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Abstract
Super-resolution structured-illumination microscopy (SIM) is a powerful tech-
nique that allows one to surpass the diffraction limit by up to a factor two. Yet, its
practical use is hampered by its sensitivity to imaging conditions which makes it
prone to reconstruction artefacts. In thiswork,we present FlexSIM, a flexible SIM
reconstruction method capable to handle highly challenging data. Specifically,
we demonstrate the ability of FlexSIM to deal with the distortion of patterns, the
high level of noise encountered in live imaging, as well as out-of-focus fluores-
cence. Moreover, we show that FlexSIM achieves state-of-the-art performance
over a variety of open SIM datasets.
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1 INTRODUCTION

Since the seminal works of Heintzmann, Cremer1 and
Gustafsson,2 super-resolution structured-illumination
microscopy (SIM) has become increasingly popular.3–7
Among super-resolution fluorescence microscopy
techniques,8–10 it is one of those that offer the best
trade-off between spatial and temporal resolution.11–13
Moreover, it does not require specific sample preparations,
offers high photon efficiency, and supports multicolour
imaging.3,14,15
SIM is a prime example of computational microscopy

that combines optics and numerical reconstruction so as
to surpass the diffraction limit. Specifically, a set of struc-
tured illuminations is exploited to shift high-frequency
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components of the imaged sample within the bandpass of
the optical system. Then, through dedicated algorithms,
this high-frequency information is extracted from acquired
data and used to generate an image with extended reso-
lution. From a numerical standpoint, the importance and
popularity of SIM can be measured by the growing num-
ber of reconstruction software packages.16 These include,
among open-source packages, SIMToolbox17; FairSIM18;
OpenSIM19; Hessian-SIM20; DL-SIM21; HiFi-SIM22; ML-
SIM23; JSFR-SIM24; Direct-SIM25; rDL-SIM26; or Open-
3DSIM.27
In conventional SIM, sinusoidal illumination patterns

are used, which allows one to improve the resolution
of widefield microscopy by up to a factor two.1,2 Yet,
several extensions of this conventional SIM setup have
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been proposed. They undertake to improve the resolu-
tion even further, to image thick samples, to reduce
acquisition time, to simplify acquisition protocols, or to
reduce background fluorescence.4–6 For instance, a reso-
lution improvement beyond a factor two is theoretically
achievable if the fluorescence emission can be made to
depend nonlinearly on the illumination.28–31 Moreover, it
has been shown that the use of random (speckle) illu-
minations improves the imaging of thick samples.32–35 In
another vein, SIM has been combined with total internal
reflection fluorescence (TIRF)36–38 or grazing incidence39
illuminations. These limit the excitation to a few hundred
nanometres above the coverslip, which strongly reduces
out-of-focus fluorescence.
Unfortunately, SIM is particularly prone to reconstruc-

tion artefacts, which hinders its practical use. This has led
some researchers to characterise and classify typical SIM
artefacts.40–42 Other researchers have dedicated their work
to the development of (i) detailed protocols for sample
preparation43 and system calibration40,44; (ii) numerical
tools to assess image quality45; and (iii) guidelines to best
take advantage of reconstruction software packages.38,40–42
The quest for artefact-free SIM reconstruction is cur-

rently a very active area of research, as evidenced by the
recent surge in numerical strategies such as the shap-
ing of the reconstruction point-spread function (PSF)
or optical transfer function (OTF) into an ideal form
to reduce commonly seen artefacts,22,46 the deployment
of rolling reconstructions to mitigate motion artefacts
in life imaging,20 the estimation and filtering of back-
ground fluorescence,47–49 the use of blind-reconstruction
approaches,50–52 as well as the control of noise to remove
structured-noise artefacts.53 Finally, it is worth mention-
ing that deep neural networks have also been designed and
trained to reduce artefacts in SIM reconstructions.54,55
This situation (along with the difficulties we expe-

rienced ourselves upon striving to significantly reduce
reconstruction artefacts for challenging TIRF-SIM data
using existing methods) motivated the development of
FlexSIM. The promise of FlexSIM, for flexible SIM recon-
struction, is to provide reliable SIM reconstructions for
a variety of SIM data, going from ‘ideal’ ones acquired
under standardised protocols and configurations, to ones
obtained under more challenging settings and more prone
to reconstruction artefacts.

2 MATERIALS ANDMETHODS

2.1 Foundations of FlexSIM

FlexSIM builds upon three pillars, highlighted in
Figure 1.

(1) Improvedmodelling.We propose the use of amore real-
istic model to represent the experimental illumination
patterns. Specifically, we consider

𝑤 = 𝑤 + 𝑎 cos
(
𝐤t ⋅ +𝜙

)
, (1)

where𝑤 represents a low-frequency component (to be
estimated from data) that refines the simplemodel of a
purely sinusoidal SIM pattern with amplitude 𝑎, wave
vector 𝐤, and phase 𝜙. This refinement turned out
to be essential to treat challenging TIRF-SIM data, as
shown in Figure 2. Then, reconstruction is performed
using a weighted-least-squares data-fidelity term that
allows us to account for both out-of-focus signal (sim-
ilarly to OTF attenuation in standard Wiener-based
reconstruction) and shot noise.

(2) Auto-calibration of patterns. In FlexSIM, pattern
phases and orientations are estimated through the
optimisation of the new criterion in (4), which we
tackle in a two-step procedure. The criterion is first
evaluated on a grid of candidate parameters over
which optimal ones are selected. This grid-based ini-
tialisation, which can be efficiently performed through
cross-correlation computations, somehow recovers
the widespread approach of the seminal work,2 with-
out the need to unmix frequency components. The
proposed approach can thus work with uneven phase
shifts. This initial estimation is then refined (off-the-
grid) through a gradient descent over the proposed cri-
terion. Regarding the estimation of the low-frequency
component 𝑤, we proposed in FlexSIM an efficient
method to estimate it (one per SIM image) directly
from the data (see Section 2.2.4).

(3) Advanced reconstruction. Lastly, FlexSIMbenefits from
the GlobalBioIm framework56 which offers a vari-
ety of regularisers and optimisation algorithms. By
default, first-order Tikhonov, smoothed total-variation
and good-roughness regularisers are proposed in
FlexSIM. Optimisation is performed with a quasi-
Newton approach.

We provide in Sections 2.2 and 2.3 the methodological
details behind each step of the FlexSIM pipeline.

Notations
We write vectors as bold lowercase letters (e.g., 𝐱, 𝐤) and
their transpose as 𝐱t, 𝐤t. The 𝑚th component of a vec-
tor 𝐱 ∈ ℝ𝑀 is 𝑥𝑚. We denote the Fourier transform of a
function 𝑣 (lowercase) by it uppercase counterpart 𝑉. The
symbols ∗ and⊙ stand for convolution and pointwisemul-
tiplication operations, respectively. The complex conjugate
of 𝑎 ∈ ℂ is denoted 𝑎̄. We denote by ⟨⋅, ⋅⟩ the standard Her-
mitian inner product, the conjugation being applied to the
first argument by convention.
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96 SOUBIES et al.

F IGURE 1 Flowchart of FlexSIM. In addition to the ideal sinusoidal illuminations, low-frequency pattern components 𝑤 are estimated
from raw data. For reconstruction, a weighted least-squares data-fidelity term is considered. The weighting operators𝐌 are built so as to
account for both out-of-focus signal (similarly to OTF attenuation) and shot-noise. Finally, reconstruction can be performed with a variety of
regularisers and optimisation algorithms.

2.2 Pattern estimation module

2.2.1 The art of pattern estimation

An accurate pattern estimation is essential to limit
reconstruction artefacts. The vast majority of existing
approaches work under the assumption that the spatial
phases shifts of patterns sharing the same orientation are
regularly spaced within [0, 2𝜋]. This allows for a simple
separation of the Fourier components contained in the
raw SIM images from the sole knowledge of relative
phases. Then, the maximisation of the cross-correlation
between these extracted Fourier components leads one to
estimate the orientations of the patterns, as well as their
frequencies and phase offsets.2,18,57 While this strategy
proved to be very efficient to estimate pattern orienta-
tions and frequencies, it may not provide a sufficiently
accurate estimation of phases. As such, several works
have been dedicated to phase estimation, assuming that
orientations and frequencies are known and that phases
are not necessarily regularly spaced.58–61 Finally, there
exist alternative approaches that exploit either Prony’s
annihilation property,62 or the low-rank nature63 of SIM
illuminations.

2.2.2 Patterns estimation with FlexSIM

Let {𝑤𝑚}
𝑀
𝑚=1 be 𝑀 illumination patterns having the same

orientation but different phases {𝜙𝑚}𝑀𝑚=1. In conventional
2D-SIM, patterns are generated from the interference
between two beams and are modelled as

𝑤𝑚(𝐱) = 1 + 𝑎𝑚 cos
(
𝐤t𝐱 + 𝜙𝑚

)
, (2)

where 𝑎𝑚 > 0 is the modulation contrast, 𝐱 ∈ ℝ2 the spa-
tial variable, and 𝐤 ∈ ℝ2 themodulation light wave vector.
The associated (noiseless) SIMdata {𝑣𝑚}𝑀𝑚=1 are then given
by

𝑣𝑚 = ℎ ∗ (𝑤𝑚 ⊙ 𝑢)

= ℎ ∗ 𝑢 + 𝑎𝑚ℎ ∗
(
cos

(
𝐤t ⋅ +𝜙𝑚

)
⊙ 𝑢

)
, (3)

where 𝑢 represents the sample and ℎ the PSF of the optical
system. In the sequel, we denote by 𝑣 = ℎ ∗ 𝑢 the wide-
field image, which we assume to be accessible. When the
phases are equally spaced,wehave that 𝑣 =

∑𝑀

𝑚=1
𝑣𝑚. Oth-

erwise, the widefield image can be acquired together with
the SIM stack.
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SOUBIES et al. 97

F IGURE 2 FlexSIM reconstruction of challenging TIRF-SIM
data. Actin network (grey) and clathrin (blue) in COS-7 cells imaged
using the Nikon N-SIM-S system in TIRF-SIM mode. Raw images
are of size (1024 × 1024) and reconstructions are (2048 × 2048).
(A) Comparisons of reconstructions obtained with FlexSIM and the
N-SIM software. (B) Low-frequency patterns components estimated
by FlexSIM. Reconstructions of similar datasets are presented in
Figures S7 and S8.

To drop the dependence on the sample 𝑢, which is
unknown, we make the approximation that 𝑢 ≈ 𝑣. Then,
pattern parameters can be estimated through the minimi-
sation with respect to 𝐚, 𝛟, and 𝐤 of the criterion

 (𝐚, 𝛟, 𝐤)=

𝑀∑
𝑚=1

‖‖‖𝑎𝑚ℎ ∗
(
cos

(
𝐤t ⋅ +𝜙𝑚

)
⊙ 𝑣

)
− 𝑔 ∗ 𝑣𝑚

‖‖‖
2

2
,

(4)
where 𝛟 ∈ [0, 2𝜋)𝑀 , 𝐚 ∈ ℝ𝑀

>0, and 𝑣𝑚 = (𝑣𝑚 − 𝑣) corre-
sponds to the 𝑚th raw SIM data without the widefield

component. In practice, to account for scaling factors,
we compute 𝑣𝑚 ∶= (𝛼𝑚𝑣𝑚 − 𝑣) for 𝛼𝑚 that minimises
the error ‖𝐷 ⊙ (𝑉 − 𝛼𝑚𝑉𝑚)‖22, that is 𝛼𝑚 = ⟨𝐷 ⊙ 𝑉,𝐷 ⊙

𝑉𝑚⟩∕‖𝐷 ⊙ 𝑉𝑚‖22. Here, 𝐷 is a mask that allows us to
compute the error between low frequencies only (e.g., a
disk in Fourier). Finally, 𝑔 is a filter introduced to miti-
gate the effect of the approximation 𝑢 ≈ 𝑣. More precisely,
the approximation 𝑢 ≈ 𝑣 amounts to consider (in first
approximation) that we can commute the convolution and
multiplication operators. This generates a mismatch error
between the simplified model 𝑎𝑚ℎ ∗

(
cos

(
𝐤t ⋅ +𝜙𝑚

)
⊙ 𝑣

)
and the data 𝑣𝑚 as illustrated in the third column of
Figure S3. The role of 𝑔 is thus to mitigate this mismatch
(cf. last column of Figure S3). It is related to the idea of
notch filtering used in other works.22
The function is highly nonconvex,making itsminimi-

sation a challenging task. As such, we propose a two-step
procedure.

1. Grid-based initialisation. The idea here is to consider
an approximation of  that can be efficiently evalu-
ated on a grid  = {𝐤𝑞}

𝑄
𝑞=1 of candidate wave vectors,

and then select 𝐤init = min𝐤∈  (𝐤) ∈ . We refer the
reader to Supplementary Note 1 for a full derivation.
Similar to standard pattern-estimation approaches,2,59
the proposed grid-based initialisation relies on cross-
correlation computations. Yet, it does not require us
to first unmix the frequency components. The advan-
tage is that it can work with uneven phase shifts in a
noniterative way. The main computational cost lies in
the computation of 𝑀 cross-correlation maps. In that
respect, it has links with the method proposed in Ref.
[60].

2. Local off-the-grid refinement. The goal here is to
improve the initial estimation through a local optimi-
sation of  . This allows us to obtain an estimate of
the wave vector that is not constrained to be on the
grid  used at initialisation. Moreover, the proposed
local refinement deals with the exact function  . It pro-
ceeds by alternating between a minimisation of  with
respect at first to (𝐚, 𝛟), and then 𝐤. For the minimisa-
tion over (𝐚, 𝛟), we recast the problem as the resolution
of 𝑀(2 × 2) systems of linear equations that can be
solved efficiently. Regarding theminimisation of over
𝐤, we derive a closed-form expression of the gradi-
ent and deploy gradient-descent steps. Full details are
provided in Supplementary Note 1.

2.2.3 Numerical validation

We report in Figure S4 a series of numerical experiments
over simulated data. As expected, we observe that errors
decrease when the level of noise decrease, that is when
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98 SOUBIES et al.

themaximal expectednumber of photons (MEP) increases.
For all noise levels, the wave vector is estimated with a
precision that is beyond a tenth of pixel and reaches a
hundredth of pixel for low noise levels. For the estima-
tion of phases, errors vary from less than 10◦ for high
noise levels to less than 1◦ when the noise decreases
(Figure S4C). These are similar to the errors obtained with
state-of-the-art methods.59–61
An important outcome is that the same accuracy is

reached with or without the assumption that the phases
are equally spaced. However, challenging real data such as
those acquired in a TIRF-SIM mode do benefit from the
assumption that the phases are equally spaced.
Finally, let us comment on how oversampled data influ-

ence the quality of the cross-correlationmap (initialisation
step) (Figure S4B). As expected, pattern-estimation errors
decrease as the oversampling increases. Yet, even with a
16-fold oversampling, the cross-correlation-based initial-
isation does not reach the accuracy obtained after our
refinement step. This is especially true forMEP larger than
10, which corresponds to typical noise levels encountered
in practice. This highlights the relevance of the proposed
local refinement step.
Moreover, large oversampling factors significantly

increase the memory usage and computational time. For
instance, for the (512 × 512) image used in Figure S4, the
cross-correlation computation with a 16-fold oversampling
is six times slower than the two-step approach: initialisa-
tion (with twofold oversampling) plus local refinement
(∼30 s vs. ∼5 s). As such, given that exceeding a twofold
oversampling for the initialisation does not lead to a
significant gain in the refinement step, the oversampling
factor is fixed to 2 in FlexSIM.

2.2.4 Estimation of pattern low-frequency
component

An important feature of FlexSIM is that it allows us to
consider patterns of the form

𝑤𝑚(𝐱) = 𝑤
𝑚
(𝐱) + 𝑎𝑚 cos

(
𝐤t𝐱 + 𝜙𝑚

)
, (5)

where 𝑤
𝑚
is a low-frequency component. This model

proved to be crucial to obtain meaningful reconstructions
for the TIRF-SIM data of Figures 2, 3, and S6–S9.
Regarding the estimation of𝑤

𝑚
, we deploy a simple and

fast method. It relies on the fact that, given a low pass filter
𝑓, we get from (3) and (5) that

𝑓 ∗ 𝑣𝑚 ≈ 𝑓 ∗ ℎ ∗ (𝑤
𝑚
⊙ 𝑢)

≈ 𝑤
𝑚
⊙ (𝑓 ∗ ℎ ∗ 𝑢) = 𝑤

𝑚
⊙ (𝑓 ∗ 𝑣), (6)

wherewe recall that 𝑣 stands for thewidefield image. From
these approximations, we propose to use

𝑤̂
𝑚
= (𝑓 ∗ 𝑣𝑚)∕(𝑓 ∗ 𝑣) (7)

as an estimate of 𝑤
𝑚

(with pointwise division). This
approach is illustrated in Figure S5.

2.3 Image reconstruction module

2.3.1 From direct wiener inversion to
iterative reconstruction approaches

Most SIM reconstruction methods are variants of a direct
Wiener inversion.2 For standard sinusoidal illuminations,
one can easily establish and solve a closed system of equa-
tions to unmix the Fourier components of SIM data and
place them back to their right location in the Fourier
domain. Then, a final Wiener filtering can be used to
invert the effect of the OTF and limit the amplifica-
tion of noise. More evolved deconvolution approaches,
for instance those that account for Poisson noise, can
also be used in this final step.64 Alternatively, the consid-
eration of a more general variational framework allows
for the use of arbitrary (nonsinusoidal) illuminations,65
a reduced number of images,66 advanced regularisa-
tion terms,47,66–68 additional out-of-focus planes in the
model,47,48 or blind reconstruction (i.e., joint pattern esti-
mation and reconstruction).50,51

2.3.2 Image reconstruction with FlexSIM

We consider a variational reconstruction framework.
Specifically, given 𝑃 SIM raw images {𝐲𝑝 ∈ ℝ𝑁}𝑃𝑝=1 com-
posed of 𝑁 pixels and associated with the (discretized)
patterns {𝐰𝑝 ∈ ℝ𝑁}𝑃𝑝=1, we compute the reconstructed
image 𝐮̂ ∈ ℝ4𝑁 (over a twice finer grid) as

𝐮̂ = argmin
𝐮≥0

𝑃∑
𝑝=1

1

2
‖𝐒𝐇𝐖𝑝𝐮 − 𝐲𝑝‖2𝐌𝑝

+ 𝜇(𝐮), (8)

where 𝐒 ∈ ℝ𝑁×4𝑁 is a twofold (in each dimension) down-
sampling operator, 𝐇 ∈ ℝ4𝑁×4𝑁 a convolution operator
defined from the system PSF, and 𝐖𝑝 = 𝐝𝐢𝐚𝐠(𝐰𝑝). Data
fidelity is enforced using the ‘weighted’ 𝐿2-norm ‖ ⋅ ‖2𝐌𝑝

=⟨
𝐌𝑝⋅, ⋅

⟩
, where𝐌𝑝 ∈ ℝ𝑁×𝑁 is defined so as to account for

Poisson noise and background/out-of-focus fluorescence
(details hereafter). Finally,  is a regularisation term and
𝜇 > 0 a parameter that controls the trade-off between data
fidelity and regularisation.
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SOUBIES et al. 99

F IGURE 3 FlexSIM in live TIRF-SIM imaging conditions. Clathrin-mCherry (orange) and EGFP-𝛽2-spectrin expressed by a living
neuron (grey). An 18-frame acquisition is performed with the Nikon N-SIM-S system in TIRF-SIMmode. Raw images are of size (1024 × 1024)

and reconstructions are (2048 × 2048). (A) Raw SIM data exhibit inhomogeneous illumination as well as (B) high noise levels.
(C) Low-frequency pattern component estimated by FlexSIM. (D) FlexSIM reconstruction (the full temporal stack available in Video S1).
(E) Zooms for the comparison of FlexSIM and N-SIM reconstructions.

The FlexSIM reconstruction module is implemented
within the GlobalBioIm framework.56 As such, a variety
of regularisers  and optimisation algorithms to solve (8)
are available. By default, first-order Tikhonov, smoothed
total-variation69 and good-roughness70 regularisers are
proposed in FlexSIM. They all lead to a differentiable
objective function in (8) that can be minimised through
the second-order variable-metric limited-memory-
bounded algorithm71 belonging to the family of L-BFGS
methods. For all the experiments reported in this work,
we considered the first-order Tikhonov regulariser which
leads to faster computation and always provided very sat-

isfactory results even with challenging data. We attribute
the fact that such a simple regulariser is sufficient to
the redundancy that exists in the 9 SIM raw images.72
Indeed, this redundancy reduces the impact of using more
sophisticated regularisers.

2.3.3 Weighted 𝐿2-norm

In FlexSIM, we exploit the weighted 𝐿2 data-fidelity term
‖ ⋅ ‖2𝐌𝐩

to account for both Poisson noise and out-of-
focus fluorescence.
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100 SOUBIES et al.

Poissonnoise. As in any fluorescencemicroscopy system,
the noise in the raw SIM data is a mix of Gaussian (e.g.,
readout noise) and Poisson (photon-counting process of
the detectors) noise. Because the associated log-likelihood
is very challenging to optimise,73 standard practice is
to adopt the simplifying assumption that the overall
noise is a nonstationary uncorrelated Gaussian noise.
This can be achieved by setting𝐌𝑝 = 𝐝𝐢𝐚𝐠

(
𝟏∕(𝐲𝑝 + 𝜎2)

)
(component-wise division), where 𝜎2 corresponds to the
variance of the Gaussian part of the noise.67,74
Out-of-focus fluorescence. Out-of-focus fluorescence

can be a source of severe reconstruction artefacts.40,41 To
address this issue, reconstruction approaches that explic-
itly model and estimate the background signal have been
proposed.47–49 Another very common strategy is known
as OTF attenuation.59 It proceeds by attenuating the
central frequencies of the OTF used in the Wiener-based
final reconstruction. Basically, this is achieved through a
pointwise multiplication of the OTF with a function of the
form

𝜈(𝐤) = 1 − 𝛼 exp(−‖𝐤‖22∕(2𝛽2)), (9)

where 𝛼 > 0 and 𝛽 > 0 control the strength and the width
of the attenuation, respectively. In this way, the frequency
components that do not transmit any information about
the missing cone are attenuated, thereby enhancing the
components that can instead fill the missing cone (we
refer the reader to the very instructive material, i.e., Ref.
59, fig. 7). From a variational viewpoint such as (8), this
OTF-attenuation strategy amounts to set 𝐌𝑝 = 𝐇Att, a
convolution operator whose kernel is given in Fourier
domain by 𝜈 in (9). Indeed, with this choice and setting
 = ‖ ⋅ ‖22 in (8), we recover the standard Wiener-based
reconstruction with OTF attenuation. This particular
formulation allows us to interpret OTF attenuation as a
means of givingmore importance to high-frequency errors
than to low-frequency errors (including errors due to the
background) in the data-fidelity term.
In accordance with this section, we define in FlexSIM

the data-fidelity term with 𝐌𝑝 a composition of
𝐝𝐢𝐚𝐠

(
𝟏∕(𝐲𝑝 + 𝜎2)

)
and𝐇Att.

2.4 Sample preparation

COS-7 cells were briefly extracted in Triton X-
100/glutaraldehyde, then fixed using glutaraldehyde,
before being quenched, blocked, and stained with anti-
clathrin heavy-chain primary antibodies (polyclonal
rabbit ab21679, abcam), revealed with donkey anti-rabbit
secondary antibodies conjugated to Alexa Fluor 647
and anti-alpha tubulin primary antibodies (monoclonal

mouse clones B-5-1-2 and DM1a, Sigma), revealed with
donkey anti-mouse secondary antibodies conjugated to
Alexa Fluor 555. To stain actin, cells were incubated with
phalloidin-Atto488 at the end of the staining procedure.75
Regarding macrophages imaging (Figure S9),

macrophages were transduced with GFP-paxillin
lentiviruses (BiVic facility, Toulouse, France) for 3
days as previously described.34 Macrophages were fixed
with paraformaldehyde and were placed on a FluoroDish
(WPI FD35-100) and immersed in PBS.

2.5 TIRF-SIM imaging and N-SIM
processing

We used a Nikon N-SIM-S microscope to image COS-7
cells stained for actin via classical two-beam TIRF-SIM.
Cells were mounted in a Ludin chamber in 0.1M phos-
phate buffer. The sample was illuminated using a 488 nm
laser with 2 opposite beams at the periphery of the back
focal plane of a 100×, 1.49 NA objective, with 9 images
(3 phases × 3 orientations; 16-bit, (1024 × 1024) pixels at
65 nm/pixel) captured over a 50 ms exposure time by an
Hamamatsu Fusion BT sCMOS camera. The raw images
were then processed using the N-SIM module of the NIS
Elements software, resulting in a 32-bit, (2048 × 2048)

pixel reconstructed image at 32.5 nm/pixel.

3 RESULTS

3.1 FlexSIM deals with pattern
distortions

An important feature of FlexSIM lies in its ability to cope
with illumination patterns that exhibit a nonuniform low-
frequency component, as described in (1). We report in
Figure 2 an example of challenging TIRF-SIM data that are
affected by such a degradation. Althoughnot clearly visible
on individual raw images (Figure S5A), slowly varying con-
centric rings become apparent if one switches rapidly from
one image to the next. The origin of these distortions is not
entirely clear. They are most likely due to reflections from
the TIRF edge configuration and, to date, cannot be sys-
tematically corrected on the optical side. Fortunately, these
distortions are captured perfectly by the low-frequency
component 𝑤 estimated by FlexSIM (Figures 2B and S5B).
Then, by incorporating these into the reconstruction pro-
cess and by reconstructing each orientation separately,
FlexSIM is able to produce well-contrasted and sharp
images while standard SIM-reconstructions suffer from
strong grid artefacts (Figure 2A). Even the advanced OTF
shaping proposed inHiFi-SIM22 fails to avoid grid artefacts
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SOUBIES et al. 101

(Figure S6B). In contrast, FlexSIM is able to significantly
reduce these artefacts, albeit we can observe that some
still remain in localised areas (cf. bottom left border of
the cell in Figure 2A). Finally, it is worth mentioning that
the grid artefacts reappear on FlexSIM reconstructions if
we ignore 𝑤 or if we do not consider each pattern ori-
entation separately (Figure S6A). These complementary
experiments strengthen the relevance and importance of
the new features proposed in FlexSIM.
We report in Figures S7 and S8 two additional recon-

structions over the twelve similar cell samples we acquired
on the same TIRF-SIM system. One observes that, when
the estimated low-frequency pattern component 𝑤 is
homogeneous (clathrin channel in Figure S7C, actin and
clathrin channels in Figure S8C), no artefacts are visible in
the N-SIM reconstruction as well. This reinforces the fact
that the presence of a nonuniform 𝑤 is at the origin of the
observed artefacts. Moreover, it is worth mentioning that,
evenwhenN-SIM reconstructions do not present artefacts,
the corresponding FlexSIM reconstructions exhibit better
contrast and dynamics.

3.2 FlexSIM copes with difficult live
imaging conditions

The TIRF-SIM data of Figure 2, which are already quite
challenging, were acquired in fixed imaging conditions
with high photon collection and low noise. In Figure 3,
we consider even more challenging data by assessing the
performance of FlexSIM in extreme live-imaging condi-
tions. Precisely, we imaged a living neuron transfected
with EGFP-𝛽2-spectrin and clathrin-mCherry.76 In addi-
tion to the presence of a low-frequency pattern component
(Figure 3C), these data present several other difficulties.
In particular, they suffer from low photon collection (high
noise) and strong illumination inhomogeneities that also
vary according to the orientation of the pattern (Figure 3A
and B). Additionally, the imaged structure (neuron) only
covers a small portion of the field of view. Lastly, 𝛽2-
spectrin forms periodic bands spaced by 190 nm along
the axon. They are not visible on the widefield image
and their spatial frequency is close to that of the grid
artefacts.
The FlexSIM reconstruction of a temporal frame is

presented in Figure 3D. For comparison, the reconstruc-
tion obtained using the N-SIM software is depicted in
the zooms of Figure 3E. The full reconstructed tempo-
ral stack is provided in Video S1. While both methods
are able to reveal the spectrin bands (Figure 3E, left),
they appear somehow distorted in one direction in the
N-SIM reconstruction. We attribute this to the presence
of grid artefacts intermingled with the actual pattern of

the spectrin bands. Such grid artefacts are clearly visible
in the proximal axon and dendritic region on the N-SIM
reconstruction (Figure 3E, right). Finally, FlexSIM has the
remarkable ability to produce reconstructions free from
residual background.
We also evaluated the performance of FlexSIM on data

collected using a home-built TIRF-SIM system in Figure S9
(live macrophage expressing GFP-paxillin35). To illustrate
the difficulty of reconstructing these data, we were unable
to estimate the frequencies and phases of patterns using
FairSIM.18 While Hifi-SIM22 performed better for this task,
the best reconstruction we managed to obtain with it (or
JSFR-SIM24) suffer from important artefacts. In contrast,
FlexSIMwas able to properly estimate patterns parameters
and to provide a clear reconstruction.

3.3 FlexSIM achieves state-of-the-art
performance on a variety of open SIM
datasets

To further demonstrate the capabilities of FlexSIM, we
conducted in-depth comparisons with existing SIM recon-
struction approaches. We considered twenty open 2D-SIM
datasets sourced from seven publications and acquired
with a diversity of SIM systems and configurations (see
Table S2). Then, we benchmarked FlexSIM against meth-
ods developed in publications associated with each of
these datasets. This represents seven different SIM recon-
struction approaches ranging from standardWiener-based
reconstructions (and more advanced variants) all the way
to deep-learning techniques. Accordingly, we could tune
the parameters of each method as specified by the authors
themselves, which ensures a fair comparison.
A representative subset of the comparisons we

made with the most recently published reconstruc-
tion approaches is presented in Figure 4. Complementary
comparisons are provided in Figures S10–S13. One can
see that FlexSIM performs as well as the best-in-class
HiFi-SIM22 and JSFR-SIM24 methods while outperform-
ing other algorithms. In particular, due to the proposed
weighted-least-squares data-fidelity term, including an
OTF attenuation strategy, FlexSIM is able to attenuate out-
of-focus signal and typical associated artefacts similarly
to what is achieved by HiFi-SIM and JSFR-SIM. As with
the TIRF-SIM data presented in the previous paragraphs,
we can appreciate the ability of FlexSIM to systematically
provide well-contrasted and crisp reconstructions across
the large variety of data gathered in Table S2. In addition to
these extensive experiments on open real data, we report
in Supplementary Note 2 quantitative comparisons on sim-
ulated data. These results support the fact that FlexSIM
not only handles very difficult data (as demonstrated in
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102 SOUBIES et al.

F IGURE 4 Benchmarking FlexSIM against existing software on their own datasets. A subset of the 20 open 2D-SIM datasets reported in
Table S2. From left to right, columns correspond to the widefield image, the comparative reconstruction and the FlexSIM reconstruction.
Other comparisons are provided in Figures S10–S13. Note that PCA-SIM63 in E is a method that uses principal component analysis for the
estimation of patterns parameters. The reconstruction is then performed using HiFi-SIM.22.

previous paragraphs) but also achieves peak performance
on more standardised datasets.
Finally, FlexSIM Matlab scripts for each dataset of

Table S2 are publically available within the FlexSIM
GitHub repository. These scripts automatically download

the raw SIM data and set all FlexSIM parameters used
to reproduce the results reported in the present paper for
the sake of reproducibility. Beyond allowing us to assess
FlexSIM performance, another motivation was to cata-
logue open 2D-SIM datasets and facilitate their access. We
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SOUBIES et al. 103

intend to update and enrich this collection of datasets as
new ones are released.

4 DISCUSSION

We have demonstrated experimentally the flexibility of
FlexSIM to cope with a broad range of SIM data. We have
included very challenging data for which no published
method was known to attenuate the reconstruction arte-
facts as well as FlexSIM. To achieve this, we equipped
FlexSIM with advanced features that include the mod-
elling of a class of pattern distortions, the consideration
of shot noise, and the attenuation of out-of-focus fluo-
rescence. The price to pay, however, is the need for an
iterative reconstruction schemewhich is slower thandirect
Wiener-based inversion. Typically, our reconstruction of
the (2048 × 2048) TIRF-SIM images (e.g., Figures 2 and 3)
is obtained in about 6 min on a Dell Latitude computer
(Intel Core i7-8650U CPU 1.90 GHz × 8) with parallel com-
puting. The reconstruction time for smaller (1024 × 1024)

images ranges between 1 and 3 min, depending on the
number of iterations. We expect that the computational
time of FlexSIM can be markedly decreased if one deploys
GPU computation.77
We acquired new insights while developing FlexSIM.

In particular, the estimation of pattern frequencies and
phases through the formalisation of this problem as the
minimisation of a suitable criteria helped us to clarify cer-
tain assumptions that had remained implicit to this day.
This has allowed us to integrate them properly within the
problem (see Figure S3). Moreover, we have highlighted
the benefit of our local off-the-grid refinement over an
oversampling of the data to achieve subpixel wave vector
localisation (see Figure S4).
Finally, FlexSIM is available as a documented open-

source code with a pool of example scripts that allow one
to reproduce the reconstructions reported in this work for
each dataset of Table S2. Users can also deploy FlexSIM
easily on any other dataset by filling a single file collecting
every required parameter.
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