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Computational Super-Sectioning for Single-Slice
Structured-Illumination Microscopy

Emmanuel Soubies and Michael Unser , Fellow, IEEE

Abstract—While structured-illumination microscopy (SIM) is
inherently a three-dimensional (3-D) technique, many biological
questions can be addressed from the acquisition of a single focal
plane with high lateral resolution. Unfortunately, the single-slice
reconstruction of thick samples suffers from defocusing. In this
paper, however, we take advantage of a 3-D model of the acqui-
sition system to derive a reconstruction method out of a single
two-dimensional (2-D) SIM measurement. It enables the estima-
tion of the out-of-focus signal and improves the quality of the re-
construction, without the need of acquiring additional slices. The
proposed algorithm relies on a specific formulation of the opti-
mization problem together with the derivation of computationally
efficient proximal operators. These developments allow us to de-
ploy an efficient inner-loop-free alternating-direction method of
multipliers (ADMM), with guaranteed convergence.

Index Terms—Structured-illumination microscopy, super-
resolution, reconstruction algorithms, inner-loop-free ADMM,
proximal operators.

I. INTRODUCTION

S TRUCTURED-ILLUMINATION microscopy (SIM) of-
fers an excellent tradeoff between spatial and temporal res-

olution for fluorescence microscopy. In its conventional form,
sinusoidal illuminations—formed out of two (2D-SIM [1], [2]),
sometimes three (3D-SIM [3]–[5]) interfering laser beams—are
used to excite fluorescent probes. This procedure shifts the high-
frequency components of the imaged structure to the bandpass
of the microscope. These components can then be numerically
recovered and shifted back to their correct location to produce
an image with twice the resolution of conventional systems.
This twofold resolution enhancement can also be obtained us-
ing speckle illuminations [6] and, theoretically, unlimited reso-
lution can even be achieved from nonlinear SIM [7], such as the
saturated-SIM that was originally introduced in [8], [9].

A. Related Work on SIM Reconstruction

With conventional 2D sinusoidal illumination, the spectrum
of the acquired image is a linear combination of three shifted
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versions of the imaged structure spectrum. Moreover, varying
the phase of the illumination grating allows to change the co-
efficients of this linear combination. Hence, pioneering works
[1], [2] were extracting these unknown components through the
resolution of a linear system formed out of three acquisitions
with different phases. Then, a generalized Wiener filter was
used to assemble these components, yielding a single super-
resolved image with extended frequency information. We refer
the reader to [10] for a detailed description of this reconstruction
approach. Because of its simplicity and speed, this direct method
is currently the most used in practice, especially on commercial
systems. Non-direct, iterative approaches have the potential to
significantly improve the reconstruction quality and robustness
of direct approaches. In particular, the use of sparsity-promoting
regularization can produce high-quality reconstructions from a
limited amount of measurements. To the best of our knowledge,
Orieux et al. [11] were the first to report a variational approach
for SIM microscopy. Several other works have then promoted
these methods [10], [12]–[18].

Recently, various open-source softwares have been developed
for SIM reconstruction. Those include FairSIM [19], Open-
SIM [20], and Simtoolbox [21], [22]. They all implement the
classical direct method together with a maximum a posteriori
(MAP) estimation for Simtoolbox. While they are limited to
2D-SIM reconstruction, they can still perform slice-by-slice re-
constructions with computational sectioning1 improvement. For
instance, FairSIM handles out-of-focus signal through attenua-
tion of the optical-transfer function (OTF). Simtoolbox merges
reconstructions obtained by homodyme detection [23], [24] for
computational sectioning and MAP estimation to enhance the
lateral resolution, as in [25]. Finally, an alternative method pro-
posed by Jost et al. [26] considers a few additional planes during
the reconstruction process in order to collect out-of-focus light.
This method is called thick-slice SIM reconstruction and bridges
2D and 3D-SIM reconstruction. For more details about SIM lit-
erature, we refer the reader to the review paper by Heintzmann
and Huser [27].

B. Contributions and Road Map

This paper builds upon the prior work [26] and its thick-slice
reconstruction algorithm. The proposed method extends this
work with a new reconstruction algorithm that improves speed

1Optical sectioning capitalizes on optical means to obtain better sections of
the sample. Computational sectioning deploys computational methods to reach
the same goal, typically by rejecting out-of-focus light algorithmically.
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and that offers new regularization opportunities (e.g., sparsity-
based). Our main contribution is an efficient inner-loop-free
alternating-direction method of multipliers (ADMM) [28]. It
derives from a specific formulation of the optimization problem
(Section III-B), together with a closed-form proximal opera-
tor provided in Theorem III.1. The convergence of the algo-
rithm is guaranteed in Proposition III.3. Moreover, we show
that the proposed algorithm is significantly faster than compet-
ing algorithms (Section IV-A). Finally, we validate the proposed
framework (thick-slice model and ADMM) on simulations and
real data, and compare it to the open-source FairSIM software
(Sections IV-B and IV-C). In particular, we emphasize the abil-
ity of our method to reject out-of-focus light by virtue of the
additional reconstruction planes. We also show that our com-
putational super-sectioning SIM reconstruction of single-slice
data compares favorably to reconstructions that capitalize on the
availability of full 3D-SIM acquisitions.

C. Notations

Scalar and continuously defined functions are denoted by
italic letters (e.g., x ∈ R, f ∈ L2(R)). Vectors are denoted by
bold lowercase letters (e.g., f ) and matrices (i.e., discrete linear
operators) by bold uppercase letters (e.g., H). Given a col-
umn vector x = [x1 · · · xN ]T ∈ RN , its p-norm is defined as
‖x‖p = (

∑N
n=1 |xn |p)

1
p . For an operator H ∈ RM ×N , ‖H‖ =

σmax(H) denotes its spectral norm, which is equal to its largest
singular value. The adjoint of an operator H ∈ RM ×N is de-
noted by H∗ and verifies 〈Hx,y〉RM = 〈x,H∗y〉RN , where
〈·, ·〉RM (〈·, ·〉RN , respectively) is the usual scalar product in
RM (RN , respectively). The set of nonnegative vectors of RN

is denoted by RN
≥0 = {x ∈ RN : xn ≥ 0, ∀n = 1, . . . , N}.

For a vector v ∈ RN , diag (v) ∈ RN ×N defines the diago-
nal operator whose diagonal entries are given by the elements of
v. The notation 1N = [1 · · · 1]T ∈ RN (0N = [0 · · · 0] ∈ RN ,
respectively) stands for a vector of ones (zeros, respectively).
Then, IN = diag (1N ) ∈ RN ×N is the identity operator of
size N . We write the N -point unitary discrete Fourier trans-
form (DFT) as FN ∈ CN ×N . It is defined by2 [FN x]k =

1√
N

∑N
n=1 xne−

2 iπ
N kn and verifies F∗

N FN = FN F∗
N = IN . Fi-

nally, ⊗ denotes the Kronecker product, � the Hadamard prod-
uct, and, for x ∈ R, �x
 is the greatest integer that does not
exceed x.

II. VARIATIONAL FORMULATION OF THE INVERSE PROBLEM

In order to solve an inverse problem, one has to (i) model the
acquisition process; (ii) formulate the reconstruction problem
using an adequate regularization; (iii) deploy an efficient opti-
mization strategy. In this section, we describe the first two steps
for structured-illumination microscopy.

2The extension to higher dimensions is straightforward by separability of the
Fourier transform.

A. Image Formation Model in 2D-SIM

A 2D SIM acquisition y ∈ RM (with M = M1M2) can be
described by

ym = (h ∗ (wf)) (xm , zfp ) + nm , (1)

for all m ∈ {1, . . . , M}. Here f ∈ L2(R3) is the (3D) biological
sample (fluorophores density map), w ∈ L2(R3) is the illumi-
nation grating, h ∈ L2(R3) is the point-spread function (PSF)
of the optical system, {xm ∈ R2}M

m=1 is the list of camera sam-
pling points, zfp denotes the focal plane position, and n ∈ RM

is a random disturbance (noise vector).
Model (1) maps the 3D continuously defined object f to the

2D discrete measurements y. Then, to numerically solve the
SIM reconstruction problem, one has to discretize the object f .
The standard practice [10]–[12] is to define a 2D discrete version
of f at focal plane, i.e., f ∈ RN with N = N1N2 such that fn =
f(xn , zfp) and {xn ∈ R2}N

n=1 . In contrast, we consider in this
work P lateral sections (2D) of f with positions {zp}P

p=1 , so that
f = [fT

1 · · · fT
P ]T ∈ RN P and [fp ]n = f(xn , zp). Accordingly,

the discrete version of (1) reads

y =
P∑

p=1

SHpdiag (wp) fp + n, (2)

where Hp ∈ RN ×N is a discrete convolution operator whose
kernelhp ∈ RN is the sampled version of h(·, zp) andwp ∈ RN

is the sampled version of w(·, zp). Finally, S ∈ RM ×N is a
decimation operator with a downsampling factor of two in each
dimension (i.e., 2M1 = N1 and 2M2 = N2). This is required
because we aim at doubling the lateral resolution. Hence, for
data acquired at Nyquist rate, the reconstruction grid needs to
be twice finer than the acquisition grid.

To simplify the notations, we introduce the vector w = [wT
1

· · · wT
P ]T , as well as the operators

H = [H1 · · · HP ], W = diag (w) . (3)

Model (2) can then be rewritten in the compact form

y = SHWf + n. (4)

An illustration of this model is presented in Fig. 1.
It is noteworthy that this model is generic, in the sense that it

can cope with any illumination pattern (e.g., purely sinusoidal
[1], [2], [5], speckle [29], grid of lines [30], and nonlinear [7],
[8]). Because several acquisitions are needed to reconstruct the
sample, we denote by {Wl}L

l=1 the operators associated to the
L illumination patterns that lead to the acquisitions {yl}L

l=1 .

B. A Large-Scale Optimization Problem

Following the standard practice, we consider the optimization
problem

f̂ ∈
{

arg min
f∈RN P

(
L∑

l=1

Dl(f ,yl) + μR(Lf) + i�0(f)

)}

, (5)

where the objective lets the tradeoff between fidelity to data
and regularization be controlled by the parameter μ > 0. In this
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Fig. 1. Illustration of the forward model (4). The notation ↓ 2 denotes a
downsampling by a factor of two. In this example, two-dimensional patterns are
used (i.e., w in (1) is constant along z). Hence, all the {wp }P

p=1 are identical.
However, Model (4) is more general and can be used with patterns that vary
along z.

work, we consider the least-squares data-fidelity term

Dl(f ,yl) =
1
2
‖SHWlf − yl‖2

2 . (6)

In (5), the problem is regularized using the combination of the
nonnegativity constraint

i�0(f) =
{

0, if f ∈ RN P
�0

+∞, otherwise
(7)

with the sparsity-promoting convex functional R : RK → R
composed with the linear operator L ∈ RK×N . A popular reg-
ularizer is the total-variation (TV) norm [31] obtained by com-
posing the (�2 , �1)-mixed norm R = ‖ · ‖2,1 with the gradient
operator L = ∇ (see Appendix B-A). In the present paper, we
use instead the Schatten-norm (of order 1) of the Hessian opera-
tor (R = ‖ · ‖S1 and L = He , see Appendix B-B) which avoids
the staircasing effect of TV [32] and is thus better suited to
biological samples.

III. INNER-LOOP-FREE ADMM

The field of convex optimization has experienced an im-
portant development during the past two decades. This offers

Algorithm 1: ADMM [28] for Minimizing (8).

Require: f 0 ∈ RN , (ρq )q∈{1,...,Q} ∈ RQ
�0

1: u0
q = Af 0 , ∀q ∈ {1, . . . , Q}

2: v0
q = u0

q , ∀q ∈ {1, . . . , Q}
3: k = 0
4: while (not converged) do
5: uk+1

q = prox 1
ρ q

Fq

(
Aq f k − vk

q

)
, ∀q ∈ {1, . . . , Q}

6: f k+1 =
(∑Q

q=1 ρqA∗
qAq

)−1 (∑Q
q=1 ρqA∗

q

(uk+1
q + vk

q )
)

7: vk+1
q = vk

q − (Aq f k+1 − uk+1
q ), ∀q ∈ {1, . . . , Q}

8: k = k + 1
9: end while

several possibilities for solving (5). Because the objective func-
tion is the sum of three terms that involve non-smooth function-
als such as i�0 and possibly R, a possible approach is to use
splitting-based algorithms. These include ADMM [28], [33] or
primal-dual proximal algorithms [34]. In this work we consider
ADMM.

A. ADMM Principle

ADMM is designed to minimize cost functions of the form

J (f) =
Q∑

q=1

Fq (Aq f), (8)

where {Aq ∈ RNq ×N }Q
q=1 are linear operators and {Fq : RNq

→ R}Q
q=1 are convex functions for which one can efficiently

evaluate the proximal operator [35]

proxFq
(z) = arg min

f∈RN

(
1
2
‖f − z‖2

2 + Fq (f)
)

. (9)

Introducing the auxilliary variables {uq = Aq f}Q
q=1 , we ob-

tain a constrained optimization problem which admits the
augmented Lagrangian formulation

L(f ,u,v) =
Q∑

q=1

(
Fq (uq ) + 〈vq ,Aq f − uq 〉

+
ρq

2
‖Aq f − uq‖2

2

)
. (10)

ADMM alternates between a minimization of L with respect to
f , a minimization of L with respect to {uq}Q

q=1 , and an update

of the dual variables {vq}Q
q=1 . The iterations are summarized in

Algorithm 1. The parameters {ρq}Q
q=1 are the Lagrangian muti-

pliers. When Q > 2 (i.e., the objective has more than two terms),
this algorithm is termed as simultaneous-direction method of
multipliers (SDMM) [36], [37].

The computational burden of Steps 5 and 6 in Algorithm 1
is directly related to the splitting strategy. Hence, to reduce the
cost within each ADMM iteration, the optimal splitting is the
one for which Steps 5 and 6 admit a closed-form solution.
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Fig. 2. Effect of the periodization operator P and its adjoint P∗.

B. Problem Reformulation and Proposed Splitting Strategy

There exists different ways of splitting Problem (5) to deploy
ADMM for its minimization. The simplest solution is to set

Fl =
1
2
‖ · −yl‖2

2 , Al = SHWl , ∀l ∈ {1, . . . , L}, (11)

FL+1 = μR, AL+1 = L, (12)

FL+2 = i�0 , AL+2 = I, (13)

which we call full-splitting (FS). With this choice, the proximal
operator required at Line 5 of Algorithm 1 admits a closed-form
expression. However, the main limitation of this splitting lies in
Step 6 of Algorithm 1. Indeed, it requires to invert the matrix

BFS =
L∑

l=1

ρlW∗
l H

∗S∗SHWl + ρL+1L∗L + ρL+2I, (14)

which cannot be done in a direct way. Hence, one would need
to use an inner iterative procedure. This drawback was one of
the motivations of the authors in [12] for using the primal-dual
proximal method [34], rather than ADMM.

However, we now show that it is possible to derive a more
efficient inner-loop-free ADMM for the resolution of (5).

Let us first introduce the following alternative splitting

Fl =
1
2
‖SH · −yl‖2

2 , Al = Wl , ∀l ∈ {1, . . . , L}, (15)

FL+1 = μR, AL+1 = L, (16)

FL+2 = i�0 , AL+2 = I. (17)

The difference with the aforementioned full-splitting lies in
equation (15). From Line 5 of Algorithm 1, one can see that
this modification entails the need to evaluate the proximal op-
erator of γ

2 ‖SH · −y‖2
2 . We provide a closed-form expression

for the latter in Theorem III.1.
Theorem III.1: Let S ∈ RM ×N be a uniform downsampling

operator and H be the convolution operator defined by (3). Then,
the proximal operator of g = γ

2 ‖SH · −y‖2
2 (for γ > 0) admits

the closed-form expression

proxg (z) = F∗
(
I − γ

d
Λ∗PD−1P∗Λ

)
Fr. (18)

where d = N/M and
� r = z + γH∗S∗y,
� F = IP ⊗ FN ,
� D = I + γ

d diag (P∗ΛΛ∗1N ),
� Λ = [Λ1 · · · ΛP ] is such that H = F∗

N ΛF,
� P∗ is the adjoint of the periodization operator P = 1d ⊗

IM ∈ RN ×M (see Fig. 2).
The proof is provided in Appendix A-B.

Remark III.1: For P = 1, Theorem III.1 retrieves a result
of [38]. However, while the proof in [38] relies on the study of
the operator FN S∗SF∗

N , we use here a result concerning the
operator SHH∗S∗ (see Lemma A.3), which yields a shorter
proof.

Then, with the proposed splitting strategy, the matrix to invert
at Step 6 of Algorithm 1 becomes

B =
L∑

l=1

ρlW∗
l Wl + ρL+1L∗L + ρL+2I. (19)

Although this matrix allows for faster matrix-vector products
than BFS in (14), its inversion still requires an inner iterative
procedure. To sidestep this bottleneck, we propose hereafter
an alternative and equivalent formulation of (5) that makes B
directly invertible in the Fourier domain.

Definition III.2: We define N�0 as the set of linear operators
T ∈ RN ×N that preserve the set RN

�0 and its complement in
RN . In other words, T ∈ N�0 if and only if

Tf ∈ RN
�0 ,∀f ∈ RN

�0 (20)

Tf ∈ RN \RN
�0 ,∀f ∈ RN \RN

�0 . (21)

Proposition III.2: For any functional J : RN → R and T ∈
N�0 , we have that

arg min
f∈RN

J (f) + i�0(f) = arg min
f∈RN

J (f) + i�0(Tf). (22)

Proof: The proof is straightforward since, for all T ∈ N�0 ,
i�0(·) = i�0(T·). �

Following Proposition III.2, we reformulate Problem (5) as

f̂ ∈
{

arg min
f∈RN P

(
L∑

l=1

Dl(f ,yl) + μR(Lf) + i�0(Tf)

)}

,

(23)
where

T =

(

αIN −
L∑

l=1

W∗
l Wl

) 1
2

, (24)

with α > ‖∑L
l=1 W∗

l Wl‖ to ensure that T ∈ N�0 . In prac-
tice, we normalize the illumination patterns such that ‖∑L

l=1
W∗

l Wl‖ = 1 and we set α = 2.
Then, we replace the third splitting in (17) by

FL+2 = i�0 , AL+2 = T. (25)

Setting ρl = ρL+2 = ρD > 0, ∀l ∈ {1, . . . , L}, and ρL+1 =
ρR > 0, the linear step of ADMM now amounts to inverting
the matrix

B̃ =
L∑

l=1

ρDW∗
l Wl + ρRL∗L + ρDT∗T

(24)
=

ρRL∗L + ρDαI. (26)

When L is the gradient or the Hessian operator (with peri-
odic boundary conditions), L∗L is a convolution operator (see
Appendix B) and (26) is inverted easily at the cost of one FFT
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Algorithm 2: Proposed Inner-Loop-Free ADMM for the
Minimization of (23).

Require: f 0 ∈ RN , ρD > 0, ρR > 0, α >‖∑L
l=1W

∗
l Wl‖

1: u0
l = Wlf 0 , ∀l ∈ {1, . . . , L}

2: u0
L+1 = Lf 0

3: u0
L+2 = f 0

4: v0
l = u0

l , ∀l ∈ {1, . . . , L + 2}
5: k = 0
6: while (not converged) do
7: for l = 1 . . . L do
8: uk+1

l = prox 1
2 ρ D ‖SH ·−y l ‖2

2

(
Wlf k − vk

l

)

9: end for
10: uk+1

L+1 = prox μ
ρ R R

(
Lf k − vk

L+1

)

11: uk+1
L+2 = prox 1

ρ D i�0

(
Tf k − vk

L+2

)

12: b = ρRL∗ (
uk+1

L+1 + vk
L+1

)
+ ρDT∗

13:
(
uk+1

L+2 + vk
L+2

)
+

∑L
l=1 ρDW∗

l(
uk+1

l + vk
l

)

14: f k+1 = (ρRL∗L + ρDαI)−1 b
15: vk+1

l = vk
l − (Wlf k+1 − uk+1

l ), ∀l ∈
{1, . . . , L}

16: vk+1
L+1 = vk

L+1 − (Lfk+1 − uk+1
L+1)

17: vk+1
L+2 = vk

L+2 − (Tf k+1 − uk+1
L+2)

18: k = k + 1
19: end while

and one iFFT. Hence, we obtain an inner-loop-free ADMM,
which is summarized in Algorithm 2.

C. Algorithm Complexity

We briefly discuss the complexity of one iteration of our
modified ADMM. Line 8 in Algorithm 2 requires L evalua-
tions of the proximal operator given in Theorem III.1. It cor-
responds to applying LP Fourier transforms of size N and
as many inverse Fourier transforms, yielding a complexity of
O(2LPN log(N)). Then, the complexity of steps 10 and 11 is
generally linear (with classical regularizers R(L·) such as TV
or Hessian-Schatten). It is thus negligible compared to step 8.
Finally, the linear step in Line 14 is computed in the Fourier
domain at the cost of one Fourier transform and one inverse
Fourier transform of size NP , which corresponds to a com-
plexity of O(2NP log(NP )). The overall complexity of one
iteration is thus O(2NP (L log(N) + log(NP ))).

D. Convergence Analysis

We prove the convergence of our inner-loop-free algorithm
in Proposition III.3.

Proposition III.3: Assume that (
⋂L

l=1 ker(SHWl)) ∩ ker
(L) = {0N } and that R is coercive. Then, Algorithm 2
converges to a solution of (23) and, thus, to a solution of (5).

Proof: The functions Fl , l ∈ {1, . . . , L + 2}, (defined by
(15), (16), and (25)) are proper, closed, and convex (by defini-
tion for R). This implies the same properties for the objective

function in (23). Moreover, the latter is also coercive because R
is coercive and (

⋂L
l=1 ker(SHWl)) ∩ ker(L) = {0N }. Hence

its set of minimizers is nonempty [39, Theorem 2.5.1 (ii)].
Then, because the identity matrix IN has a full rank, G =
[Wl · · · WL LIN ]∗ has also a full rank. This property, com-
bined with the fact that all steps in Algorithm 2 are solved
exactly by our new formulation of the problem, guarantees the
convergence of the algorithm to a solution of (23) using [40,
Proposition 1]. �

The assumptions in Proposition III.3 are generally satisfied.
For instance, considering the TV regularizer, R is coercive and
the first assumption reduces to 1N /∈ (

⋂L
l=1 ker(SHWl)). This

is always satisfied because the patterns are nonzero and H is a
lowpass filter in SIM.

IV. VALIDATION OF THE PROPOSED METHOD

In this section, we present a series of numerical experi-
ments that are dedicated to the evaluation of several aspects
of our reconstruction method. First, we study the efficiency of
Algorithm 2 in terms of convergence speed, and compare it to
other algorithms that minimize the same objective. Then, using
simulated data, we evaluate the ability of the proposed method to
reject the out-of-focus signal (within the additional planes that
are considered in the model). Finally, we present reconstruction
results on real data and compare them to those obtained by the
open-source FairSIM software, as well as to the corresponding
plane of a full 3D SIM-reconstructed volume.

A. Efficiency of the Proposed Inner-Loop-Free ADMM

Fig. 3 depicts the empirical convergence of the objective func-
tion in (23) for the proposed inner-loop-free ADMM. We also
provide the corresponding curves for ADMM with full-splitting
(FS) (i.e., equations (11)–(13)) and for the primal-dual algo-
rithm [34] with the splitting strategy proposed in [12]. We refer
the reader to [12] for details. All methods are implemented with
the GlobalBioIm library [41]. Algorithm parameters (i.e., La-
grangian multipliers ρ for ADMM and τ for the primal-dual
method3) have been tuned empirically in order to get the fastest
convergence. For ADMM with FS, inner conjugate-gradient
(CG) [42] iterations are required to solve the linear step. One can
observe that performing more CG iterations does not improve
the convergence in terms of iterations (Fig. 3, top) but conse-
quently increase the execution time of the algorithm (Fig. 3,
bottom) for this large-scale dataset. Concerning the primal-dual
algorithm, it requires more iterations to converge but is much
less computationally demanding than ADMM with FS. Finally,
the proposed inner-loop-free ADMM is significantly more effi-
cient. Not only does it enjoy a better convergence with respect
to the number of iterations (Fig. 3, top), but its cost per itera-
tion is also lower, leading to much faster computations (Fig. 3,
bottom).

3There is also two others parameters which are chosen as suggested in [12].
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Fig. 3. Empirical convergence of the objective function in (23) for the pro-
posed inner-loop-free ADMM on a (1024 × 1024 × 4) size problem (i.e.,
N1 = N2 = 1024, P = 4). For comparison, we provide the convergence
curves for ADMM with full-splitting (FS), using different numbers of inner
CG iterations, as well as the curve for the primal-dual method proposed in [12].
Top: convergence curves with respect to iterations. Bottom: convergence curves
with respect to elapsed time.

Fig. 4. Three-dimensional sample used in the experiments. Left: 3D rendering.
Right: slice x1 = 0. For this sample, the three planes (x1 = 0, x2 = 0, and
x3 = 0) are identical.

B. Rejection of Out-of-Focus Light

1) Simulation Setting: We consider the three-dimensional
sample depicted in Fig. 4. Its size is (256 × 256 × 256). Illumi-
nation patterns are generated according to the two-beam model

w(x, z) ∝ a0 + a1 cos (2 (k1x1 + k2x2 + ϕ)) , (27)

where a0 > 0, a1 > 0 are weight parameters, k = [k1 k2 ]
denotes the wave vector, and ϕ corresponds to a phase
shift. One can note that w corresponds to a two-dimensional

Fig. 5. Synthesized data. Top row: Born-and-Wolf PSF used for data simula-
tion. Focal plane (left) and axial (x1 = 0) plane (right). Vertical lines represent
the different planes used in the reconstruction {zp }P

p=1 . Bottom row: illumina-
tion pattern (left) and corresponding simulated acquisition at focal plane (right).

pattern that does not depends on the axial dimension. Nine
patterns (i.e., L = 9) are generated by using three lateral ori-
entations {0, π/3, 2π/3} of the wave vector k and three lateral
phase shifts ϕ {0, π/3, 2π/3}. The angle between each beam
and the optical axis is β = arcsin(NA/nsam), where the ob-
jective numerical aperture is NA = 1.4 and the refractive in-
dex of the sample is nsam = 1.333. The excitation wavelength
is set to λexc = 561 nm and the objective is immersed in oil
(ni = 1.518). Lateral and axial resolutions are set to 40nm and
100nm, respectively. We use the shift-invariant Born-and-Wolf
PSF model (Fig. 5, top) and generate it using the PSF gener-
ator from [43]. Only the central plane of the volume is kept
(but simulations are 3D on the whole 256 × 256 × 256 vol-
ume) and downsized by a factor of two (using averaging). This
results in nine two-dimensional acquisitions {ỹl}9

l=1 of size
(M1 = M2 = 128). These noiseless measurements are normal-
ized such that the average number of photons in the sum of all
images is 104 , so that

1
M

∥
∥
∥
∥
∥

9∑

l=1

ỹl

∥
∥
∥
∥
∥

1

= 104 . (28)

Finally, the noisy data are obtained according to yl = P(ỹl),
where P denotes the Poisson distribution. A simulated acquisi-
tion for one structured illumination is presented in Fig. 5 (bot-
tom). It is noteworthy that the simulated sample is very thick,
which leads to a strong out-of-focus signal.

2) Reconstruction Results and Discussion: We applied to
our simulated data the proposed inner-loop-free ADMM. We
considered the Hessian-Schatten-norm regularizer [32], inde-
pendently on each lateral slice of the reconstructed volume.
With this regularizer and periodic boundary conditions, the



246 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 5, NO. 2, JUNE 2019

TABLE I
ACQUISITION PARAMETERS FOR THE THREE REAL DATASETS OF FIG. 7

operator in (26) is an invertible convolution operator (see Ap-
pendix B-B). Because we used a symmetric PSF, the considered
planes {zp}P

p=1 are selected from the same side of the PSF
(Fig. 5, top-right), as proposed in [26]. This allows us to further
increase the computational efficiency. For each reconstruction,
the hyper-parameter μ is tuned so as to maximize the reconstruc-
tion signal-to-noise ratio (RSNR) of the reconstructed image.
It is defined by RSNR = 20 log(‖f �‖/‖f̂ − f �‖) where f̂ (f � ,
respectively) is the reconstructed (ground truth, respectively)
image. More precisely, we selected the optimal μ among 15
values logarithmically equally spaced between 10−5 and 10−2 .

Reconstruction results for different number of planes P ∈
{1, 2, 4, 6}, always spaced by 400nm, are presented in Fig. 6.
The quality clearly improves when additional planes are con-
sidered. A significant part of the strong out-of-focus light is re-
jected. Moreover, only few additional planes (e.g., up to three)
are sufficient to reveals details that are occluded on the classical
2D reconstruction (i.e., no additional planes, P = 1). One can
also appreciate the substantial improvement with respect to the
FairSIM reconstruction [19], even when the OTF attenuation
option is activated (see [19] for details). Finally, as expected,
we observe that SIM reconstructions always have a better res-
olution than a more conventional thick-slice 2D deconvolution,
as realized by the direct adaptation of the proposed method to
2D-deconvolution. (It corresponds to Model (4) without the di-
agonal operator W.) There are structural details that are absent
from the deconvolved profile but clearly distinguishable on the
reconstructed SIM profiles (bottom graph in Fig. 6).

C. Reconstructions of Real Data

We validated our method on several datasets acquired with
the Zeiss Elyra microscope.4 Acquisition parameters are sum-
marized in Table I. Reconstructions have been performed with
the proposed method and with FairSIM [19] for comparison.
FairSIM implements the classic two-dimensional multichannel
Wiener reconstruction. For each dataset, the Wiener parame-
ter was set to 0.1 and an OTF attenuation (default setting) was
used to improve axial sectioning. For both methods, the PSF
was approximated by a theoretical expression (Born-and-Wolf,
Fig. 5, top row) using the acquisition parameters provided in
Table I. For the proposed computational super-sectioning re-
construction, operators Wl , l ∈ {1, . . . , L}, were derived from

4Courtesy of Carl Zeiss Research Department.

Fig. 6. Effect of the number P ∈ {1, 2, 4, 6} of planes considered for
reconstruction. The Hessian-Schatten-norm is used as regularizer. Some re-
sults obtained with the FairSIM software [19] (Wiener parameter 0.5), with
and without OTF attenuation, are provided for comparison. Bottom graph: one-
dimensional (1-D) profiles that correspond to the spiral portion shown in the
top-left image. For comparison, we provide the profile of the ground truth as
well as of a deconvolved image with P = 6.

the pattern parameters (wave vector k and phase shift ϕ) es-
timated by FairSIM. Hence, the comparison of both methods
is fair. As regularizer, we used the Hessian-Schatten-norm (see
Appendix B-B) with μ = 10−5 . Because data were acquired at
Nyquist rate and because we aim at doubling the resolution, re-
constructions were performed on a twice-finer grid. According
to the results in Fig. 6, we used one out-of-focus plane (P = 2,
tradeoff between problem size and reconstruction quality),
leading to a reconstruction problem of size (N1 = N2 = 512,
P = 2) for dataset 1 and (N1 = N2 = 2048, P = 2) for the two
other datasets. Finally, the inner-loop-free ADMM was stopped
either after 100 iterations or when the relative difference of the
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Fig. 7. Reconstruction results for the three datasets in Table I. Squares indicate the regions presented in Fig. 8.

Fig. 8. Cutouts of Fig. 7. Profile plots corresponding to the yellow lines are presented in Fig. 9.

cost function between two successive iterates was below 10−5 ,
whichever happened first.

Reconstructions at focal plane z1 obtained with the proposed
method are presented in Fig. 7, with cutouts of specific regions
in Fig. 8. The corresponding plane of a 3D deconvolved stack,
as well as the one of a 3D SIM-reconstructed volume using
the ZEN software developed by ZEISS, is also provided for
reference.

First, the resolution enhancement is clearly visible by com-
paring the SIM results with the deconvolved images. Second,
the proposed method provides reconstructed images which are

really close to those obtained by ZEN (full 3D SIM recon-
struction). Although only a single data slice per pattern is used,
the algorithm is able to properly reject the out-of-focus signal
within the additional planes so as to reach an axial sectioning
comparable to the one obtained while taking into account the
full 3D dataset. This is not the case for FairSIM, for which the
reconstructed structures are less sharp. These observations are
further exemplified with the line plots depicted in Fig. 9. We ob-
serve spurious peaks (top arrows) in the FairSIM reconstruction,
which are absent from the proposed and 3D-SIM (ZEN) recon-
structions. However, the corresponding line profile for a plane
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Fig. 9. Line plots of Fig. 8. The abbreviation fp stands for “focal plane”.

in front of the focal one in the 3D reconstruction (dotted line)
reveals that the spurious details in the FairSIM reconstruction
correspond in fact to structures that live in a different plane of
the 3D reconstruction (bottom arrow). By contrast, the proposed
method was able to reject this signal from the plane of interest.

V. CONCLUSION

It is well documented that a full 3D reconstruction can yield
a superior quality than its slice-by-slice counterpart. However,
we demonstrated in this paper that the latter can be improved
by computational sectioning, that is, by considering additional
planes in the model. By doing so, the 3D nature of the sample is
considered, allowing for the rejection of most of the out-of-focus
light that affects the reconstructions obtained from 2D acqui-
sitions. On several real datasets, we showed that the proposed
method provides super-resolved images with an axial section-
ing comparable to the performance of a full 3D reconstruction.
The significance of the approach is furthered by the fact that
many biological studies only require 2D super-resolved images,
which simplifies sample preparation and acquisition. To tackle
the challenging large-scale inverse problem, we proposed an
efficient inner-loop-free alternating-direction method of multi-
pliers that relies on a suitable formulation of the optimization
problem together with closed-form expressions of proximal op-
erator. It offers a new fast solution to solve the problem of recon-
structing structured-illumination microscopy slices. Moreover,
it is noteworthy to mention that, although only sinusoidal illu-
minations were used in this paper, the proposed approach can
work with any other pattern (e.g., speckle, nonlinear). An inter-
esting future direction to improve the proposed method would
be to adapt the inner-loop-free algorithm to data-fidelity terms
that account for Poisson noise.

APPENDIX A
CLOSED-FORM PROXIMAL OPERATOR

A. Preliminary Results

This section gathers some results that will be used to prove
Theorem III.1.

Lemma A.1 (Woodbury matrix identity [44]): Let A, U, C,
and V be matrices with appropriate sizes. Let A and C be

invertible. Then,

(A + UCV)−1

= A−1 − A−1U
(
C−1 + VA−1U

)−1 VA−1 . (29)

Lemma A.2 (Stretch property of the DFT): Let FN (FM , re-
spectively) be the N -point (M -point, respectively) unitary DFT
and S ∈ RM ×N be a d-decimation operator (i.e., dM = N ).
Then, S∗ is a stretch operator, so that, for x ∈ RM ,

[S∗x]n =
{

xn/d if n/d integer,
0 otherwise,

(30)

and we have the equality

PFM =
√

dFN S∗, (31)

where P = 1d ⊗ IM ∈ RN ×M is a periodization operator (see
Fig. 2).

Proof: Let x ∈ RM , then

[FN S∗x]k =
1√
N

N −1∑

n=0

[S∗x]ne−
2 iπ
N kn

(30)
=

1√
N

M −1∑

m=0

xm e−
2 iπ
N kmd

N =dM=
1√
dM

M −1∑

m=0

xm e−
2 iπ
M (k−�k/M 
M )m

=
1√
d

[FM x]k−�k/M 
M

=
1√
d

[PFM x]k , (32)

which completes the proof. �
Remark A.1: The extension of Lemma A.2 to a multi-

dimensional unitary DFT is straightforward. The same result
holds with d = N/M =

∏
k dk , where dk ∈ R are the

downsampling factors in each dimension.
Lemma A.3: Let H ∈ RN ×N be a convolution operator with

kernel h ∈ RN and S ∈ RM ×N be a d-decimation operator
(i.e., dM = N ). Then, I + γSHS∗ (for γ > 0) is a convolution
operator. More precisely, we have that

I + γSHS∗ = F∗
M

(
I +

γ

d
diag (P∗Λ1N )

)
FM , (33)

where Λ = diag (FN h) and P∗ is the adjoint of the
periodization operator P = 1d ⊗ IM ∈ RN ×M (see Fig. 2).

Proof: Let S and Λ be defined as in the statement of
Lemma A.3. Then, we have that

I + γSHS∗ = I + γSF∗
N ΛFN S∗

Lem.A.2= I +
γ

d
F∗

M P∗ΛPFM

= I +
γ

d
F∗

M diag (P∗Λ1N )FM . (34)

The last equality comes from the fact that P∗ΛPx =
∑d

k=1
Λk � x = diag(

∑d
k=1 Λk )x = diag(P∗Λ1N )x, where Λk

∈ RM are blocks of the diagonal of Λ. �
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B. Proof of Theorem III.1

We first recall the notation H = [H1 · · · HP ] introduced in
Section II-A which can also be expressed as H = F∗

N ΛF with
F = IP ⊗ FN , Λ = [Λ1 · · · ΛP ], and Λp = diag (FN hp),
p ∈ {1, . . . , P}. Then, from Definition (9) of the proximal
operator and letting g = γ

2 ‖SH · −y‖2
2 , we have that

proxg (z) = (I + γH∗S∗SH)−1 (z + γH∗S∗y) . (35)

In the sequel we set r = z + γH∗S∗y. Then, from the
Woodbury matrix identity in Lemma A.1 with A = C = I,
U = γH∗S∗, and V = SH, we get

proxg (z) =
(
I − γH∗S∗(I + γSHH∗S∗)−1SH

)
r. (36)

Noticing that HH∗ = F∗
N ΛΛ∗FN , Lemma A.3 leads to

I + γSHH∗S∗ = F∗
M

(
I +

γ

d
diag (P∗ΛΛ∗1N )

)
FM . (37)

Then, letting D = I + γ
d diag (P∗ΛΛ∗1N ), and injecting (37)

into (36), we obtain

proxg (z) =
(
I − γF∗Λ∗FN S∗F∗

M D−1FM SF∗
N ΛF

)
r

Lem. A.2=
(
I − γ

d
F∗Λ∗PFM F∗

M D−1FM F∗
M P∗ΛF

)
r

= F∗
(
I − γ

d
Λ∗PD−1P∗Λ

)
Fr. (38)

which completes the proof.

APPENDIX B
TOTAL-VARIATION AND HESSIAN-SCHATTEN

NORM REGULARIZERS

A. Total Variation

In its isotropic form, the total-variation seminorm penalizes
the �1-norm of the gradient magnitudes of f . It can be expressed
as the composition of the gradient operator ∇ : RN → RN ×D

(D > 0, the number of dimensions) with the (�2 , �1)-mixed
norm

∀x ∈ RN ×D , ‖x‖2,1 =
N∑

n=1

‖xn,.‖2 , (39)

where xn,. ∈ RD . It leads to ‖x‖TV = ‖∇x‖2,1 . In order to
use the proposed ADMM with the isotropic TV, the prox-
imal operator of ‖ · ‖2,1 is required. It admits the following
closed-form expression [45], ∀x ∈ RN ×D ,

[
proxγ‖·‖2 , 1

(x)
]

n,.
= xn,.

(

1 − γ

‖xn,.‖2
, 0

)

+
, (40)

where (·)+ = max(·, 0). Then, ∇ is involved in ADMM
through the operator ∇∗∇ which constitutes one term of the
operator to invert at Line 14 of Algorithm 2. Considering peri-
odic boundary conditions (i.e., x ∈ RN is extended according to
∀n ∈ N, xn = xn−�n/N 
N ), ∇∗∇ is the convolution operator

∇∗∇ = F∗
N Λ∇FN , (41)

with a properly defined diagonal operator Λ∇ that one can easily
derive (Laplacian filter).

B. Hessian-Schatten Norm

This regularization has been proposed in [32]. It is defined as
the composition of the Hessian operator He : RN → RN ×D×D

(D > 0, the number of dimensions)

[Hex]n,.,. = {[Dijx]n}1≤i,j≤D , (42)

where xn,.,. ∈ RD×D , and Dij is the second-order derivative
operator along dimensions i and j, with the (Sp , �1)-mixed norm
(p ≥ 1)

∀x ∈ RN ×D×D , ‖x‖Sp ,1 =
N∑

n=1

‖xn,.,.‖Sp
, (43)

where ‖ · ‖Sp
denotes the Schatten norm of order p. It is defined

as the �p -norm of the vector of singular values of its argument
xn,.,. ∈ RD×D . As for the TV regularizer, the proximal operator
of the (Sp , �1)-mixed norm has the closed-form expression [46],
[47], ∀x ∈ RN ×D×D ,

[
proxγ‖·‖Sp , 1

(x)
]

n,.,.
= Un

(
proxγ‖·‖p

(Σn )
)
VT

n , (44)

where Un , Vn , and Σn are obtained from a singular-value
decomposition of xn,.,. = UnΣnVn . Moreover, considering
periodic boundary conditions, He

∗He is also a convolution
operator.
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[23] M. A. A. Neil, R. Ju Kškaitis, and T. Wilson, “Method of obtaining optical
sectioning by using structured light in a conventional microscope,” Opt.
Lett, vol. 22, no. 24, pp. 1905–1907, Dec. 1997.

[24] R. Heintzmann, “Structured illumination methods,” in Handbook of Bi-
ological Confocal Microscopy, J. B. Pawley, Ed. New York, NY, USA:
Springer, 2006, pp. 265–279.

[25] K. O’Holleran and M. Shaw, “Optimized approaches for optical sectioning
and resolution enhancement in 2D structured illumination microscopy,”
Biomed. Opt. Express, vol. 5, no. 8, pp. 2580–2590, Jul. 2014.

[26] A. Jost, E. Tolstik, P. Feldmann, K. Wicker, A. Sentenac, and
R. Heintzmann, “Optical sectioning and high resolution in single-slice
structured illumination microscopy by thick slice blind-SIM reconstruc-
tion,” PLOS ONE, vol. 10, no. 7, Jul. 2015, Art. no. e0132174.

[27] R. Heintzmann and T. Huser, “Super-resolution structured illumination
microscopy,” Chem. Rev., vol. 117, no. 23, Nov. 2017, Art. no. 13890.

[28] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method of
multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, Jul. 2011.

[29] A. Negash et al., “Improving the axial and lateral resolution of three-
dimensional fluorescence microscopy using random speckle illuminations,”
JOSA A, vol. 33, no. 6, pp. 1089–1094, May 2016.
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Group, École Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland. His main research interests
include inverse problems for imaging and sparse

optimization.

Michael Unser (M’89–SM’94–F’99) is currently a
Professor and the Director of Biomedical Imaging
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