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Elastic Registration of Biological Images Using
Vector-Spline Regularization

Carlos Ó. S. Sorzano*, Philippe Thévenaz, and Michael Unser, Fellow, IEEE

Abstract—We present an elastic registration algorithm for the
alignment of biological images. Our method combines and extends
some of the best techniques available in the context of medical
imaging. We express the deformation field as a B-spline model,
which allows us to deal with a rich variety of deformations.
We solve the registration problem by minimizing a pixelwise
mean-square distance measure between the target image and the
warped source. The problem is further constrained by way of a
vector-spline regularization which provides some control over two
independent quantities that are intrinsic to the deformation: its
divergence, and its curl. Our algorithm is also able to handle soft
landmark constraints, which is particularly useful when parts of
the images contain very little information or when its repartition
is uneven. We provide an optimal analytical solution in the case
when only landmarks and smoothness considerations are taken
into account. We have applied our approach to perform the
elastic registration of images such as electrophoretic gels and
fly embryos. The validation of the results by experts has been
favorable in all cases.

I. INTRODUCTION

PUTTING two images into registration can be restated as
finding a function (also called a deformation field) that per-

forms the backward mapping of a target image onto a source
image [1], [2]. This is a problem common to several molec-
ular-biology disciplines like the analysis of microarrays [3], the
analysis of genetic expression patterns [4], the recognition of
protein folds [5], or the study of two–dimensional (2-D) elec-
trophoretic gels [6].

The registration of biological images poses some challenging
obstacles that need to be overcome. In most cases, the deforma-
tion is difficult to determine because it differs markedly from a
simple rigid-body or affine transformation. Instead, biological
images usually require local and nonlinear deformations, which
only an elastic-deformation framework can handle properly. As
additional difficulty, the information content of the images is
sometimes distributed in uneven fashion (e.g., when there is no
relevant information outside restricted image patches). At other
times, it may be inherently impossible to register the two images
since it is their difference that carries the useful information.
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Solutions have been proposed, mostly in the domain of med-
ical image registration. Some a priori information about the de-
formation family is sometimes available (e.g., the deformation
is smooth, or the deformation shows some kind of symmetry,
or the deformation pattern is known). In addition, the use of
landmarks is a common cure to the uneven distribution of in-
formation and to its potential inherent mismatch. Several algo-
rithms deal exclusively with landmarks [7]–[11], while other
algorithms ignore them; only a few authors propose a solu-
tion where the registration is guided by some combination of
image and landmark contributions [12]. These facts motivated
us to apply to biological image registration a generalization of
some of the most recent works in medical image registration
[12]–[14].

We select B-splines to model the images, which ensures their
high-quality interpolation [15]. Similarly, we also use B-splines
to model the deformation field [16]. In this way, a nonlinear
elastic-deformation model can be produced while keeping a
tight control on its level of detail. This deformation field is
estimated through a minimization problem that includes three
terms: the energy of the error between both images (data term),
the error in the mapping of corresponding landmarks, and a
regularization term that promotes a smooth deformation. We
suggest to use masks to control the validity of the data term,
to use soft landmarks to enforce a priori knowledge (possibly
with some leeway), and to benefit from regularization, at
least for those parts of the images where the absence of data
and landmark information would else lead to undetermined
registration.

We propose several new combinations of features: We sug-
gest to assist the efficient optimization method of Levenberg
and Marquardt by the accurate Broyden–Fletcher–Gold-
farb–Shanno (BFGS) estimate of the Hessian; we also propose
a dissimilarity measure that consists of no less than three terms.
In addition, we develop a new analytical solution to the land-
mark-only problem when the deformation is B-spline-based
and when the regularization term is truly vectorial.

After a discussion of related work in Section II, we introduce
in Section III-A our measure of dissimilarity between images
and take explicitly into account a priori information such as
masks. We present our continuous B-spline-based representa-
tion of images and of the deformation in Sections III-B and III-C,
respectively. We define the soft landmark constraints in Sec-
tion III-D. We introduce a priori knowledge about the smooth-
ness of the deformation via regularization in Section III-E. The
analytical solution of the regularized registration problem in the
absence of the image term is given in Section III-F. We present
our multiresolution strategy in Section III-G. Our optimizer is
inspired by a Levenberg–Marquardt nonlinear regression and
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is described in Section III-H. We develop in Section III-I the
explicit computation of the derivatives needed by the opti-
mizer. Finally, we present in Section IV experiments aimed
at demonstrating the usefulness of our approach. We discuss
the results of those experiments in Section V.

II. STATE OF THE ART

In this section, we briefly review previous registration
methods. We identify the most important computational
components, and justify the choices we have made for our
implementation.

B-splines are piecewise-polynomial bases with a low compu-
tational cost, which makes them very attractive [17]. Because
their approximation properties are optimal in a mathematically
well-defined sense [18], [19], they are extremely useful to
model many functions; in particular, the deformation field can
be viewed as a set of several functions (one per coordinate)
which in turn are modeled by a linear sum of weighted and
shifted B-splines. The set of weights, which are called the
B-spline coefficients, fully characterize the transformation.

A deformation model based on B-splines is very versatile and
can generate a large variety of nonlinear elastic deformations,
while remaining easy to handle [12]–[16], [20]. In this paper,
we use B-splines to model the deformation field. In this way,
a nonlinear elastic-deformation model can be produced while
keeping a tight control on its level of detail. This is in contrast
with nonparametric methods which do not seek to describe the
deformation field by a controlled set of coefficients, but rather
by partial differential equations [21], [22].

The role of landmarks is to anchor the deformation at some
specific locations. A number of landmark-only registration al-
gorithms have been developed because landmarks are essential
in applications where images show very little information, or
where the information in the target image is not the same as in
the source images [8]–[10], [23]. Nevertheless, the accuracy of
the landmarks is never subpixel when they are placed interac-
tively, and suffers from other sources of noise when they result
from an automatic selection procedure. To achieve high-accu-
racy registration, it is therefore crucial to be able to cope with in-
exact landmarks. We deal with soft landmarks by compounding
their contribution with that of data and regularization terms.

In the restricted context of landmark-only registration, the
deformation is known with perfect accuracy for corresponding
landmarks, but is undetermined otherwise. Regularization is
then called for to build a deformation field that is well-defined
everywhere. The most classical regularization involves a term
that is equivalent to the Laplacian of the deformation and that
favors smoothness [24]–[27]. This regularization term is related
to the mechanical stress of a stretched elastic material; the
use of thin-plate splines for the interpolation of landmarks is
also equivalent to the Laplacian [8], [9], [28]. Unfortunately,
this standard regularization term considers only second-order
derivatives and is blind to the “cross-talk” between compo-
nents. As has been shown in [29], minimizing the energy of
the Laplacian-equivalent is not sufficient to ensure maximal
smoothness. The solution to the problem of fully exploiting the
multidimensional nature of spline-based interpolation of vector
fields, first proposed in [29], is to consider a combination of

two regularization sub-terms, one based on the gradient of the
divergence of the field, and another based on the gradient of its
curl. The resulting vectorial regularization is a generalization
of the standard one, which can still be obtained by a specific
combination of divergence and curl. We show in this paper how
to benefit from the extra freedom that results from choosing yet
other combinations.

This vectorial regularization term has already been intro-
duced in landmark-only image registration [10], [23], [30].
In the present paper, we propose two extensions. In the land-
mark-only case, we develop a new analytical solution to the
problem of determining a B-spline-based deformation field
that complies with vectorial regularization. Alternatively, we
propose to incorporate three competing terms into the dis-
similarity measure: landmark, regularization, and data terms.
The combination of landmarks with regularization but without
data is classical; the combination of landmarks with data but
without regularization is encountered less often [12], as is the
combination of data with regularization but without landmarks
[24]. To the best of our knowledge, the simultaneous use of all
three terms is performed in [31]–[33].

When the data term is taken into account, numeric optimiza-
tion is required to minimize a measure of dissimilarity of the
images. We have selected the energy of their difference as regis-
tration criterion, for which efficient optimization methods such
as Levenberg–Marquardt are known to exist [34]. This opti-
mizer adaptively adjusts the tradeoff between gradient-descent
steps and quasi-Newton steps, which requires the estimate of
the Hessian of the measure of dissimilarity with respect to the
transformation parameters. We propose an approach whereby
we apply the BFGS method to produce the estimate of the Hes-
sian [35]. BFGS alone has already been used for image regis-
tration [13], [14], but has as yet never been combined with the
Levenberg–Marquardt optimizer in this context.

The presence of the data term requires an interpolation
model, not only to produce the consistent derivatives needed
by the optimizer, but also to resample the image. Since high
quality comes at a cost, practitioners have often compromised
it by selecting linear interpolation. An even worse quality
(essentially equivalent to that of nearest-neighbor) is observed
for the partial-volume approach found in methods based on
mutual information [36]. Here instead, we adopt the high-quality
cubic B-spline interpolation scheme that was shown to be very
successful for registration in [34].

Another advantage of B-splines is their suitability for
building multiresolution algorithms thanks to the the two-scale
property [37]. Coarser representations of the deformation field
are computed using coarser representations of the images.
Then, resolution increments are alternatively taken in the image
space as well as in the deformation space, until a desired
resolution is achieved in both. This multiresolution approach
greatly increases the robustness and the speed of the algorithms,
particularly in the context of gradient-based optimizers.

III. PROPOSED METHODOLOGY

Our registration methodology is based on the minimization of
an energy functional that incorporates three terms: the measure
of dissimilarity between the target image and the warped
source image, the soft landmark constraints , and a priori
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knowledge about the deformation field through the two indepen-
dent measures and that are related to the gradients of
divergence and curl of the deformation field. Thus, the energy
to minimize is a linear combination of these energy terms, as in

(1)

A. Data Term

The goal of image registration is to find a function
which maps coordinates from the target image onto

the source image , so that (a warped version of the
source image) resembles as much as possible. Several of
the biological images that we deal with in this paper are nearly
binary (for instance, 2-D electrophoretic gels) and are not ap-
propriate for the use of histogram-based distance measures. In
this case, we prefer to measure the energy of the difference be-
tween the target image and the warped image as

(2)

From a practical point of view, it is more convenient to ap-
proximate the integral in (2) by a discrete sum. Moreover, when
masks are considered, we ought to concentrate our attention to
regions of interest within the source and target images. Let us
call and the regions of interest of the source
and target images, respectively. Then, we measure the dissimi-
larity between the warped source image and the target image by

#
(3)

where defines a mask
common to the source and target images, and where # is the
size of the mask in pixels. Notice that this dissimilarity measure
is sensible to linear transformations of the image gray values
and, hence, the deformation field found may be different if the
gray values in one of the images is transformed. To use this dis-
similarity measure it is suggested that both images are brought
to a common gray value framework using some normalization
procedure [38].

B. Image Representation

Notice that, in (3), the target image is always evaluated at
integer positions. However, this is not the case for the source
image which needs to be evaluated at possibly noninteger po-
sitions . For this reason, an interpolation scheme must be
specified. Cubic B-spline interpolation offers a good tradeoff
between accuracy and speed [18], [19]. For carrying out this in-
terpolation, we express the source image as

where is the B-spline of degree 3 and where the coef-
ficients are evaluated according to the least-squares fitting
technique described in [39]. is a parameter
controlling the degree of detail of the representation (smaller
values of provide more detailed representations).

C. Deformation Representation

Similarly to [12]–[14], we also express the deformation field
as a linear combination of B-splines

(4)

where and are scalars that control the degree of detail of
the representation of the deformation field and that need not
be a power of 2. Cubic B-splines constitute a Riesz basis of

and have a fourth order of approximation. Therefore, any
sufficiently regular deformation field can be represented with
vanishing error using a fine-enough scale. Moreover, by using
B-splines of degree 3, the continuity of the derivatives of the
deformation is guaranteed up to the second order. Specifically,
cubic splines have a fourth order of approximation, meaning
that the error between the true deformation and its spline
approximation is guaranteed to decay like with

and , where (Sobolev regularity) is
the maximal degree of differentiability of is the -sense
([40], Appendix A).

Another advantage of this model is that any affine transfor-
mation can be represented by our B-spline deformation [17].
The B-spline of degree 3 fulfills the partition of unity

, and several discrete-moment properties as
well, such as . These two prop-
erties ensure that

and that
. Thus, we can express any affine transformation

given by a matrix and by a translation
as

with

D. Landmarks

We make use of the landmark information in two different
ways: first, landmarks are used to impose soft constraints to the
deformation field; second, landmarks are used in the initializa-
tion stage as described in Section III-F. Soft constraints have
been chosen since the landmark position may be contaminated
by noise—in other words, trying to satisfy them exactly would
be inappropriate. A second reason for using soft landmarks is
that a situation can arise where they are distributed in such a
way that it is impossible to find a geometrical deformation in
the search space (see Section III-C) that completely satisfies all
correspondences.
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Let us assume that pairs of corresponding landmarks
, are available. Then, we handle

the soft landmark constraints by an energy term of the form

(5)

Taking (4) into account, this energy can be computed as

where and are column vectors with all the first and
second components, respectively, of the target landmarks, and
where is a matrix collecting the values of the B-splines of
the deformation model evaluated at the source landmarks.

E. Regularization

The smoothness of the deformation field is a useful regular-
ization term for the minimization problem, especially when little
information is available. The traditional regularization term is
based on the norm of the second derivative of each of the defor-
mation component separately [24]–[27], as in

(6)

There, is the total differential operator, is the square
of the second derivative of the function with respect to and

. This regularization term is related to the stress of a stretched
elastic material. Thin-plate splines are defined upon the mini-
mization of this energy [28]. This regularizing term treats each
component of the deformation field independently and is not
imposing a truly smooth condition to a vector field. The authors
of [29] studied the interpolation of wind velocity fields using
2-D vector splines and proposed the following two regularizing
terms that fully exploit the vectorial nature of the data:

(7)

where

represents the divergence of the 2-D vector field , and where

represents the length of the unique component of the curl of
, and where is the gradient of the scalar

function . The divergence of a vector field is related to the
existence in the vector field of sinks and sources, while the curl

is related to the rotation of a “differential twig” within the field
[41]. Therefore, the proposed regularization penalizes changes
in the local structure of the divergence and curl. However, it has
been shown in [29] that, for any two functions in the Beppo-
Levi space of order 2, the following relation holds,

Therefore, (6) is a special case of (7) when . This
regularization term has been successfully applied to a number of
landmark-only applications in image processing [10], [23], [30].
More precisely, when , then simplifies to

and all the terms in parenthesis cancel one another. It should be
noticed that this cancellation does not necessarily occur if the
integration domain is finite.

A first advantage of minimizing , which is a measure
of the true roughness of the deformation, is that it results in a
deformation that is truly smooth because it includes the cross
terms that were ignored in . A second advantage of this
regularization is that it gives the user more freedom to express
her a priori knowledge about the underlying deformation.

For instance, let us suppose that the underlying deformation
field takes the form ; then, we have that

. In this situation, it is desirable to put much
more weight on the regularization term based on the divergence
of the deformation field than on the one based on its curl.
We show in Section IV-A2 that this kind of regularization
is very appropriate for the correction of the “smile” effect in
electrophoresis.

Alternatively, we discuss now the converse case where it
is desirable to emphasize more than , which illustrates
the fact that other a priori structures can easily be introduced
through the regularization terms. For instance, we might know
that there are only horizontal deformations and that they are
more important as we go away from a vertical symmetry axis
situated at . Then, a good model for this deformation
would be and, consequently

Moreover, let us assume that our deformation is radially
isotropic (i.e., that it can be expressed in polar coordinates
as , where are the polar coordinates
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of the point , and where is the radial vector). Using the
corresponding polar formul\ae for the curl, divergence, and
gradient, one can show that

which suggests setting very large.
Since the deformation field is expressed in terms of B-splines,

the energy term (7) can be computed in a very efficient way.
Concentrating the evaluation of the roughness energy only in
the region where the target image is
defined, we observe that all integrals are of the form

where . Using (4), we show that

(8)

where and are column vectors with all the B-spline coef-
ficients corresponding to the deformation components and

respectively, is a matrix with all the products
in an appropriate

order, and

with

Since B-splines are piecewise polynomials, the integrals
can be precomputed exactly using closed formulæ. Therefore,
the evaluation of the roughness energy reduces to a sum of three
bilinear forms. Making and using (8), we
rewrite (7) as

(9)

We use this latter expression as regularizing term. Its compu-
tation is very fast and efficient since the matrices can be

precomputed. Furthermore, this expression allows an easy com-
putation of the derivatives of the regularization term, as will be
shown in Section III-I.

F. Landmark-Only Registration

To obtain that only the landmarks are used to register the two
images, we set in (1). Then, the optimal deformation
coefficients and can be computed analytically through the
equations . These two equations
yield a linear equation system characterized by ,
with and with

(10)

The matrix was introduced in Section III-D, while the ma-
trices were defined in Section III-E. The vector is a
column vector with all the first components of the target land-
marks in front, and then the second components of the target
landmarks.

This is the solution that best fits the landmarks for a given
number of deformation coefficients, while satisfying the regular-
ization constraints. This regularized landmark-only registration
generalizes some of the landmark-only registration algorithms
by explicit considering the smoothness constraints. We use
the landmark-only solution to initialize our iterative optimizer
(see Section III-H).

G. Multiresolution Strategy

As in other B-spline-based elastic-registration algorithms,
we perform the search of the deformation in a multiresolution
fashion. We start with the coarsest representation of the de-
formation field and the images. The optimization procedure
described in Section III-H is applied until convergence to
estimate the deformation field at this level. The optimizer is
first initialized by the analytical solution given in (10). Then,
the resolution in the deformation field and in the image is in-
creased until the finest levels of details are reached. To increase
the resolution in the deformation field, we use the expansion
operator described in [37]; this expanded deformation is then
used as initialization at the next stage.

H. Optimizer

We use an optimization algorithm that is inspired by the Lev-
enberg–Marquardt nonlinear regression [34]. This algorithm
achieves a gradual transition between quasi-Newton and gra-
dient-descent steps. The specific tradeoff depends on the good-
ness of a local model of the function being minimized. Briefly,
this method updates the deformation coefficients
in the iterative fashion , where is
the solution of the equation system .
There, is the gradient of the energy with respect
to the deformation coefficients evaluated at , and is a
modified version of the Hessian such that the component

, where is
Kronecker’s delta. When is large the step is more steepest-de-
scent-like while, for small values of , it is more Newton-like.
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is adaptively modified according to successes or failures of
to minimize the given energy.

The authors of [34] used a diagonal approximation to the true
Hessian based only on first derivatives of the energy function.
This is a fair approximation close to the minimum. However, the
procedure can benefit from a BFGS estimation of the Hessian
[35]. An advantage of the BFGS approximation to the Hessian
is that it is always positive semi-definite, which is a mandatory
requirement for the stability of a quasi-Newton optimization al-
gorithm. BFGS results in the following iterative approximation
to the Hessian:

where and . The Hessian estimate is
initialized by the diagonal approximation of [34] and is updated
only on successful estimates . For keeping the semi-
positive-definite quality of the estimate, this update can only be
performed if [42, Chapter 9].

I. Explicit Derivatives

Our optimizer makes extensive use of the derivatives of the
different energy terms. Since the images and the deformation
field are expressed in B-splines, these derivatives can be com-
puted exactly.

Data term: from (3), it can be easily shown that the deriva-
tive of with respect to any of the deformation coefficients
defining the first component of the deformation field is

where is the derivative of the source
image in the direction evaluated at the point . The
derivative with respect to one of the coefficients of the second
component of the deformation model is analog to this one.

Landmarks term: it can be easily shown that the derivatives
of the landmark energy (5) are given by

Regularization term: this term is computed as indicated by
(9). The derivatives of these bilinear forms are easy to compute
and yield

Fig. 1. Cartesian grid after a barrel deformation (left) and a pincushion
deformation (right) has been applied.

IV. RESULTS

We performed many experiments in order to test the ability of
our algorithm to correct for deformations. We present computer-
simulated experiments in Section IV-A, while we present real
cases in Section IV-B where we investigate the performance of
our method in the context of experimental 2-D electrophoretic
gels and confocal scanning microscopy images of fly embryos.

A. Controlled Data

1) Accuracy: We have tested the accuracy of our algorithm
by using computer simulations: an image is subjected to a
known deformation ; then, the registration algorithm is used
to restore the original image from the warped one. The defor-
mation given by the registration algorithm is . The accuracy
of this process is measured by the “warping index” defined as

. This figure of
merit is standard in the field [12], [34].

The true deformations were picked from a deformation space
that cannot be represented exactly by B-splines. The goal is to
test the algorithm performance in a challenging situation that
does not allow for an exact registration since this would bias
our estimate of the accuracy. In particular, the barrel/pincushion
distortion [43] was used. This is a distortion which is frequently
present in imaging devices such as cameras, light and electron
microscopes, monitors. If the input coordinate is normal-
ized to lie in , and if is the radius of its polar
expression in this coordinate system, then the output radius pro-
duced by the distortion is

The nature of barrel or pincushion deformation is given by the
signs of and . An identity transformation is provided by

.
We generated 30 random barrel/pincushion transformations

by adding zero-mean Gaussian noise with standard deviation
0.05 to and with standard deviation 0.025 to . We give
in Fig. 1 two deformation examples, while we show in Fig. 2
the test image used for the simulations. Our algorithm was used
with neither regularization nor landmarks

. The deformation pyramid had 2 levels, and the image
pyramid had 3 levels. (These level counts include the finest
level.) The initial warping index of the unregistered images was

pixel, and the final warping index (after registra-
tion) was pixel.

2) Regularization Versatility: Electrophoresis has de facto
become the standard procedure for separating proteins within



658 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 52, NO. 4, APRIL 2005

Fig. 2. Pine-needle cross section taken by optical microscopy. The size of this
image is 512� 512.

cells and tissues. A purified solution of proteins is injected into
a polyacrylamide gel. Then, proteins are separated according
to their mass by electrophoresis in the presence of SDS and
according to their electric charge by a pH gradient. Finally, a dye
is applied with a selective affinity toward specific components
of the proteins. The result is a bidimensional (mass and charge)
image where small spots reveal the presence of a protein with a
certain mass and charge in the initial solution. We show in the
left part of Fig. 3 an example of an electrophoretic gel.

A common deformation in gel electrophoresis is known as
the “smile effect” (dye-front deformation, [44]). After the coor-
dinates have been normalized to lie in , its simplified
deformation model is given by

where is a global scale-reduction factor on the vertical direc-
tion, and where is the maximum deformation in the middle
of the image. For this deformation, and

. We give in the right part of Fig. 3 an
example of this deformation with a factor reduction of 5% and a
maximum central shift of 14%. (These deformation parameters
are typical for comparing different image registration methods
for 2-D gels [45].) The unregularized problem converges to an
unsatisfactory solution. The problem is that the resulting defor-
mation field is not regular, as can be seen in Fig. 4. Further-
more, we were unable to produce a satisfactory solution if we
restricted ourselves to enforce . However, successful
unwarping is achieved with and (with
and ). The deformation pyramid had 2 levels, and the
image pyramid had 3 levels. We report in Fig. 5 the evolution
of the measure of dissimilarity , along with the number of
iterations for the unregularized and the regularized solution.

3) Landmark Usefulness: Most of the works in elec-
trophoresis image registration is based on landmark matching
or spot matching [7], [11], [46]–[49]. On one hand, matching
spots is a more complex problem than matching landmarks
since their correspondence is unknown and since the number

Fig. 3. Pair of corresponding 2-D gels related by a “smile” transformation.
The image on the left is unprocessed data, while the image on the right was
simulated.

Fig. 4. Left: Deformation field of the unregularized registration of the 2-D gel
shown in Fig. 3. Right: True deformation field.

Fig. 5. Plot of the measure of dissimilarity versus the number of iterations for
the unregularized and regularized registration of the 2-D gel shown in Fig. 3.

of spots in both images may differ. On the other hand, the spot
extraction can be done fully automatically while landmarks
require user input.

To the best of our knowledge, the only registration methods
that work directly on the electrophoretic image information can
be found in [33] and [50]–[52]. The method in [50] solves a dif-
ferential equation for the transformation field after smartly de-
riving an image formation model. The method in [33] can also
handle landmarks, image intensities and a regularization term.
The elastic transformation field is not parametrized and the reg-
ularization term is based on its quadratic energy. The methods
in [51], [52] produce a piecewise-bilinear mapping. In [51], the
grid is generated by a Delaunay triangulation, while a regular
grid is deformed to adapt to the image characteristics in [52].
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Fig. 6. Plot of the measure of dissimilarity versus the number of iterations for
the regularized and regularized+landmarks registration of the 2-D gel shown in
Fig. 3.

None of these two algorithms benefits from landmarks or from
regularization in the optimization process, a limitation that we
overcome with the algorithm proposed in this paper.

In our algorithm, the main effect of the landmark contribution
is to accelerate the convergence process substantially, as can be
seen in Fig. 6 for the “smile” distorted image of Fig. 3. In this
example, we interactively provided four landmarks, one on each
quadrant of the image; the landmark weight was .

Although our algorithm is capable of combining landmarks
and image data, some approaches work with landmarks only. In
the next experiment, we adjust the number of perfect landmarks
necessary to achieve about the same registration accuracy as
when the data term is included in the minimization problem.
We generated 30 random “smile” deformations. The reduction
factor was uniformly distributed between 0% and 5%, while the
maximum central shift was uniformly distributed between 0%
and 15%. The deformation field was always represented with
4 4 grid points.

For the experiment taking into account the content of the
images, we put a random landmark in each of the four image
quadrants. To simulate the uncertainty on the landmarks when
they are manually selected, we added random Gaussian noise
with zero mean and standard deviation 1 pixel to the and
components of each of these four landmarks. The deformation
field had two pyramid levels, and the image pyramid three. The
weights of the data term and the landmarks were both set to

, while the weight of the regularizing term based
on the divergence was set to . We show the achieved ac-
curacy in the first line of Table I. The initial warping index for
this experiment was .

For the landmark-only experiments (remaining lines of
Table I), we generated random landmarks. The first four
landmarks were distributed as described for the previous
experiment, while the rest of the landmarks were randomly
distributed all over the image. No noise was added to the
landmark positions, assuming that the automatic landmark-se-
lection algorithm performed a perfect job. We conducted two
experiments: one with regularization ,
and another one without regularization, discounting the implicit
regularization present in the 4 4 B-spline-based deformation
model . We show in Table I the achieved
accuracy and the number of landmarks needed so that the

TABLE I
FINAL WARPING INDEX $ WHEN THE IMAGE INFORMATION IS CONSIDERED

(w 6= 0) AND THE PROBLEM IS REGULARIZED (w 6= 0), WHEN THE IMAGE

INFORMATION IS DISREGARDED (w = 0) BUT THE PROBLEM IS STILL

REGULARIZED, AND WHEN BOTH IMAGE DATA AND REGULARIZATION ARE

IGNORED (LANDMARK-ONLY, w = w = w = 0). IN EACH CASE, N
LANDMARKS ARE ALWAYS CONSIDERED (w 6= 0)

Fig. 7. Plot of the measure of dissimilarity versus the number of iterations for
a 5 rotation of the pine image in Fig. 2 using the Hessian estimation proposed
in [34] and the BFGS estimate proposed in this article.

hypothesis that the average final warping index is the same for
the three experiments cannot be rejected with a confidence of
99%.

4) Hessian Estimate: We now compare the effect of the Hes-
sian estimate proposed in [34] to that of the Hessian estimate
provided by BFGS. To perform this comparison, we registered
a rotated version (5 ) of the pine-needle image of Fig. 2 with
the same image without rotation. We did not take benefit of
multiresolution in this experiment; also, we set (land-
mark-less registration) and . We show in Fig. 7
the value of the measure of dissimilarity as a function of the it-
eration number.

B. Experimental Data

1) Electrophoretic Gels: We applied our registration algo-
rithm to the alignment of experimental 2-D electrophoretic gels.
We performed experiments in which we used pair of images
such as those in Fig. 8. These images represent the protein con-
tent of a solution under different biological conditions. The main
difference with respect to the experiments of Section IV-A is
that the images in a pair do not show the same information
since it is in their very difference that the useful information
lies. In other words, we are interested to know which proteins
are present in one gel and absent from the other.

To preprocess the images, we compensated for background
inhomogeneities by using a rolling ball of size 50 pixel [53].
The registration conditions were , and

. We show in Fig. 8 the resulting registered
image, the initial difference image, the final difference image,
and the deformation field. The algorithm was also tested on
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Fig. 8. From top to down, left to right: target image, source image, registered
image, recovered deformation field, difference image before registration,
difference image after registration.

many other pairs of images in collaboration with the Swiss In-
stitute of Bioinformatics at Geneva. The expert evaluation of the
registered images was quite positive in all cases.

2) Confocal Scanning Microscopy: The ability to visualize
and quantify molecules in cells with high spatial and temporal
resolution is essential for understanding biological systems. Re-
cently, this has become possible due to the advent of confocal
scanning microscopy and fluorescent labeling of proteins and
RNA. In the present application, the aim is to study the spa-
tial distribution of the genomic regulatory network that coordi-
nates patterns of gene expression, the cell-type specification and
tissue differentiation during the evolution of the embryo can be
analyzed.

We applied our algorithm to the registration of the confocal
scanning microscopy images of Drosophila melanogaster em-
bryos published in [54]. These images are instrumental in the
study of the segment differentiation in insects during the zygote
development, and of the identification of the genomic regulator
that causes it.1 These images reveal the expression patterns of

1The Department of Computational Biology at the Center for Advanced
Studies of Saint Petersburg State Polytechnical University holds a database
with hundreds of images of fly embryos at different developmental stages. Our
algorithm helps to build accurate bidimensional genomic maps of the embryos
at each stage.

three genes, each one stained with a different fluorescent dye,
as illustrated in the upper part of Fig. 9. Each gene is acquired
with a different color. By experimental design, one of the genes
remains the same in all embryos; the successful registration of
this gene allows the co-registration of the other two for each fly.
Hence, the registration algorithm must be performed on one of
the color channels and must be applied to the other two.

After registering all embryos, a precise map of the gene ex-
pression can be built. To proceed with registration, we set

, and . The deformation pyramid had
2 levels, while the image pyramid had 3. We illustrate in Fig. 9
the expression pattern of the eve gene of two embryos, the reg-
istered image, the initial difference image, the final difference
image, and the deformation field. This is the first attempt reg-
istering this data in two dimensions; previous approaches were
always unidimensional.

V. DISCUSSION

B-spline-based deformation models reach a high accuracy
when correcting for random deformations generated using
wavelets [12]. They are also suitable for the type of deforma-
tions encountered with Magnetic Resonance Imaging [14]. In
the present work, we have successfully extended their use to
other applications as well: barrel/pincushion distortions and
dye-front curvature (“smile” effect) in electrophoresis. Despite
the fact that none of these deformations belongs to the func-
tional space spanned by the B-spline deformation model, we
obtain subpixel accuracy in both cases. The average warping
index in all the simulations was below a tenth of a pixel.

Landmarks play a central role in registration of images with
low information content, with large deformations, or when the
information is unevenly distributed. In the presence of point-
wise landmarks, one purpose of regularization is to provide a
recipe to help determine the deformation in the area between
them. Several authors have already pointed out that the regu-
larization framework introduced in [29] is particularly useful in
image registration [10], [23], [30]. Among the approaches using
B-splines, the explicit use of landmarks was considered only in
[12] and [55]. We have extended that work by introducing an ini-
tialization of the optimization process that takes into account the
regularization constraints. This initialization is the optimal solu-
tion to the landmark regularized registration problem within our
space of admissible deformations. We have given efficient for-
mulæ for its computation in terms of the B-spline coefficients.

This regularization scheme offers new opportunities to incor-
porate a priori knowledge. For instance, we have proposed plau-
sible deformation models for which the regularizing weights
clearly depart from those that would emulate the more tradi-
tional Laplacian-based regularization. A priori knowledge is a
key piece of information in the registration of images with a low
information content.

The landmark-only registration problem becomes even more
difficult when the correspondence between landmarks is un-
known, as is the case with 2-D-gel spot matching. We showed
in Table I that part of the problem comes from the necessity of
using a high number of landmarks if high registration accuracy
is to be achieved without data term (the information contained
in the image itself). However, if the 2-D gel itself is used as in-
dicated in [52], and as in our own experiments, then the number
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Fig. 9. From top to down, left to right: confocal scanning image of a sample embryo, target image, source image, registered image, recovered deformation field,
difference image before registration, difference image after registration.

of landmarks can be strongly reduced. We also showed that if
the image term is ignored, then our a priori knowledge about
the nature of the deformation may account for as much as one
half of the number of needed landmarks.

Contrary to most medical images, it often happens in the
context of biological images that extended image regions bear
no relevant information (e.g., gaps between spots in an elec-
trophoretic gel). For these images, a registration method based
on image-only contributions fails to achieve sufficient robust-
ness, while too many landmarks are required for a landmark-only
registration method to be serviceable. A combination of land-
mark terms and of other contributions that depend directly on
the image data allows us to fill the gap between fully automatic
and fully interactive registration. Generally speaking, the reg-

istration algorithm is not very sensible to the choice of the
free parameters , and when enough information
is supplied to the algorithm. For instance, some experiments
were carried out to find the deformation field between two
images when one of them was a 20 rotated version of the
other (results not shown). If no landmark was provided, the
transformation was found only for very few combinations of the
regularization weights. However, if a couple of landmarks was
given or the rotation was smaller (in this case, the pixel values
have enough information to drive the minimization), then the
choice of the relative weights was not that consequential. To
facilitate the exploration of these tradeoffs, we have developed
a Java plugin for the platform-independent, public-domain soft-
ware ImageJ which is particularly rich in tools for processing
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images, including those of electrophoretic gels. The plugin is
freely available from our website http://bigwww.epfl.ch/. The
computation time of the algorithm depends on the image size,
the image content, the information provided by the landmarks
and the regularization, but times between 45 s and 150 s should
be expected for images of size 512 512 pixels on a Pentium
IV 1.2 GHz.

We have also introduced the combined use of the optimization
algorithm proposed by [34] with the BFGS Hessian estimator.
This combination greatly enhances the performance of the opti-
mizer while benefitting from its balance between quasi-Newton
steps when the Hessian provides useful information for the min-
imization and steepest-descent steps when it does not.

The extension of this algorithm to three–dimensional (3-D)
could use the same objective function as in (1) since all its terms
are well-defined for 3-D deformation fields. The computation of
the regularization term and its derivatives would be much more
complicated, although thanks to the B-spline representation of
the deformation field it would also result in a quadratic form.
Therefore, the computation of the deformation field in the land-
mark-only registration case would still be valid as well as the
optimizer for the full registration problem.

The application to experimental images of 2-D gels and of fly
embryos showed its applicability to real biological problems.
The evaluation of the registration results by experts in those
respective fields favors our algorithm versus current standard
approaches. Further collaborations are underway to produce
biologically significant results in both applications.
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