 38, 37]. Given a dictionary of representative elements
referred to as atoms, a signal is reconstructed from a sparse linear combination of them that
minimizes the approximation error. This sparse coding is motivated by the assumption that
natural signals are sparse [36, 40, 11, 54, 18]. The notion of sparsity has already proven its
importance in an extensive range of problems, from image denoising and signal recovery to
recognition and classification [36, 14, 7, 56]. Moreover, when the dictionary is learned from the
data, significant improvements can be made on the signal reconstruction [40, 15, 38], leading
to the so-called sparse dictionary learning approach, classically formulated as

(1.1) inf
\bfD ,\bfA 

K\sum 
k=1

\| xk  - D\bfitalpha k\| 2 + \lambda Sp(\bfitalpha k),

where D = (d1, . . . ,dJ) \in \BbbR d\times J is the dictionary and A = (\bfitalpha 1, . . . ,\bfitalpha K) \in \BbbR J\times K contains
the weights used to reconstruct xk. A bounding constraint on the atoms, \| dj\| \leq 1, is added
to ensure the well-posedness of the minimization problem. Sparsity is promoted by the term
\lambda Sp(\bfitalpha k), which penalizes nonzero coefficients in the weights, with \lambda > 0 a parameter. Often,
one relies on Sp(\bfitalpha k) = | \bfitalpha k| 0 or Sp(\bfitalpha k) = | \bfitalpha k| 1, which denote the \ell 0 constraint and the \ell 1
norm, respectively. When \^D and \^A approximately optimize (1.1), \^D\^\bfitalpha k is the reconstruction
of the original data xk.

In some applications, the data are preprocessed in order to discard the influence of unin-
formative features such as the specific position, size, and orientation of the silhouettes. As in
Procrustes analysis [13, 49], original silhouettes are scaled, translated, and rotated so as to
optimally match a reference silhouette, typically the mean of the dataset. However, for data
with high variability, this approach sometimes fails to produce visually interpretable represen-
tative elements (modes or atoms) because, after alignment, silhouettes are still not position-,
scale-, and orientation-independent. To address this, we should handle data as shapes in the
sense of Kendall [29, 30]. By definition, two geometric objects have the same shape if they
are equivalent up to (direct) similitudes (i.e., up to translation, scaling, and rotation). Shapes
are hence considered as nonlinear objects. Our work is motivated by the lack of a simple
and efficient sparse dictionary learning method dedicated to Kendall's shape space. Such an
analysis would be truly invariant to similitudes and benefit from both the efficiency of sparse
dictionary learning and a valuable shape analysis framework [29, 30, 13, 47, 49, 28, 2].

An additional interesting feature of our approach is that it is suitable for the analysis
of shapes defined from discretely defined configurations of landmarks as well as continuously
defined curves. In Kendall's original formulation, the shape space is built upon configurations
of landmarks in (\BbbR d)N considered up to similitudes [30, 13, 47]. Here, we extend Kendall's
shape space to interpolating curves linearly generated by finitely many basis functions. This
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DICTIONARY LEARNING FOR 2D KENDALL SHAPES 143

extended framework applies in particular to spline curves generated by piecewise polynomi-
als. They constitute a common representation for parametric curves [53, 5, 21, 52, 51, 44].
Our work is hence related to [44], which relies on the isometry between spline curves and
configurations of landmarks to apply dictionary learning after prealignment.

Related works. Standard dictionary learning methods cannot be straightforwardly ex-
tended to Kendall's shape space because the latter is not a vector space but a Riemannian
manifold. The difficulty resides in the nonlinear geometric structure of this space, in which
a meaning must be given to linear combinations of atoms. Until recently, most dictionary
learning approaches were devoted to data lying in linear spaces. In recent years, however, a
few works have focused on the extension of sparse dictionary learning to nonlinear spaces such
as the Grassmann manifold, the manifold of symmetric positive-definite matrices, Kendall's
shape space (as in the two works [2, 28] that are closely related to ours), and more general
Riemannian manifolds. This can be achieved in two ways: either by mapping the manifold to
a Hilbert space, typically a reproducing kernel Hilbert space (RKHS) [25, 8, 34, 28, 24, 23],
or by projecting the data onto a tangent space, once at a reference point, or iteratively at
multiple points [17, 59, 22, 57, 55, 1, 27, 2]. Both approaches flatten the nonlinear space by
mapping it to a linear one, so as to make weighted sums of atoms possible.

On the one hand, the mapping of Kendall's space to an RKHS through the kernel trick,
as done in [28], follows a classical procedure and enables, after mapping, the use of several
established techniques. However, it loses the simple structure of the underlying shape space
because the mapping is not explicit. On the other hand, projecting the dataset on one tangent
space unfaithfully represents the original distances outside of a neighborhood around the pole
[8, 25]. In [2], an analysis with multiple projections instead is proposed by the authors. They
adapt to Kendall's three-dimensional (3D) shape space a sparse dictionary learning method
first proposed in [57] for general Riemannian manifolds, with the analysis of trajectories of
shapes for 3D action recognition as targeted application.

Although the approach of [57, 2] has proven its success for action recognition tasks, some
of its characteristics are less relevant here. It requires one to fold and unfold the manifold
several times on tangent spaces using log\bfx k

and exp\bfx k
mappings. Most importantly, an affine

constraint is added in order to ensure a nontrivial solution, but this requirement modifies the
original problem, as pointed out by [26]. In addition, the original shapes xk themselves are
still needed in their reconstruction, which is undesirable here since the goal is to reconstruct
a dataset from the dictionary and weights only. As we do not intend to tackle the same
applications, our method should be considered as an alternative for learning shapes.

Overview of our method. In contrast to all previous approaches, the sparse dictionary
learning method that we propose is mathematically simple while remaining faithful to the
nonlinear structure of the shape space. We avoid kernel methods because they provide no
additional geometrical understanding to the problem and are too sophisticated in regard of
the simple structure of the shape space. We do not rely on tangent projections either, thereby
avoiding both distortions and theoretical complexity.

Instead, the key idea of our approach can be summarized as follows. Kendall's shape
space is the quotient of a preshape sphere \scrS by the group of rotations. The manifold \scrS is the
sphere inside the linear space composed of all centered configurations. We compute all linear
combinations in this vector space. Our atoms are preshapes in \scrS (i.e., centered and normalized
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configurations). We use complex numbers in the linear combination so as to scale and rotate
them. We then add them together to obtain a configuration whose shape is close to that of
the original one. This proximity is measured through a particular metric in Kendall's shape
space. For the classical full Procrustes distance, our method simply leads to the optimization
problem

(1.2) inf
\bfD ,\bfA :

\bfd j\in \scrS 
| \bfitalpha k| 0\leq N0

K\sum 
k=1

| zk  - D\bfitalpha k| 2\bfPhi ,

where | \cdot | \bfPhi is an \ell 2 norm specific to the representation (landmarks or interpolating curves),
\bfitalpha k are complex weights, and the data zk and atoms dj are (complex) preshapes. Our work
therefore proposes a natural extension of the standard dictionary learning method with a
strong theoretical justification.

Contributions.
1. We extend Kendall's original framework to continuously defined interpolating curves.

For this purpose, we put forward the concept of configuration, which indifferently
represents a discrete object (configuration of landmarks) or a continuous one (interpo-
lating curve). We thus extend and embed the work from [44] inside the more general
(and appropriate) framework of Kendall's shape analysis.

2. Our entire approach of the 2D shape space is formulated in terms of complex numbers
and Hermitian inner products. The geometrical interpretation of complex numbers
provides a clear understanding of the framework.

3. Our main contribution consists in a simple and efficient sparse dictionary learning
method, which we call the 2D Kendall shape dictionary (2DKSD), dedicated to the
analysis of 2D shapes in the sense of Kendall. Our approach provides faithful recon-
structions with respect to the nonlinear geometric structure of Kendall's shape space,
while remaining mathematically light. Using the full Procrustes distance [13] to com-
pare the original and reconstructed shapes, 2DKSD boils down to a simple and nearly
classical dictionary learning formulation (1.2) that relies on complex weights instead
of real ones. It allows one to scale and rotate the atoms inside the weighted sum
individually for each data point, instead of aligning the dataset to a reference shape
as a preprocessing step.

4. Our implementation of this simple formulation is an adaptation of the algorithm used
in the SPAMS software [36] to the Hermitian framework and is freely available online.1

More precisely, we combine the method of optimal directions (MOD) [16] to an order
recursive matching pursuit (ORMP) [9] with a Cholesky-based optimization.

5. Thanks to the complex setting, our method provides better reconstruction accuracy
than approaches relying on the real setting. The atoms of 2DKSD are also visually
more realistic and similar to shapes present in the original dataset.

Outline of the article. In section 2, we introduce the notion of planar configurations z and
describe the action of similitudes over them. Section 3 is devoted to Kendall's space of 2D
shapes, reformulated for general configurations. We briefly recall the structure of the shape

1https://github.com/ansonang3/2DKSD.
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space and its three classical metrics. Then, in section 4, we expose our main contribution: a
sparse dictionary learning method dedicated to the analysis of 2D Kendall shapes, which for
a well-chosen shape metric leads to a nearly standard formulation with complex weights (1.2).
We expose the implementation of 2DKSD in section 5. Finally, we validate our approach in
section 6 by experimenting on shapes extracted from real image datasets, before concluding
in section 7.

2. Configurations in the plane and similitudes.

2.1. A fundamental example: Landmarks (discrete). Traditionally, the silhouette of a
2D object is sampled by an ordered set of points, called landmarks, that often mark salient
features of the boundary. The object itself is then represented by this collection of N points,
which we call a configuration of N landmarks, and is an element of \BbbC N denoted by the bold
letter z. We are now interested in how (direct) similitudes transform configurations. In what
follows, the word similitudes refers to direct similitudes.

It is elementary but important to observe that the action of a similitude in the plane,
denoted by (a, b) \in \BbbC \ast \times \BbbC (where \BbbC \ast := \BbbC \setminus \{ 0\} ), has a nice expression using complex
numbers,

(2.1) \forall z \in \BbbC , (a, b) \odot z = az + b,

where the multiplication by a applies to z a scaling of modulus | a| and a rotation of angle
arg a, while the addition with b encodes the effect of a translation. We recall that arg is the
complex argument: for z in \BbbC , z = | z| e\mathrm{i} \mathrm{a}\mathrm{r}\mathrm{g}(z), with arg(z) \in [0, 2\pi ). Similitudes form a group
(\scrG , \circ ) whose composition law is given by (a\prime , b\prime ) \circ (a, b) = (a\prime a, a\prime b+ b\prime ).

Similarly, the action of similitudes on configurations of landmarks also has a natural
expression,

\forall z \in \BbbC N , (a, b) \odot z = az+ bu,

where u = (1, . . . , 1) is the configuration collapsing to 1. In Figure 1 (left), the two configura-
tions z1 and z2 are obtained from each other by a similitude. We say that they are equivalent
up to similitudes.

⟶

Figure 1. The notion of shape in the sense of Kendall: Nondegenerate configurations up to similitudes.
\bfz 1 \sim \bfz 2 (left) are nondegenerate configurations, equivalent up to direct similitudes. The cross indicates the
origin. Hence, they share the same shape [\bfz ] (right), which can also be identified to a corresponding preshape
(blue) up to rotations.
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2.2. Interpolating curves (continuous). We now move to a more involved concept of
configuration: interpolating curves, which are used as an alternative to landmarks for repre-
senting silhouettes. In the plane, interpolating curves with N degrees of freedom are built
by interpolating N complex coefficients z[0], . . . , z[N  - 1] using linearly independent basis
functions \phi n \in \BbbL 2([0, 1],\BbbR ), n = 0, . . . , (N  - 1). They have the general expression

(2.2) \forall t \in [0, 1], r(t) =

N - 1\sum 
n=0

z[n]\phi n(t).

If r(0) = r(1), then r is a closed interpolating curve; otherwise it is an open interpolating
curve. The vector z \in \BbbC N is called ``the"" control vector of r (as we show below, z is uniquely
defined).

The \phi n are often taken to be continuous, as in the case of interpolating spline curves,
or simply spline curves, for which the \phi n are piecewise polynomial. Interpolating curves
are considered as continuously defined objects, in opposition to discretely defined landmarks.
Yet, they are in fact intermediate objects between the continuous and discrete settings. As
illustration, we describe the construction of interpolating curves relying on cubic B-spline
interpolation in Appendix A.4.

Isometry. Interpolating curves are elements of the space of square-integrable curves \scrH :=
\BbbL 2([0, 1],\BbbC ). We endow \scrH with the standard Hermitian inner product

(2.3) (r | s)\scrH :=

\int 1

0
\=r s =

\int 1

0
(r1s1 + r2s2) + i

\int 1

0
(r1s2  - r2s1), | r| H =

\sqrt{} 
(r | r)\scrH ,

where r = r1 + ir2 \in \scrH , and similarly for s. Let \Gamma denote the linear map

(2.4) \Gamma :
\BbbC N \rightarrow \scrH 
z \mapsto \rightarrow 

\sum N - 1
n=0 z[n]\phi n

and \Phi \in \BbbR N\times N the Gram matrix of the basis functions \phi n, defined by

(2.5) \Phi [n,m] := \langle \phi n, \phi m\rangle \BbbL 2([0,1],\BbbR ) =

\int 1

0
\phi n(t)\phi m(t) dt.

The matrix \Phi is real-valued, symmetric, positive-definite. Let us endow (\BbbC N ,\Phi ) with the
Hermitian inner product (or briefly, Hermitian product) associated to \Phi : the product of
z,w \in \BbbC N is (z | w)\bfPhi = z\ast \Phi w, where z\ast := \=zT refers to the conjugate transpose of z. The
corresponding norm is then | z| \bfPhi :=

\surd 
z\ast \Phi z. In Appendix A.1, we detail how the Hermitian

product is related to the real scalar product. As a recall of the conjugate symmetry, please
note that z\ast \Phi w = w\ast \Phi z.

Proposition 2.1 (isometry). The linear map \Gamma is an isometry from (\BbbC N ,\Phi ) to (\scrH , ( | )\scrH ),
in the sense that

(2.6) \forall z,w \in \BbbC N , (\Gamma (z) | \Gamma (w))\scrH = (z | w)\bfPhi .

Therefore, interpolating curves form an N -dimensional subspace \Gamma (\BbbC N ) \subset \scrH isometric to
(\BbbC N ,\Phi ).
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Proof. We develop the product (
\sum N - 1

n=0 z[n]\phi n | 
\sum N - 1

m=0 w[m]\phi m)\scrH to obtain\sum 
n,m

z[n]w[m]\langle \phi n, \phi m\rangle \BbbL 2([0,1],\BbbR ),

which is exactly z\ast \Phi w.

As a consequence, an interpolating curve r \in \Gamma (\BbbC N ) is completely identified to its control
vector z = \Gamma  - 1(r) \in \BbbC N . This result is important for the extension of Kendall's theory to
interpolating curves2 and ensures that they can be identified to configurations.

Action of similitudes over interpolating curves. The action of any similitude (a, b) \in \BbbC \ast \times \BbbC 
on curves in \scrH has once again a nice formulation,

(2.7) \forall r \in \scrH , (a, b) \odot r = ar + b1,

where 1 refers to the constant function \forall t \in [0, 1], t \mapsto \rightarrow 1 in \scrH . Suppose that 1 \in \Gamma (\BbbC N ),
namely, that constant curves are generated by the same basis functions \phi n. Under this as-
sumption, it is legitimate to define u := \Gamma  - 1(1). The action of similitudes is induced on \BbbC N

according to

(2.8) \forall z \in \BbbC N , (a, b) \odot z = \Gamma  - 1((a, b) \odot \Gamma (z)) = \Gamma  - 1(ar + b1) = az+ bu.

This is well defined, because ar + b1 remains in \Gamma (\BbbC N ) for any interpolating curve r.

2.3. A more general concept: Configurations. The two previous frameworks---landmarks
configurations and interpolating curves---can be encompassed inside one common and more
general framework.

Definition 2.2. A configuration of dimension N \in \BbbN \ast in the plane is a complex vector
z \in \BbbC N .

The notion of configuration plays a major role throughout this article and allows us to
handle planar objects, such as curves or landmarks configurations, parameterized by \{ 1, . . . , N\} 
through the configurations z \in \BbbC N .

Set an integer N \geq 1. Let us consider a Hermitian matrix \Phi = \Phi \ast \in \BbbC N\times N that is
positive-definite: \forall z \in \BbbC N \setminus \{ 0\} , z\ast \Phi z > 0. Note that \Phi is not necessarily real-valued here.
We endow \BbbC N with the Hermitian inner product (z | w)\bfPhi := z\ast \Phi w. Working with landmarks
in the usual way, \Phi refers to the identity matrix Id \in \BbbC N\times N . In the case of interpolating
curves, \Phi is the Gram matrix of the basis functions \phi n, assumed to be linearly independent,
and to linearly generate 1.

Now let u denote a nonzero configuration, which we call the shift configuration, and
consider the group action \odot : (\scrG , \circ ) \times \BbbC N \rightarrow \BbbC N expressed as (a, b) \odot z \mapsto \rightarrow az + bu, where
(\scrG , \circ ) is the group of similitudes. The shift configuration conveys an important geometrical
interpretation and is the vector determining the action of translations on \BbbC N , hence the

2The question of defining a good notion of curve shape and, in particular, a suitable representation for
the curve (such as the square-root velocity representation [48]), is outside the scope of this article. We refer
interested readers to [47].
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term ``shift."" Together with \Phi , they will define the shape space built in the next section.
In our fundamental examples, we take u = (1, . . . , 1) for landmarks and u = \Gamma  - 1(1) for
interpolating curves. In both cases, u specifies the coefficients of the unit vector or function
in the corresponding basis of the representation.

In what follows, \BbbC u denotes the complex vector line generated by u, and (\BbbC u)\bot \bfPhi denotes
the complex hyperplane of configurations orthogonal to u.

Definition 2.3. If z \in \BbbC u, then z is said to be degenerate, and it is nondegenerate otherwise.

In our examples of landmarks or interpolating curves, degenerate configurations represent
objects that collapse to a single point in the plane and are not interesting in practice.

Definition 2.4. A configuration z is said to be centered if u\ast \Phi z = 0 or, equivalently, z \in 
(\BbbC u)\bot \bfPhi .

Centering z consists in orthogonally projecting z onto (\BbbC u)\bot \bfPhi .

For any configuration z, there exists a unique complex number b \in \BbbC , called the center of
z, so that z - bu is orthogonal to u. It is given by b = \bfu \ast \bfPhi \bfz 

| \bfu | 2\bfPhi 
, and z - bu is then the centered

version of z. In the case of landmarks configurations, the center is the usual arithmetic mean.
The operation z \mapsto \rightarrow (z  - 

\sum 
\bfz [i]
n u) centers z. Note that | u| \bfPhi =

\surd 
n. Regarding interpolating

curves, the center of z coincides with the temporal mean of r, given by \=r :=
\int 1
0 r(t) dt \in \BbbC =

(1 | r)\scrH = u\ast \Phi z = \bfu \ast \bfPhi \bfz 
| \bfu | 2\bfPhi 

. Note that, contrarily to landmarks, | u| \bfPhi = | 1| \BbbL 2([0,1],\BbbC ) = 1.

Definition 2.5. A configuration z is called a preshape if it is centered and normalized,

u\ast \Phi z = 0 and | z| \bfPhi = 1.

To visualize the various operations, we encourage the reader to refer to Figure 2. We also
summarize some notation in Table 1.

3. Kendall's space of planar shapes. We now describe Kendall's shape space in the
planar case [13, 47]. When developing this framework, we make a systematic use of the
shift configuration u and Hermitian inner product \Phi introduced in the previous section. In
particular, interpolating curves can be referred to as configurations. We recall that we consider
the action of similitudes written as (a, b) \odot z = az+ bu.

3.1. Preshape sphere and shape space. A shape, in the sense of Kendall, is an equiva-
lence class of nondegenerate configurations considered up to similitudes (see Figure 1). It is
what remains after discarding redundant geometric information given by the position (center),
scaling, and orientation. The shape space is then the quotient of the nondegenerate subspace
by the action of similitudes. We first get rid of translation and scaling, thus obtaining cen-
tered and normalized configurations which form the preshape sphere (see Figure 2). Then, we
quotient by the group of rotations U(1) := \{ z \in \BbbC | | z| = 1\} to obtain Kendall's shape space.

Definition 3.1. The preshape sphere \scrS = \{ z \in \BbbC N | u\ast \Phi z = 0, z\ast \Phi z = 1\} is the set of
centered and normalized configurations z \in \BbbC N . It is the quotient of \BbbC N by the action of
translations z \mapsto \rightarrow z+ bu, b \in \BbbC , and of scalings z \mapsto \rightarrow \lambda z, \lambda \in \BbbR \ast .

D
ow

nl
oa

de
d 

05
/0

5/
20

 to
 1

28
.1

79
.2

55
.5

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DICTIONARY LEARNING FOR 2D KENDALL SHAPES 149

pre-shape

sphere 

degenerate

configurations

centered

configurations

ambient

space non-degenerate z

centered z0

pre-shape Π (z)

Figure 2. Illustration of the spaces and of the ``preshaping"" operations. Atoms are preshapes that are
linearly combined inside the (complex) hyperplane of centered configurations. For the purpose of illustration,
elements are drawn in analogy to a real setting.

Table 1
Spaces and elements.

\bfE \bfl \bfe \bfm \bfe \bfn \bft \bfN \bfo \bft \bfa \bft \bfi \bfo \bfn \bfS \bfp \bfa \bfc \bfe \bfR \bfe \bfa \bfl \bfd \bfi \bfm 
general configuration \bfz \BbbC N 2N
shift configuration \bfu \BbbC N 2N

centered configuration \bfz 0 = \bfz  - \bfu \ast \bfPhi \bfz 
| \bfu | 2

\bfPhi 
\bfu (\BbbC \bfu )\bot \bfPhi \simeq \BbbC N - 1 2N  - 2

preshape (centered, normalized) \Pi \scrS (\bfz ) =
\bfz 0
| \bfz 0| \bfPhi 

\scrS = \{ | \bfz | \bfPhi = 1\} \cap (\BbbC \bfu )\bot \bfPhi 2N  - 3

shape (preshape up to rotations) [\bfz ] \Sigma = \scrS /U(1) 2N  - 4

Since it consists of the unit-norm elements of the complex hyperplane (\BbbC u)\bot \bfPhi orthogonal
to u, \scrS is a smooth compact real (2N  - 3)-manifold, as can be seen in

(3.1) \scrS = \{ | z| \bfPhi = 1\} \cap (\BbbC u)\bot \bfPhi .

Any nondegenerate configuration is uniquely associated to a preshape by centering and
then normalizing it (but the converse is not true).

Definition 3.2. The preshape uniquely associated to a nondegenerate configuration z \in \BbbC N

is the projection of z onto \scrS , denoted by

(3.2) \Pi \scrS (z) =
z0
| z0| \bfPhi 

, z0 = z - u\ast \Phi z

| u| 2\bfPhi 
u,

where z0 is the centered version of z (see Figure 2 and Table 1).
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Definition 3.3. The shape space

(3.3) \Sigma := \scrS /U(1)

is the preshape sphere quotiented by the action of the group of rotations z \mapsto \rightarrow e\mathrm{i}\theta z, \theta \in [0, 2\pi ).
The orbit of a preshape z \in \scrS under the action of U(1) is denoted by [z] \in \Sigma and is called
the shape of z. More generally, given a nondegenerate configuration z, we define its shape
[\Pi \scrS (z)] to be that of the unique preshape associated to z.

Kendall's shape space \Sigma is a compact smooth real (2N  - 4)-manifold, identified to the
complex projective space [29, 20, 13, 47]

(3.4) \BbbC \BbbP N - 2 = (\BbbC N - 1 \setminus \{ 0\} )/\BbbC \ast \simeq \BbbS 2N - 3/U(1).

In this expression, \BbbC N - 1 \setminus \{ 0\} refers to the set of centered nondegenerate configurations of
landmarks. In the literature, a typical approach for quotienting out translations is to discard
the last coordinate in z \in \BbbC N . For centered configurations of landmarks, one indeed has that
z[N  - 1] =  - 

\sum N - 2
n=0 z[n]. In the general case, \BbbC N - 1 \setminus \{ 0\} can be replaced by (\BbbC u)\bot \bfPhi \setminus \{ 0\} 

and \BbbS 2N - 3 by \scrS , conserving the identification of \Sigma to \BbbC \BbbP N - 2.

3.2. Distances in the shape space. Three classical distances are usually defined on the
shape space: the full (Procrustes), partial (Procrustes), and geodesic distances, denoted as dF ,
dP , and \rho , respectively [13, 47]. Their evaluations dist([z], [w]) enjoy simple and closed-form
expressions that involve only the preshapes z and w. Readers interested in the practical use
of these metrics and not in their geometrical definition may directly skip to (3.10), (3.11),
and (3.12). For a quick geometrical intuition without mathematical details, we refer readers
to Figures 3 and 4.

Distances and optimal transformations. In this paragraph, z and w denote preshapes by
default.

Definition 3.4 (partial distance and optimal rotation). Let z,w \in \scrS . We define

(3.5) dP ([z], [w]) = min
\theta \in [0,2\pi )

| e\mathrm{i}\theta z - w| \bfPhi .

We say that we optimally rotate z along w when, if unique, the optimal rotation angle \theta (z,w)
is applied to z (see Figure 3).

Definition 3.5 (full distance and optimal alignment). Let z,w \in \scrS . We define

dF ([z], [w]) = min
a\in \BbbC 
| a z - w| \bfPhi (3.6)

= | P\BbbC \bfz w  - w| \bfPhi ,(3.7)

where P\BbbC \bfz is the orthogonal projection onto the complex vector line generated by z (with respect
to \Phi ). In (3.6), the optimal alignment factor is given by a(z,w) = z\ast \Phi w, and its modulus
\lambda (z,w) is called the optimal scaling factor (see Figure 3). We say that we optimally align z
along w when a(z,w) is applied to z to obtain P\BbbC \bfz w = a(z,w) z = z\ast \Phi w z.
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Initial preshapes
z (blue) and w (orange).

Optimally rotated
z̃ = ei arg(z∗Φw)z along w
dP ([z], [w]) = |z̃ − w|Φ

Optimally aligned
z̃ = (z∗Φw) z along w
dF ([z], [w]) = |z̃ − w|Φ

Figure 3. Examples of optimal rotation and alignment. Upper row: landmarks with N = 20. Lower row:
closed Hermite spline curves with N = 16 [52]. Left column: original preshapes (centered and normalized) \bfz in
blue and \bfw in orange. Middle column: optimal rotation of \bfz along \bfw . Right column: optimal alignment of \bfz 
along \bfw . The angles for both optimal rotation and alignment are the same and are equal to \theta = arg(\bfz \ast \bfPhi \bfw ).
The optimal scaling in the alignment is the modulus \lambda (\bfz ,\bfw ) = | \bfz \ast \bfPhi \bfw | ; when \bfz and \bfw are highly correlated,
\lambda (\bfz ,\bfw ) is close to 1 and the optimally aligned image of \bfz is similar to the optimally rotated one. For landmarks
(upper row), | \bfz  - \bfw | \bfPhi =

\sum 
n | \bfz [n]  - \bfw [n]| 2 is the usual distance, here with \bfz ,\bfw being highly correlated. For

Hermite-spline curves (lower row), the distance | \bfz  - \bfw | \bfPhi is equal to the usual curve distance | r - s| \BbbL 2([0,1],\BbbC ) =\sqrt{} \int 1

0
| r(t) - s(t)| 2 dt between their images r, s through the isometry \Gamma (section 2.2).

�([z], [w]) = arccos |z∗Φw|
Figure 4. Geodesic path on \Sigma . Preshapes corresponding to shapes regularly met along the geodesic path

joining [\bfz ] to [\bfw ]. The two endpoints are the preshapes \~\bfz = e\mathrm{i}(\mathrm{a}\mathrm{r}\mathrm{g} \bfz \ast \bfPhi \bfw )\bfz and \bfw optimally rotated along each
other. The preshapes themselves describe the shortest geodesic path that joins \~\bfz to \bfw on the preshape sphere
\scrS . The distance \rho ([\bfz ], [\bfw ]) then corresponds to the angle measured from the center of the preshape sphere along
this geodesic arc. Here, we illustrate this concept with open Hermite-spline curves [52, 45].

Proposition 3.6. Let z,w \in \scrS and suppose that z\ast \Phi w \not = 0. Then, the optimal rotation
angle is given by

\theta (z,w) = arg(z\ast \Phi w).(3.8)
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As a consequence, the angle involved in the optimal alignment factor is the same as the optimal
angle itself: arg(a(z,w)) = \theta (z,w). Otherwise, when z\ast \Phi w = 0, the distances are maximal
and equal to dF ([z], [w]) = 1 and dP ([z], [w]) =

\surd 
2.

Proof. If z\ast \Phi w = 0, then we use the orthogonality of z and w to conclude. Otherwise,
since

(3.9) argmin
\theta \in [0,2\pi )

| e\mathrm{i}\theta \cdot z - w| 2\bfPhi = argmax
\theta \in [0,2\pi )

\Re (e\mathrm{i}\theta \cdot z | w)\bfPhi \underbrace{}  \underbrace{}  
\leq | (\mathrm{e}\mathrm{i}\theta \cdot \bfz | \bfw )\bfPhi | 

,

\theta is optimal when (e\mathrm{i}\theta \cdot z | w)\bfPhi = e - i\theta (z | w)\bfPhi \in \BbbR +, in other words, when \theta = arg
(z | w)\bfPhi .

Note that the orthogonality condition z\ast \Phi w = 0 means that z and w are decorrelated:
whatever rotation we apply on z, the distance | e\mathrm{i}\theta \cdot z  - w| \bfPhi remains maximal. In the real
setting, this corresponds to the case where z is orthogonal to all rotations of w with respect
to the real inner product (see Appendix A.1).

Corollary 3.7. Let z,w \in \scrS . The distances have closed-form expressions given by

dP ([z], [w]) =

\bigm| \bigm| \bigm| \bigm| z\ast \Phi w

| z\ast \Phi w| 
z - w

\bigm| \bigm| \bigm| \bigm| 
\bfPhi 

=
\sqrt{} 

2 - 2| z\ast \Phi w| \in [0,
\surd 
2],(3.10)

dF ([z], [w]) = | (z\ast \Phi w) z - w| \bfPhi =
\sqrt{} 

1 - | z\ast \Phi w| 2 \in [0, 1].(3.11)

In Figure 3, we illustrate the fact that the distances dP and dF measure the shortest
reachable norm | \~z - w| \bfPhi if \~z is the image of z after any rotation, or scaling and rotation.

Proposition 3.8 (Riemannian distance). Let z,w \in \scrS . The Riemannian distance in the
shape space (see Figure 4), also called geodesic distance and denoted by \rho ([z], [w]), is equal to

(3.12) \rho ([z], [w]) = arccos | z\ast \Phi w| = arccos\lambda (z,w) \in [0, \pi /2].

Proposition 3.9 (relationships between dF , dP , and \rho ). The three distances dF , dP , and \rho 
are related to each other as

d2P = 2 - 2
\sqrt{} 
1 - d2F ,(3.13)

dF = sin \rho ,(3.14)

dP = 2 sin(\rho /2).(3.15)

We found it worth presenting the Riemannian distance \rho alongside dF and dP , although our
2DKSD method does not require the use of the Riemannian structure. In fact, the geometric
structure of \Sigma is entirely inherited from that of \scrS : this justifies using the preshape sphere,
whose geometry is well understood, to think about the shape space itself. In particular, the
Riemannian structure of \Sigma is a quotient structure of \scrS , as discussed in Appendix A.5. As a
consequence, tangent spaces, geodesics, and exponentials benefit from explicit expressions on
\Sigma . For readers interested in the Riemannian structure of the shape space (not restricted to
the planar case), we refer to [13, 47], where the usual definition relying on landmarks is used.
For those seeking good references about Riemannian geometry, in particular that of complex
projective spaces, we recommend [20, 19].
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4. Shape dictionary. The simplest dictionary learning approach on a dataset of configu-
rations consists in considering them as elements of a point cloud in (\BbbC N )K \simeq (\BbbR 2N )K , and
then applying an existing dictionary learning method. However, as discussed in the introduc-
tion, a preprocessing of the data can be necessary in order to attenuate differences of position,
scaling, or orientation across the dataset. These geometric dissimilarities indeed lead to unde-
sirable artifacts after learning, such as smoothed and unfaithful reconstructions or distorted
and redundant atoms (in the sense that they share roughly the same shape but are associ-
ated to, e.g., different orientations). An example of preprocessing is proposed in [44], where
the data are first optimally aligned along a mean configuration z\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n}, with [\Pi \scrS (z\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n})] \in \Sigma 
being the Fr\'echet mean of [\Pi \scrS (z1)] , . . . , [\Pi \scrS (zK)] \in \Sigma K with respect to the distance dF (see
Appendix A.3).

A limitation of this kind of ``align-first"" approach is that the alignment step depends on
the whole dataset and needs to be started anew for each new data input. In section 6, we
compare the results obtained by aligning first to those produced by our algorithm. Instead,
we prefer to directly work in the shape space with suitable shape metrics, without having to
preprocess the data.

Our 2DKSD method takes advantage of complex weights to rotate and scale the atoms
before summing them to reconstruct each original shape. Hence, instead of prealigning the
data, we rotate and scale inside the weighted sums D\bfitalpha k, individually for each data shape.
Also, we show that, for a good choice of the error metric that serves to compare the orig-
inal and reconstructed shapes, the 2DKSD boils down to a nearly classical and very simple
dictionary learning formulation. Weights are, however, complex vectors, and the dataset and
dictionary atoms must satisfy some (light) constraints imposed by Kendall's framework. This
a priori unexpected result, shown in Proposition 4.2, is interesting both mathematically and
numerically.

Statement of the shape dictionary. We suppose that elements of the dataset are preshapes
z1, . . . , zK \in \scrS (centered and normalized). Let dist denote any distance on \Sigma , such as one of
the three distances dF , dP , \rho .

Definition 4.1. The 2DKSD general formulation of the problem to be solved is written

(4.1) inf

\bfD ,\bfA :
\bfd j\in \scrS ,
\bfD \bfitalpha k\in \scrS 
| \bfitalpha k| 0\leq N0

K\sum 
k=1

dist ([zk], [D\bfitalpha k])
2 .

The dictionary corresponds to D = (d1, . . . ,dJ) \in \BbbC N\times J , whose atoms dj \in \scrS are preshapes.
Importantly, the weights \bfitalpha 1, . . . ,\bfitalpha K \in \BbbC J are complex numbers which apply scalings and
rotations to the atoms dj before summing them to D\bfitalpha k. This linear combination is sparse,
since the (hard) sparsity constraint | \bfitalpha k| 0 \leq N0 enforces that at most N0 coefficients are non-
zero. We also impose D\bfitalpha k and zk to be preshapes before comparing their shapes. If \^D and
\^A are (approximately) optimizers of (4.1), the original shape [zk] is reconstructed

3 as [ \^D\^\bfitalpha k].

3When discussing the sparse coding step, we shall show that, for dist = dF , one can compute \^\bfitalpha k so that
the original preshape itself is reconstructed as \^\bfD \^\bfitalpha k.
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The unit-norm constraints imposed on dj and D\bfitalpha k are in fact nonessential. Up to a
rescaling of the weights \bfitalpha k, we can more generally consider dj as a centered configuration
of norm smaller than 1, thus allowing possibly collapsing atoms dj = 0. This does not
change the problem since this corresponds to a case where dj would be ignored in the linear
combinations of the original optimization problem (4.1). Hence, we could replace dj \in \scrS by
dj \bot \bfPhi u; | dj | \bfPhi \leq 1. We have decided instead to keep atoms as preshapes to have a uniform
scaling across the dictionary.

Also, D\bfitalpha k only needs to be a nondegenerate configuration in \BbbC N \setminus \BbbC u for the shape
[\Pi \scrS (D\bfitalpha k)] to be defined. Since each dj is already centered, D\bfitalpha k is necessarily centered, and
so we only need to suppose that D\bfitalpha k \not = 0 does not collapse. We also note that \Pi \scrS (D\bfitalpha k) =
D \bfitalpha k

| \bfD \bfitalpha k| \bfPhi 
is then simply the normalized version of D\bfitalpha k. Hence, the infimum in (4.1) is equal to

(4.2) inf

\bfD ,\bfA :
\bfd j\in \scrS 

\bfD \bfitalpha k\in \scrS 
| \bfitalpha k| 0\leq N0

K\sum 
k=1

dist ([zk], [D\bfitalpha k])
2 = inf

\bfD ,\bfA :
\bfd j\in \scrS 

\bfD \bfitalpha k \not =\bfzero 
| \bfitalpha k| 0\leq N0

K\sum 
k=1

dist

\biggl( 
[zk],

\biggl[ 
D

\bfitalpha k

| D\bfitalpha k| \bfPhi 

\biggr] \biggr) 2

.

Proposition 4.2. Using the full Procrustes distance dist = dF as minimization criterion,
(4.2) leads to the 2DKSD simple formulation

(4.3) inf
\bfD :\bfd j\in \scrS 

K\sum 
k=1

min
\bfitalpha k:| \bfitalpha k| 0\leq N0

| zk  - D\bfitalpha k| 2\bfPhi ,

where we recall that zk are preshapes. This formulation is equivalent to the one in (1.2).

Proof. We express the minimization problem (4.2) as

(4.4) inf
\bfD :

\biggl\{ 
\bfd j\bot \bfPhi \bfu 
| \bfd j | \bfPhi \leq 1

K\sum 
k=1

inf
\bfitalpha k:

\biggl\{ 
\bfD \bfitalpha k \not =\bfzero 
| \bfitalpha k| 0\leq N0

dF

\biggl( 
[zk],

\biggl[ 
D

\bfitalpha k

| D\bfitalpha k| \bfPhi 

\biggr] \biggr) 2

since, after fixing D, the minimization breaks into K independent elementary terms that
correspond to a sparse coding of the shapes [zk]. Each term has the form

(4.5) inf
\bfitalpha :

\biggl\{ 
\bfD \bfitalpha \not =\bfzero 
| \bfitalpha | 0\leq N0

dF

\biggl( 
[z],

\biggl[ 
D

\bfitalpha 

| D\bfitalpha | \bfPhi 

\biggr] \biggr) 2

= inf
\bfitalpha :

\biggl\{ 
\bfD \bfitalpha \not =\bfzero 
| \bfitalpha | 0\leq N0

| z - P\BbbC \bfD \bfitalpha z| 2\bfPhi = inf
\bfitalpha :| \bfitalpha | 0\leq N0

| z - P\BbbC \bfD \bfitalpha z| 2\bfPhi ,

where we successively applied (3.7), used that the vector lines generated by D \bfitalpha 
| \bfD \bfitalpha | \bfPhi 

and D\bfitalpha 

is the same, and dropped4 the inequality D\bfitalpha \not = 0. Then, we apply the results of Lemma A.2
and find that

min
\bfitalpha :

\biggl\{ 
\bfD \bfitalpha \not =\bfzero 
| \bfitalpha | 0\leq N0

dF

\biggl( 
[z],

\biggl[ 
D

\bfitalpha 

| D\bfitalpha | \bfPhi 

\biggr] \biggr) 2

= min
\bfitalpha :

\biggl\{ 
\bfD \bfitalpha \not =\bfzero 
| \bfitalpha | 0\leq N0

| z - P\BbbC \bfD \bfitalpha z| 2\bfPhi = min
\bfitalpha :| \bfitalpha | 0\leq N0

| z - P\BbbC \bfD \bfitalpha z| 2\bfPhi 

(4.6)

= min
| \bfitalpha | 0\leq N0

| z - D\bfitalpha | 2\bfPhi ,(4.7)

4The case \bfD \bfitalpha = \bfzero does not induce a lower infimum value because | \bfz  - P\BbbC \bfD \bfitalpha \bfz | 2\bfPhi = | \bfz | 2\bfPhi is then maximal.
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where the three first terms share a common minimizer. Therefore, a new formulation of the
original problem is given by (4.3) and, equivalently, by (1.2).

5. Dictionary update and sparse coding. We numerically solved the 2DKSD problem
(4.3) involving the full distance dF . Our code is fully available online.

As summarized in Algorithms 5.1 and 5.2, the implementation is directly adapted from
the algorithm used in the SPAMS software [37, 36] to a complex Hermitian framework. Recall
that D = (d1, . . . ,dJ) is the dictionary and A = (\bfitalpha 1, . . . ,\bfitalpha K) contains the weighting complex
vectors. To minimize the corresponding loss functional

(5.1) E(D,A) =

K\sum 
k=1

| zk  - D\bfitalpha k| 2\bfPhi ,

we use a classical procedure. After initializing the dictionary with random elements of the
dataset, the algorithm alternates between a sparse coding step in which A minimizes (5.1),
and where D is fixed [33, 37, 36], and a dictionary update step where A is fixed.

5.1. Dictionary update with MOD. To update the dictionary, it is natural to think
about performing gradient descent over D for updating the dictionary. Let us denote by
Z = (z1, . . . , zK) \in \BbbC N\times K the matrix whose columns contain the dataset. The gradient
can be conveniently made explicit as \bfnabla \bfD E(D,A) = 2\Phi (DAA\ast  - ZA\ast ) . Here, however, we
prefer to rely on the MOD introduced by [16], as done in the SPAMS software [37, 36]. Given
a fixed value of A, the dictionary is updated so that it solves min\bfD E(D,A), and its columns
are then projected back onto \scrS . It is known that, in the landmarks case \Phi = Id, a particular
solution to the least-squares problem min\bfD \in \BbbC N\times J E(D,A) is

(5.2) \^D = ZA+ = ZV\Sigma +U\ast ,

where A+ = V\Sigma +U\ast is the pseudoinverse of A, and the SVD decomposition of A is A =
U\Sigma V\ast . The pseudoinverse \Sigma + corresponds to the matrix \Sigma where nonzero diagonal elements

Algorithm 5.1. 2D Kendall shape dictionary with method of optimal directions.

1: procedure 2DKSD with MOD
Dataset: preshapes z1, . . . , zK
Parameters: number of iterations T , sparsity N0, number of atoms J
Initialization: initial dictionary D0 of preshapes
Output: dictionary D = (d1, . . . ,dJ) of preshapes

2: D\leftarrow D0  \triangleleft Dictionary initialization
3: for t = 1, . . . , T do
4: for k = 1, . . . ,K do
5: \bfitalpha k \simeq argmin

| \bfitalpha | 0\leq N0

| zk  - D\bfitalpha | 2\bfPhi  \triangleleft Sparse coding with complex ORMP

(Algorithm 5.2)

6: D\leftarrow \Pi \scrS (ZA+), where A = (\bfitalpha 1, . . . ,\bfitalpha K).  \triangleleft Dictionary update with MOD
(equation (5.2))
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Algorithm 5.2. Complex order recursive matching pursuit.

1: procedure Complex ORMP
Data: one preshape z
Parameters: sparsity N0

Input dictionary: D = (d1, . . . ,dJ)
Output: weight \bfitalpha \in \BbbC J

2: l = 1, l\mathrm{m}\mathrm{a}\mathrm{x} = N0, I[0] = \emptyset 
3: r(0) = z, \bfitdelta 

(0)
j = dj for j = 1, . . . , J  \triangleleft Initialization

4: while l \leq N0 do

5: j[l] =

\biggl\{ 
argmax

| \bfitdelta (l - 1)\ast 
j \bfPhi \bfr (l - 1)| 

| \bfitdelta (l - 1)
j | \bfPhi 

| j /\in I[l  - 1], | \bfitdelta (l - 1)
j | \bfPhi \not = 0

\biggr\} 
6: I[l] = I[l  - 1] \cup \{ j[l]\} 
7: if this maximum is zero then
8: l\mathrm{m}\mathrm{a}\mathrm{x} = l  - 1
9: break

10: q(l) =
\bfitdelta 
(l - 1)
j[l]

| \bfitdelta (l - 1)
j[l]

| \bfPhi 
 \triangleleft New orthonormal basis element

11: \bfitdelta 
(l)
j = \bfitdelta 

(l - 1)
j  - (q(l)\ast \Phi \bfitdelta 

(l - 1)
j ) q(l) for j = 1, . . . , J  \triangleleft Project on the orthogonal

subspace
12: r(l) = r(l - 1)  - (q(l)\ast \Phi r(l - 1)) q(l) for j = 1, . . . , J  \triangleleft Update the remainder
13: l\leftarrow l + 1

14: Use (5.5) to build \bfitalpha  \triangleleft Solve P\BbbC \{ \bfd j\} j\in I[l\mathrm{m}\mathrm{a}\mathrm{x}]
(z) = DI[l\mathrm{m}\mathrm{a}\mathrm{x}]\bfitalpha I[l\mathrm{m}\mathrm{a}\mathrm{x}]

are replaced by their multiplicative inverse. We assert in Lemma A.3 of Appendix A.2 that,
interestingly, when \Phi \not = Id, the update is the same and does not depend on \Phi .

Let us remark that the solution (5.2) cancels the gradient (one can see it by checking that
A+AA\ast = A\ast ), and also that the update does not involve any previous value assigned to D.
When (AA\ast ) is invertible,5 we have A+ = A\ast (AA\ast ) - 1 and the solution is then unique and
equal to \^D = ZA\ast (AA\ast ) - 1.

After this first operation, the nonzero columns of the dictionary are projected back onto
the preshape sphere by applying the normalization

\forall j = 1, . . . , J, dj \leftarrow dj/| dj | \bfPhi .

This is sufficient as (5.2) already centers the atoms, since the data themselves are centered.
We replace columns which have become zero, as well as underutilized ones, by preshapes
randomly picked in the original dataset.

5This happens whenever the rank of \bfA is equal to its number of lines or, equivalently, when the columns of
\bfA \ast are independent.
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5.2. Sparse coding with ORMP. The sparse coding problem for a data point z is formu-
lated as

(5.3) min
\bfitalpha \in \BbbC J

| \bfitalpha | 0\leq N0

| z - D\bfitalpha | 2\bfPhi ,

where D is known. Equivalently, the nonzero coefficients of the solution \^\bfitalpha correspond to a
set of indices \^I that solves

(5.4) min
I\subset \{ 1,...,J\} 
| I| \leq N0

| z - P\BbbC \{ \bfd j\} j\in I
(z)| 2,

where \BbbC \{ dj\} j\in I denotes the complex vector space generated by the columns indexed by I.
Let us suppose that a solution \^\bfitalpha has been found. Then, the shape [z] is approximately

reconstructed as [D \^\bfitalpha 
| \bfD \^\bfitalpha | \bfPhi 

], whenever D\^\bfitalpha \not = 0. Note that, in fact, the original preshape z

itself (with preserved orientation) can also be approximated as D \^\bfitalpha 
| \^\bfD \^\bfitalpha | \bfPhi 

: there is no need to

rotate D\^\bfitalpha in order to bring it close to the original preshape. As stated in the proof of Lemma
A.2, this is because the solution \^\bfitalpha satisfies P\BbbC \bfD \^\bfitalpha z = D\^\bfitalpha , implying that D\^\bfitalpha corresponds to
the optimal alignment of the preshape D \^\bfitalpha 

| \bfD \^\bfitalpha | \bfPhi 
along z (see Definition 3.5). Also, D \^\bfitalpha 

| \bfD \^\bfitalpha | \bfPhi 
is

optimally rotated along z (see Proposition 3.6).
Order recursive matching pursuit. A possible way to approximate the solution of (5.3)

is to rely on a complex version of orthogonal matching pursuit (OMP) [42, 43] adapted to
the Hermitian framework (\BbbC n,\Phi ). Instead, we prefer to use ORMP, with a Cholesky-based
optimization [9, 36], as it was empirically found to be more efficient than an adapted complex
OMP. The ORMP algorithm is explained in [9] and a (non-optimized) implementation is
presented in Algorithm 5.2. ORMP starts with an empty set of indices I[0] = \emptyset , a remainder

r(0) = z, and a family of vectors \{ \bfitdelta (0)1 , . . . , \bfitdelta 
(0)
J \} = \{ d1, . . . ,dJ\} . At each step, the algorithm

increases I[l - 1] by a new element j[l] maximizing
| \bfitdelta (l - 1)\ast 

j \bfPhi \bfr (l - 1)| 

| \bfitdelta (l - 1)
j | \bfPhi 

(wherever defined), in such a

manner that I[l] = I[l - 1]\cup \{ j[l]\} minimizes (5.4) under the nesting constraint I[l - 1] \subsetneq I and

| I[l]| = l. Then, it updates the vectors \{ \bfitdelta (l)1 , . . . , \bfitdelta 
(l)
J \} in a way that is similar to the Gram--

Schmidt process.6 It stops either when N0 indices have been found or when z is spanned by
l\mathrm{m}\mathrm{a}\mathrm{x} independent atoms and a new index j[l\mathrm{m}\mathrm{a}\mathrm{x} + 1] does not contribute in minimizing (5.4)
further. Finally, the output weight \bfitalpha is a solution to P\BbbC \{ \bfd j\} j\in I[l\mathrm{m}\mathrm{a}\mathrm{x}]

(z) = DI[l\mathrm{m}\mathrm{a}\mathrm{x}]\bfitalpha I[l\mathrm{m}\mathrm{a}\mathrm{x}]. Its
nonzero coefficients are given by

(5.5) \bfitalpha I[l\mathrm{m}\mathrm{a}\mathrm{x}] = (D\ast 
I[l\mathrm{m}\mathrm{a}\mathrm{x}]

\Phi DI[l\mathrm{m}\mathrm{a}\mathrm{x}])
 - 1D\ast 

I[l\mathrm{m}\mathrm{a}\mathrm{x}]
\Phi z.

Optimizing ORMP. Thanks to the so-called Cholesky optimization of ORMP [9, 37, 36],
it is in fact possible to speed up computations considerably. The Gram matrix D\ast \Phi D is

6The difference being that the order is imposed by j[1], . . . , j[N0], so that the final orthonormal family is

\{ \bfitdelta (0)

j[1], . . . , \bfitdelta 
(N0 - 1)

j[N0]
\} .
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precomputed before coding the data z (and reused for other data). At each step 1 \leq l \leq N0,
only the elements

\bfitdelta 
(l - 1)\ast 
j[l] \Phi dj

| \bfitdelta (l - 1)
j[l] | \bfPhi 

=
\bfitdelta 
(l - 1)\ast 
j[l] \Phi \bfitdelta 

(l - 1)
j

| \bfitdelta (l - 1)
j[l] | \bfPhi 

, | \bfitdelta (l)j | 
2
\bfPhi , d\ast 

j\Phi r(l - 1), and
\bfitdelta 
(l - 1)\ast 
j \Phi r(l - 1)

| \bfitdelta (l - 1)
j | \bfPhi 

=
d\ast 
j\Phi r(l - 1)

| \bfitdelta (l - 1)
j | \bfPhi 

are updated, for j = 1, . . . , J . The coefficients of the decomposition of q(l) =
\bfitdelta 
(l - 1)
j[l]

| \bfitdelta (l - 1)
j[l]

| \bfPhi 
in the

linearly independent family \{ dj[1], . . . ,dj[l]\} are also iteratively computed. If these coefficients

are stacked into a column vector c(l) \in \BbbC N0 where the last N0  - l coefficients are zero, the
matrix U = (c(1), . . . , c(N0)) \in \BbbC N0\times N0 is upper triangular with strictly positive real scalars
on the diagonal. Furthermore, it is the inverse conjugate of the Cholesky factor L involved in
the factorization D\ast 

I[N0]
\Phi DI[N0] = (U\ast ) - 1U - 1 = LL\ast . The final weight \bfitalpha is then given by

\bfitalpha I[N0] = U

\left[  \bfitdelta 
(0)\ast 
j[1] \Phi r(0)

| \bfitdelta (0)j[1]| \bfPhi 
, . . . ,

\bfitdelta 
(N0 - 1)\ast 
j[N0]

\Phi r(N0 - 1)

| \bfitdelta (N0 - 1)
j[N0]

| \bfPhi 

\right]  T

.

All computations can be inferred from the updates in Algorithm 5.2 and are not detailed here.
They can be transparently investigated in the available source code.

6. Computational results. We ran our algorithm on 5 datasets that vary in size, type,
and shape.7

\bullet Dataset 18 consists of K > 5500 skeletons of Caenorhabditis elegans nematodes delin-
eated as discretely defined configurations of N = 20 landmarks. The dataset results
from the concatenation of videos featuring freely crawling nematodes aged between
2 and 18 days and presenting various locomotion behaviors. The dataset was recon-
structed using N0 = 5 atoms out of the J = 10 atoms learned by 2DKSD.
\bullet Dataset 29 contains K > 6300 skeletons of four Caenorhabditis elegans nematodes

delineated as continuously defined open Hermite-spline curves [52, 45] with N = 12
degrees of freedom. The animals laid in a shared container and were constrained by
the lack of space, leading to looping or wavy shapes. The dataset was reconstructed
using N0 = 5 atoms out of the J = 10 atoms learned by 2DKSD.
\bullet Dataset 310 features K = 40 hands of four different people, as outlined by N = 56
landmarks. The dataset was reconstructed using N0 = 3 atoms out of the J = 10
atoms learned by 2DKSD.
\bullet Datasets 4 and 4b11 are constituted of K > 1500 leaves outlines and come in the

form of configurations of N = 200 landmarks and cubic B-splines [53, 5] with N = 40

7Experimental results and datasets from this section can be found at https://github.com/
ansonang3/2DKSD.

8Images were extracted from videos available from the C. elegans behavioral database [58].
9Data courtesy of [39].

10Data courtesy of [49].
11Data extracted from the binary images of the Kaggle leaf dataset, https://www.kaggle.com/c/leaf-

classification.
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degrees of freedom, respectively. For most shapes, the first landmark marks either the
stem or the leaf tip. Both datasets were (independently) reconstructed using N0 = 5
atoms out of the J = 20 atoms learned by 2DKSD.
\bullet Dataset 5 is a synthetic dataset generated by deforming original silhouettes extracted

from the binary images of the MPEG-7 database12. For each original preshaped config-
uration z\mathrm{o}\mathrm{r} = (z1\mathrm{o}\mathrm{r}, . . . , z

N
\mathrm{o}\mathrm{r}) \in \BbbC N , N random Gaussian planar vectors were generated

and smoothed with the kernel K = (| zi\mathrm{o}\mathrm{r}  - zj\mathrm{o}\mathrm{r}| 2)i,j of the squared distances between
landmarks. These deformations were then added to z\mathrm{o}\mathrm{r}. The process was repeated 10
times, resulting in a dataset of K = 14000 shapes featuring 70 classes of objects, each
containing 200 configurations of N = 200 landmarks. The dataset was reconstructed
using N0 = 30 atoms out of the J = 230 atoms learned by 2DKSD.

Comparison to the ``align-first"" method. The problem, which we call ``align-first,"" relating
most to the one we are solving, is stated as

(6.1) inf

\bfD \prime ,\bfA \prime :
\bfd \prime 
j\in \scrS 

| \bfitalpha \prime 
k| 0\leq N0

K\sum 
k=1

\bigm| \bigm| \widetilde zk  - D\prime \bfitalpha \prime 
k

\bigm| \bigm| 2
\bfPhi 
, where \bfitalpha \prime 

k \in \BbbR J ,

where A\prime = (\bfitalpha \prime 
1, . . . ,\bfitalpha 

\prime 
K), and \widetilde z1, . . . ,\widetilde zK \in \scrS are preshapes optimally rotated along a refer-

ence preshape. Typically, we chose to rotate them along a mean preshape z\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n} (see Appendix
A.3). This standard problem is essentially the same as in (4.3), except that the original dataset
is preprocessed and, more notably, the weights \bfitalpha \prime 

k are real vectors.
In practice, we took advantage of the MOD combined with the real version of the Cholesky-

optimized ORMP provided by the SPAMS toolbox [37]. This is an especially appropriate com-
parison, since our algorithm is a direct adaptation of the latter to the Hermitian framework.
Thanks to an isometric transformation through

\surd 
\Phi , (6.1) could be reformulated as a standard

\ell 2 problem.
Comparison to complex PCA. As a valuable and complementary comparison, we also con-

sidered the complex version of PCA. It also relies on complex weights, but atoms are chosen
in a specific way, which we recall here in our setting. Suppose that the average configuration
has been discarded in each element of the dataset, and let us still use z1, . . . , zK to denote this
new dataset (the average configuration coordinates are simply the coefficient-by-coefficient
arithmetic means). We find the first complex PCA mode by solving

argmin
| \bfw 1| \bfPhi \leq 1

K\sum 
k=1

| zk  - (w\ast 
1\Phi zk)w1| 2\bfPhi = argmin

| \bfw 1| \bfPhi \leq 1

K\sum 
k=1

| zk| 2\bfPhi  - | w\ast 
1\Phi zk| 2 = argmax

| \bfw 1| \bfPhi \leq 1

K\sum 
k=1

| w\ast 
1\Phi zk| 2.

(6.2)

Let us set Z = (z1, . . . , zK) as before. The matrix ZZ\ast \Phi is self-adjoint with respect to the
Hermitian product \Phi , because \forall x,y \in \BbbC N , (ZZ\ast \Phi x | y)\bfPhi = (x | ZZ\ast \Phi y)\bfPhi . By the spectral
theorem, this implies that there exists a \Phi -orthonormal basis V \in \BbbC N\times N with V\ast \Phi V = Id
in which ZZ\ast \Phi is expressed as a diagonal matrix D:

ZZ\ast \Phi = VDV\ast \Phi = VDV - 1.

12Data courtesy of [32]. See http://www.dabi.temple.edu/\sim shape/MPEG7/dataset.html.
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Table 2
RMSE and parameters used to generate the results of Figures 7 to 11.

\bfD \bfa \bft \bfa \bfs \bfe \bft N K N0 J Indicative run-time RMSE, \bfo \bfu \bfr \bfs RMSE, \bfa \bfl \bfi \bfg \bfn -fi\bfr \bfs \bft 

1 20 > 5500 5 10 21 s * 2.36\% 4.19\%
2 12 > 6300 5 10 24 s * 4.04\% 7.95\%
3 56 40 3 10 < 0.4 s 2.48\% 2.73\%
4 200 > 1500 5 20 18 s 6.45\% 7.12\%
4b 40 > 1500 5 20 12 s 6.41\% 7.01\%
5 200 14000 30 230 441 s ** 1.57\% 2.71\%

Since ZZ\ast \Phi is positive semidefinite with respect to \Phi , we know that D = diag(\lambda 1, . . . , \lambda N )
has (real) nonnegative values that can be ordered as \lambda 1 \geq \cdot \cdot \cdot \geq \lambda N \geq 0. A solution of
(6.2) then corresponds to a unit-norm eigenvector of ZZ\ast \Phi corresponding to \lambda 1. The second
complex PCA mode w2 is the solution to a problem analogous to (6.2), except that we add
the constraint w2 \bot \bfPhi w1. It is given by a unit-norm eigenvector corresponding to \lambda 2. Further
modes are iteratively found with the constraint to be \Phi -orthogonal to previous modes.

The dictionary is then the collection of the modes (w1, . . . ,wJ) and the best N0-term
approximation of zk is

\sum N0
j=1(w

\ast 
j\Phi zk)wj . The corresponding loss is then equal to

\sum K
k=1 | zk| 2\bfPhi  - 

\lambda 1  - \cdot \cdot \cdot  - \lambda N0 . As in the previous paragraph, we employ
\surd 
\Phi to transform the problem into

a standard form suitable for computations.

6.1. Results. In Figures 7, 8, 9, 10, 11, and 12, we show the dictionary learned by 2DKSD
and the align-first method with specific parameters for each dataset (Table 2), alongside four
examples of reconstructed data superimposed over the original one. In each case, the recon-
struction errors

| zk  - D\bfitalpha k| \bfPhi =
| zk  - D\bfitalpha k| \bfPhi 
| zk| \bfPhi 

are expressed in percentages and can be understood as an absolute error multiplied by 100,
or as a proportion of | zk| = 1 as well. Note that, as mentioned in section 5.2, the 2DKSD
ensures that these errors are equal to dF ([zk], [D\bfitalpha k]), which is not the case for the align-first
method. We also indicate the root mean square reconstruction errors (RMSE), defined as\sqrt{} 

E

K
=

\sqrt{}    1

K

K\sum 
k=1

| zk  - D\bfitalpha k| 2\bfPhi and

\sqrt{} 
E\prime 

K
=

\sqrt{}    1

K

K\sum 
k=1

\bigm| \bigm| \widetilde zk  - D\prime \bfitalpha \prime 
k

\bigm| \bigm| 2
\bfPhi 
,

respectively, and also expressed in percentages. We summarize them in Table 2, where we
specify the parameters used in the examples, as well as a typical run-time13 for T = 30 itera-
tions in Algorithm 5.1, which is sufficient for the loss to converge in all datasets, and including
the duration of the final sparse coding of the whole dataset. To reduce ORMP run-time for
larger datasets (such as Datasets 1 and 2, marked with a star * in the table), we applied
Algorithm 5.2 in parallel and independently on each data point zk. To learn overcomplete
dictionaries on very big datasets (such as Dataset 5, marked with two stars ** in the table),

13All experiments were run on a standard laptop with an Intel Core i5-7200U CPU running 4 cores at
2.50GHz, with 7,7 Gb of RAM.
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Figure 5. RMSE of complex PCA, (real) align-first, and 2DKSD, in logarithmic scale. From left to right,
top to bottom: Datasets 1 to 4b. In each graph, we plot the RMSE as a function of the number N0 of atoms
used in the reconstructions. For complex PCA, we used the first N0 modes. For align-first and 2DKSD, we
learned a dictionary parameterized by (N0, J) for each value of N0, with J set to 10 (top row) or 20 (bottom
row).

we chose to update the weights \bfitalpha k stochastically and in parallel by batches of 4096, after
initializing them to zero. Obviously, additional efforts could be made to optimize the imple-
mentation and reduce run-time on big datasets, but this falls out of the scope of the present
work and is kept for the future.

In Figure 5, we illustrate in logarithmic scale the RMSE obtained with complex PCA
v.s. (real) align-first v.s. 2DKSD, after learning atoms from Datasets 1 to 4b. For varying
values of N0, we compare the RMSE of a reconstruction relying on the first N0 PCA modes,
and the RMSEs of an align-first or 2DKSD dictionary learned with the parameters (N0, J).
J \geq N0 is fixed to the same values used in the examples shown in the figures and is such
that J < N . This comparison is relevant for two reasons. First, the dictionary of PCA
atoms is a natural candidate when learning an undercomplete dictionary containing fewer
atoms than the dimension of the configuration space. Second, while complex PCA relies on
complex weights but determines the atoms in a specific way, the align-first method is less
constrained in the choice of atoms but relies on real weights. Our 2DKSD method is therefore
a good compromise between them. We have also explored the J > N case, which leads to an
overcomplete dictionary (Dataset 5, Figure 12).

Comparison with align-first and complex PCA. We argue that the align-first method pro-
vides less satisfying results than our shape dictionary, both mathematically and numerically.
Mathematically, the optimized loss functional (6.1), denoted by E\prime , is necessarily larger than
our loss E (5.1) since weights are constrained to lie on the real line. Intuitively, they can
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scale but not rotate the atoms before summing them. In contrast, the complex weights in our
method scale and rotate the atoms, resulting in a smaller loss E. Numerically, this leads to a
visible difference in the RMSEs, as seen in Figure 5. In particular, the loss obtained with our
algorithm E can be a third or a fourth of the one resulting from align-first E\prime , as in Figures 7
and 8. Besides, the dictionary computed by align-first often contains distorted, irregular or
unrealistic atoms, which reflect the effort required to fit the data, in spite of the prealign-
ment. When analyzing datasets of shapes, it is sometimes preferable to obtain realistic atoms
and visually accurate reconstructions instead of perfect reconstructions but unrealistic atoms.
Visually realistic atoms indeed offer a way to hypothesize on the nature of the variability of
the dataset.

Figure 5 demonstrates the benefits of using complex numbers in the linear combinations.
For increasing values of N0, the align-first RMSE indeed becomes significantly larger even
when compared to that of complex PCA. As another illustration of their relevance, Figure 6
features two different weighted sums of the same three atoms that allow reconstructing very
dissimilar shapes. It is not surprising for the first hand to be correctly reconstructed as, at
first order, its shape is similar to that of the first atom, which is weighted by the coefficient
of largest magnitude. The remainder is compensated by the other two atoms. For the second
hand, however, it is more surprising to see that hands with open fingers, scaled, rotated, and
then summed together, manage to produce a hand with closed fingers.

Last, Figure 5 shows that 2DKSD is more appropriate than complex PCA for N0 < J .
When learning a KSD dictionary that uses all the N0 = J < N atoms to reconstruct data, the
RMSE is close to that of complex PCA. In fact, the minimal RMSEs should mathematically be
equal whenever the average configuration of the dataset corresponds to the zero configuration,
or if it is not discarded from the dataset (see the details of complex PCA discussed above).

+ + =

100 dF ([zk ], [D�k ]) = 3.04

+ + =

100 dF ([zk ], [D�k ]) = 5.01

�1ei�1 atom1 + �2ei�2 atom2 + �3ei�3 atom3 ≃ DATA

Figure 6. Complex linear combinations offer more freedom in the reconstruction. Left: three atoms weighted
with different complex coefficients. Right: their sum (blue) superimposed over reconstructed data (gray). Black
crosses indicate the origin.
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DICTIONARY LEARNING FOR 2D KENDALL SHAPES 163

Figure 7. Dataset 1. Top: our method. Bottom: align-first method. Left: shape dictionary of J = 10
atoms, taking N0 = 5 out of them to reconstruct the K > 5500 shapes represented as configurations of dimension
N = 20. Right: four examples of reconstruction (blue) over the original data (gray). The RMSEs are 2.36\%
and 4.19\%, respectively.

Indeed, both solutions find the J-dimensional subspace that is the closest to the data points,
i.e., the subspace spanned by the J PCA modes.

Comments on the examples comparing 2DKSD and align-first. As is seen in Figures 7 and
8, nematode shapes seem to be efficiently reconstructed using not more than five atoms. For
both Datasets 1 and 2, the reconstructions are visually satisfying and numerically accurate.
The results for Dataset 2 are remarkable in that, although the original shapes do not have
the characteristic smoothness of freely moving worms, the algorithm has less difficulty in the

Figure 8. Dataset 2. Top: our method. Bottom: align-first method. Left: shape dictionary of J = 10
atoms, taking N0 = 5 out of them to reconstruct the K > 6300 shapes represented as configurations of dimension
N = 12. Right: four examples of reconstruction (blue) over the original data (gray). The RMSEs are 4.04\%
and 7.95\%, respectively. We display the curves and the control points.
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164 A. SONG, V. UHLMANN, J. FAGEOT, AND M. UNSER

Figure 9. Dataset 3. Top: our method. Bottom: align-first method. Left: shape dictionary of J = 10
atoms, taking N0 = 3 out of them to reconstruct the K = 40 shapes represented as configurations of dimension
N = 56. Right: four examples of reconstruction (blue) over the original data (gray). The RMSEs are 2.48\%
and 2.73\%, respectively. We display configurations of landmarks as continuous curves.

Figure 10. Dataset 4. Top: our method. Bottom: align-first method. Left: shape dictionary of J = 20
atoms, taking N0 = 5 out of them to reconstruct the K > 1500 shapes represented as configurations of dimension
N = 200. Right: four examples of reconstruction (blue) over the original data (gray). The RMSEs are 6.45\%
and 7.12\%, respectively. We display the configurations of landmarks as continuous curves.D
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DICTIONARY LEARNING FOR 2D KENDALL SHAPES 165

Figure 11. Dataset 4b. Top: our method. Bottom: align-first method. Left: shape dictionary of J = 20
atoms, taking N0 = 5 out of them to reconstruct the K > 1500 shapes represented as configurations of dimension
N = 40. Right: four examples of reconstruction (blue) over the original data (gray). The RMSEs are 6.41\% and
7.01\%, respectively. We display the curves and also the control points, which explains the nonsmooth effects.

reconstruction than align-first. Moreover, it produces realistic atoms, whose curve parame-
terization is well-balanced, in contrast to those of align-first, where consecutive control points
are not regularly distributed along the curve.

In Figure 9 reporting the results for Dataset 3, both methods result in very similar losses,
but the atoms are less realistic with align-first. They exhibit self-intersecting and stretched
fingers. In this case, it is an informative feature as it indicates to which extent fingers ``tend""
to be closed. Our algorithm is then an alternative to the align-first method.

The results in Figures 10 and 11 on the leaf datasets 4 and 4b are similar regardless of the
representation (landmarks or B-splines) used. Our loss E is less than 84\% of the comparison
loss E\prime , and we obtain a dictionary with realistic leaves, while align-first contains twisted
shapes.

Finally, we observe that the overcomplete dictionaries learned by both methods on Dataset
5, using 20 of their atoms shown in Figure 12, look fairly similar. Thus, 2DKSD offers no
particular advantage over align-first regarding the visual realisticness of the atoms in that case
but leads to a significantly smaller RMSE. It also reproduces better high-frequency features
of the silhouettes, as in the cow and lizard shapes.
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Figure 12. Dataset 5. Top: our method. Bottom: align-first method. Left: first 20 atoms of the shape
dictionary of J = 230 atoms, taking N0 = 30 out of them to reconstruct the K = 14000 shapes represented as
configurations of dimension N = 200 < J . Right: four examples of reconstruction (blue) over the original data
(gray). The RMSEs are 1.57\% and 2.71\%, respectively.

7. Conclusion. Our 2D Kendall shape dictionary approach is a natural adaptation of
usual learning techniques to Kendall's nonlinear manifold and does not require sophisticated
operations. For the classical full Procrustes metric, it simplifies to a nearly standard formu-
lation in which complex weights are used when combining the atoms of the dictionary. As
our main contribution, this formulation has the double property of enjoying both a strong
theoretical justification and a simple algorithmic framework. We have demonstrated the posi-
tive impact of using a complex setting: datasets do not need to be aligned along a reference
mean because atoms are freely scaled and rotated before being summed to reconstruct shapes
independently. This flexibility increases reconstruction accuracy and allows dictionary atoms
to remain visually realistic. We have also extended Kendall's space of planar shapes, initially
defined for discrete configurations of landmarks, to continuously defined interpolating curves,
by introducing the general notion of configuration. Hopefully, our method is a promising tool
for characterizing complex phenotypes from biological images.

Appendix A.

A.1. Hermitian products hold twice as much information than scalar products. In what
follows, we make the identification \BbbC N \simeq \BbbR 2N through the mapping z \mapsto \rightarrow z = (\Re (z),\Im (z))T ,
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where \Re (z) = (\Re (z[0]), . . . ,\Re (z[N  - 1])) and likewise for the imaginary part. We use bold
and italics to distinguish the complex and real counterparts of the vectors. If (\BbbC N ,\Phi ) is
endowed with a Hermitian inner product (z,w) \mapsto \rightarrow (z | w)\bfPhi := z\ast \Phi w associated to the matrix
\Phi \in \BbbC N\times N , then one can define on \BbbR 2N the scalar product \langle \cdot , \cdot \rangle \bfPhi canonically associated to
it as

(A.1) \langle z, w\rangle \bfPhi := \Re ((z | w)\bfPhi ) ,

defining the same norm \langle z, z\rangle \bfPhi = (z | z)\bfPhi . Due to the sesquilinearity of the Hermitian product,
we have that (iz | w)\bfPhi =  - i(z | w)\bfPhi , so that \Re ((iz | w)\bfPhi ) = \Im ((z | w)\bfPhi ), and then

(A.2) (z | w)\bfPhi = \langle z, w\rangle \bfPhi + i\langle R\pi /2 \odot z, w\rangle \bfPhi ,

where by R\theta \odot z = cos \theta (\Re (z),\Im (z))T + sin \theta ( - \Im (z),\Re (z))T we denote the image (in the
real setting) of z by a rotation by \theta , namely, the real counterpart of e\mathrm{i}\theta z. Here, R\pi /2 \odot z =

( - \Im (z),\Re (z))T .
As a consequence, (z | w)\bfPhi = 0 if and only if \langle z, w\rangle \bfPhi = 0 and \langle R\pi /2 \odot z, w\rangle \bfPhi = 0. In

fact, a stronger property can be deduced: \forall \theta \in [0, 2\pi ), \langle R\theta \odot z, w\rangle \bfPhi = \langle z,R\theta \odot w\rangle \bfPhi = 0.
This is because R\theta \odot z = cos \theta z + sin \theta R\pi /2 \odot z, and we conclude by bilinearity of the
scalar product, and then by exchanging the roles of z and w. In other words, Hermitian
orthogonality can be understood as a real orthogonality between any rotated image of z and w
(and conversely).

Remark A.1. Suppose that \Phi = A + iB with A,B \in \BbbR N\times N . The scalar product is
computed as \langle z, w\rangle \bfPhi = zT\Psi w, with \Psi =

\bigl( 
\bfA  - \bfB 
\bfB \bfA 

\bigr) 
.

A.2. Two lemmas. In this section, we establish two lemmas. The first one is used in the
proof of Proposition 4.2, and the second one states that the dictionary update (5.2) does not
involve the matrix \Phi .

Lemma A.2. Let \^\bfitalpha \in \BbbC J be a minimizer of min| \bfitalpha | 0\leq N0
| z  - D\bfitalpha | \bfPhi . If D\^\bfitalpha \not = 0, then any

term in (4.5) is also minimized by \^\bfitalpha . Otherwise, z is orthogonal to the columns of D and
the distances in (4.5) are all maximized to 1. In that case, any \widetilde \bfitalpha satisfying D\widetilde \bfitalpha \not = 0 is a
minimizer of any term in (4.5).

Proof. The quantity | z  - D\bfitalpha | \bfPhi reaches a minimum in \{ \bfitalpha | | \bfitalpha | 0 \leq N0\} . It corresponds
to the minimal distance to z of a subspace generated by at most N0 atoms dj (see previous
discussions about sparse coding). Let \^\bfitalpha denote the corresponding minimizer. It satisfies
min| \bfitalpha | 0\leq N0

| z  - D\bfitalpha | \bfPhi = | z  - D\^\bfitalpha | \bfPhi . By definition of a projection, | z  - D\^\bfitalpha | \geq | z  - P\BbbC \bfD \^\bfitalpha z| .
Moreover, if \lambda \in \BbbC is such that P\BbbC \bfD \^\bfitalpha z = \lambda D\^\bfitalpha , then | z  - P\BbbC \bfD \^\bfitalpha z| = | z  - D(\lambda \^\bfitalpha )| , where
| \lambda \^\bfitalpha | 0 \leq N0. The last term is then greater than or equal to min| \bfitalpha | 0\leq N0

| z  - D\bfitalpha | \bfPhi , hence it
comes that

(A.3) | z - D\^\bfitalpha | \bfPhi = | z - P\BbbC \bfD \^\bfitalpha z| \bfPhi .

Using the same arguments, one easily shows that this also corresponds to min| \bfitalpha | 0\leq N0
| z  - 

P\BbbC \bfD \bfitalpha z| \bfPhi . As a useful remark, notice that the equality (A.3) implies that P\BbbC \bfD \^\bfitalpha z = D\^\bfitalpha .
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Coming back to the original equalities (4.5), if D\^\bfitalpha \not = 0, then all terms are minimized by
\^\bfitalpha . Otherwise, if D\^\bfitalpha = 0, then z is orthogonal to the vectors dj , and z is not correlated to
any shape generated by the dj , inducing a maximal distance dF . In particular, any \widetilde \bfitalpha such
that | \widetilde \bfitalpha | 0 \leq N0 and D\widetilde \bfitalpha \not = 0 can be taken as a minimizer of any term in (4.5).

Lemma A.3. E being defined in (5.1), a solution to min\bfD \in \BbbC n\times J E(D,A), for a fixed value
of A, is given by (5.2), and its expression is independent from the matrix \Phi .

Proof. We rewrite the problem into a standard \ell 2 form:

min
\bfD 

E(D,A) = min
\bfD 

K\sum 
k=1

| D\alpha k  - zk| 2\bfPhi = min
\bfD 

\sum 
k

| 
\surd 
\Phi D\alpha k  - 

\surd 
\Phi zk| 2

= min
\bfD 
\| 
\surd 
\Phi (DA - Z)\| 2\mathrm{F}\mathrm{r}\mathrm{o}

= min
\bfD 
\| (A\ast D\ast  - Z\ast )

\surd 
\Phi \| 2\mathrm{F}\mathrm{r}\mathrm{o}

= min
\bfH 

n\sum 
i=1

| A\ast hi  - gi| 2,

hi and gi denoting the columns of H = D\ast \surd \Phi and G = Z\ast \surd \Phi . It is known that the
elementary problems are solved by \^hi = (A\ast )+gi. This gives \^H\ast = G\ast A+ and finally \^D =
ZA+, after inverting with (

\surd 
\Phi ) - 1.

A.3. Mean shape. The mean shape of a dataset can be defined as the Fr\'echet mean of
the points [zk] scattered on Kendall's manifold [13], with respect to one of the three distances
dF , dP , or \rho . It is the unique global minimizer z\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n} of

K\sum 
k=1

dist([z\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n}], [zk])
2,

when it exists. The Fr\'echet mean with respect to the full distance dist = dF (see Figure 13)
can be found as the shape of the eigenvector associated to the greatest eigenvalue of the
operator [13, 47] \sum 

k

P\BbbC \bfz k ,

Figure 13. Fr\'echet mean shape of Datasets 1, 2, 3, and 4 with respect to dist = dF . We display one
representative preshape, up to rotations.

D
ow

nl
oa

de
d 

05
/0

5/
20

 to
 1

28
.1

79
.2

55
.5

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DICTIONARY LEARNING FOR 2D KENDALL SHAPES 169

where zk \in \scrS are preshapes and where P\BbbC \bfz k = zkz
\ast 
k\Phi is the orthogonal projector onto the

complex vector line generated by zk relatively to the Hermitian product \Phi . To prove it, let
us consider the problem in the preshape sphere. We obtain

(A.4) argmin
\bfz \in \scrS 

\sum 
| z - P\BbbC \bfz kz| 

2
\bfPhi = argmax

\bfz \in \scrS 

\sum 
| P\BbbC \bfz kz| 

2
\bfPhi = argmax

\bfz \in \scrS 
z\ast \Phi 

\sum 
k

P\BbbC \bfz kz,

where we used that | z - P\BbbC \bfz kz| 2\bfPhi = 1 - | P\BbbC \bfz kz| 2\bfPhi . A similar proof for landmarks (\Phi = Id) can
be found in [13, p. 178].

Link with the mean-shape curve of [44]. In this article related to ours, a mean-shape curve
of a family of curves \{ r1, . . . , rK\} inH := \BbbL 2([0, 1],\BbbR 2) endowed with the usual norm is defined
as an optimal curve

(A.5) r\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n} \in argmin
| r| H=1
\=r=0

K\sum 
k=1

| r  - Pkr| 2H = argmax
| r| H=1
\=r=0

K\sum 
k=1

| Pkr| 2H ,

where Pk is the similarity projector, i.e., the orthogonal projection onto the subspace Srk of
dimension 4 associated to rk containing all the images up to similitude transforms of rk. It is
written

Sr =

\biggl\{ 
\lambda 

\biggl( 
cos \theta  - sin \theta 
sin \theta cos \theta 

\biggr) 
r +

\biggl( 
\alpha 
\beta 

\biggr) 
| \lambda \in \BbbR , \theta \in [0, 2\pi ), \alpha , \beta \in \BbbR 

\biggr\} 
(A.6)

= \BbbR 
\biggl\{ \biggl( 

rx

ry

\biggr) 
,

\biggl( 
 - ry
rx

\biggr) 
,

\biggl( 
1
0

\biggr) 
,

\biggl( 
0
1

\biggr) \biggr\} 
.(A.7)

It can be shown that r\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n} belongs to the eigenspace associated to the second greatest eigen-
value of

\sum 
k Pk as

(A.8)

K\sum 
k=1

Pkr\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n} = \lambda 2r\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n}, | r\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n}| = 1,

and, as a consequence, the mean-shape curve of interpolating curves is also an interpolating
curve (as soon as constants are themselves interpolating curves), since r\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n} \in Im(

\sum 
Pk).

Aligning the dataset to the mean-shape curve then consists in taking

\widetilde rk := Pkr\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n}.

In fact, in the complex setting, if r1, . . . , rK \in \BbbL 2([0, 1],\BbbC ) are centered and normalized, the
orbit of the mean-shape interpolating curve [r\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n}] up to rotations is then exactly the Fr\'echet
mean of the orbits [r1], . . . , [rK ] in the curve counterpart of the shape space with respect to the
full distance dF . In other words, if z1, . . . , zK are the control vectors of r1, . . . , rK , then the
control vector z\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n} \in \scrS of r\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n} is one representative, up to rotations, of the Fr\'echet mean
of [z1], . . . , [zK ]. Also, the notion of alignment proposed in [44] coincides with that involved
in the full distance (see (3.7)), if working with preshapes.
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A.4. B-spline curves. We find it is worthwhile to present our setting for B-splines, which
are popular tools to construct interpolating curves [53, 5]. We provide explicit expressions
for the basis functions \phi n. Spline curves (interpolating curves, more generally) motivate
the introduction of a Hermitian product \Phi and a notion of shift configuration u, for which
projecting on the subspace orthogonal to u is akin to centering the spline curve. Readers can
rely on this example to adapt our framework to other representations, such as Hermite-spline
curves.

B-spline curves have parameters called control points that are regularly spaced along a
continuous parameter t. A B-spline with M control points holds N = M degrees of freedom,
as in

(A.9) \forall t \in [0, 1], r(t) =
M - 1\sum 
n=0

z[n]\phi n(t),

where the basis functions \phi n can be obtained, for instance, from the cubic B-spline generator
function

(A.10) \beta 3(t) =

\left\{   
| t| 3/2 - t2 + 2/3 for 0 \leq | t| \leq 1,
(2 - | t| )3/6 for 1 \leq | t| \leq 2,
0 otherwise.

Closed cubic B-splines curves are then obtained with

for n = 0, \forall t \in [0, 1], \phi 0(t) = \beta 3(Mt) + \beta 3(Mt - M),(A.11)

for n = 1, \forall t \in [0, 1], \phi 1(t) = \beta 3(Mt - 1) + \beta 3(Mt - 1 - M),(A.12)

\forall n = 2, . . . ,M  - 2, \forall t \in [0, 1], \phi n(t) = \beta 3(Mt - n),(A.13)

for n = M  - 1, \forall t \in [0, 1], \phi M - 1(t) = \beta 3(Mt+ 1) + \beta 3(Mt+ 1 - M).(A.14)

One can check that 1 is a cubic B-spline and that it corresponds to the shift configuration
u = (1, . . . , 1). We know that the temporal mean of the spline curve, defined after Definition
2.4, coincides with the product \bfu \ast \bfPhi \bfz 

| \bfu | 2\bfPhi 
= u\ast \Phi z = z\ast \Phi u. In the case of closed B-splines, it is

simply the usual arithmetic mean of the control points

(A.15) \=r =
1

M

M - 1\sum 
m=0

z[m],

which is subtracted to z when centering the configuration. Please note that we have more
sophisticated expressions for closed and open Hermite-spline curves, which we detail in a
future work.

A.5. Riemannian structure of the shape space. We provide a concise description of
the Riemannian structure of the shape space \Sigma (our method does not use it in a crucial
way). Using the same conventions as in Appendix A.1, we use bold and italics to denote
the complex and real version of a vector by z \in \BbbC N and z \in \BbbR 2N , respectively. The real
inner product (z, w) \mapsto \rightarrow \Re (z\ast \Phi w) canonically associated to the Hermitian inner product \Phi is
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denoted as \langle \cdot , \cdot \rangle \bfPhi . The shape space based on (\BbbR 2N , \langle \cdot , \cdot \rangle \bfPhi ) has a Riemannian structure that
is similar to the usual complex projective space \BbbC \BbbP N - 2. The latter is the shape space based
on (\BbbR 2N , \langle \cdot , \cdot \rangle \mathrm{c}\mathrm{a}\mathrm{n}), defined for landmarks and the standard inner product [29, 13, 47, 20, 19].

The Riemannian structure of \Sigma is inherited from that of \scrS , a sphere in finite dimension
whose structure is well understood. Being a smooth submanifold of (\BbbR 2N , \langle \cdot , \cdot \rangle \bfPhi ), \scrS is endowed
with the induced Riemannian metric. The tangent space to \scrS at z is

(A.16) Tz(\scrS ) = \{ v \in \BbbR 2N | \langle z, v\rangle \bfPhi = 0\} ,

which is equipped with the Riemannian inner product \forall v1, v2 \in Tz\scrS , \langle v1, v2\rangle z := \langle v1, v2\rangle \bfPhi .
The space space \Sigma is the quotient of \scrS by the group of planar rotations U(1). The action

of U(1) on the Riemannian manifold \scrS is smooth, free, and proper on \scrS , with U(1) being a
Lie group acting by isometries, meaning that

(A.17) \forall \theta \in U(1), \langle v1, v2\rangle z = \langle R\theta \odot v1,R\theta \odot v2\rangle \mathrm{R}\theta \odot z.

The resulting quotient \Sigma consequently inherits a (unique) Riemannian structure on \Sigma =

\scrS /U(1) such that \Pi :
\Bigl( 

\scrS \rightarrow \Sigma 
z \mapsto \rightarrow [\bfz ]

\Bigr) 
is a Riemannian submersion [20, 19]. This structure can be

described as follows [20, 19, 47]. At each point z of \scrS , the tangent space Tz(\scrS ) can be split
into two subspaces orthogonal to each other with respect to \langle \cdot , \cdot \rangle \bfPhi as

(A.18) Tz(\scrS ) = Tz([z])
\bot 
\oplus Hz(\scrS ),

where the vertical subspace Tz([z]) = Ker(d\pi z) = \BbbR (R\pi /2 \odot z) is the space tangent at z to
the orbit [z], while the orthogonal complement is the horizontal subspace

(A.19) Hz(\scrS ) = \{ v \in \BbbR 2N | \langle z, v\rangle \bfPhi = 0 and \langle z,R\pi /2 \odot v\rangle \bfPhi = 0\} \simeq \{ v \in \BbbC N | z\ast \Phi v = 0\} .

The last identification uses the properties of the Hermitian inner product seen in Appendix
A.1. By definition, the tangent space T[z](\Sigma ) is then identified to the horizontal subspace
Hz(\scrS ) through the isometry d\pi z : v \in Hz(\scrS ) \mapsto \rightarrow [v] \in T[z](\Sigma ). The Riemannian inner product
on T[z](\Sigma ) is then obtained as

(A.20) \langle \langle [v1], [v2]\rangle \rangle [z] := \langle v1, v2\rangle z,

which does not depend on the particular choice of the representative preshape z.
Geodesics and Riemannian distance \rho (Definition 3.8) can then be defined on \Sigma . The

Riemannian distance \rho \scrS on \scrS is equal to the length of the shortest path joining z to w,

(A.21) \rho \scrS (z, w) = arccos\langle z, w\rangle \bfPhi .

The corresponding shortest geodesic arc \{ \bfitalpha (t)\} that joins z to w is

(A.22) \forall t \in [0, 1], \bfitalpha (t) =
1

sin r
(sin((1 - t)r)z + sin(t r)w), where r = \rho \scrS (z, w).
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The shortest geodesic path between the shapes [z] and [w] is the quotient path \{ [ \~\bfitalpha (t)]\} ,
where \~\bfitalpha is the geodesic in \scrS that joins \~z \in [z] to w, where \~z is chosen so that the corre-
sponding (complex) preshape \~z is optimally rotated along w. The Riemannian distance in
the shape space is then the length of \~\bfitalpha (t), computed as arccos\langle \~z, w\rangle \bfPhi = arccos(\Re (\~z\ast \Phi w)).
It also corresponds to the geodesic distance between \~z and the set [w]. From an argument
in the proof of Proposition 3.6, we know that, since \~z is optimally rotated, it is also equal to
arccos | \~z\ast \Phi w| = arccos | z\ast \Phi w| , thus resulting in the equality of Definition 3.8.
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