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Lensless inline holography can produce high-resolution images over a large field of view (FoV). In a previous work
[Appl. Opt.60, B38 (2021)], we showed that (i) the actual FoV can be extrapolated outside of the camera FoV and
(ii) the effective resolution of the setup can be several times higher than the resolution of the camera. In this paper,
we present a reconstruction method to recover high resolution with an extrapolated FoV image of the phase and the
amplitude of a sample from aliased intensity measurements taken at a lower resolution. © 2022 Optica Publishing

Group

https://doi.org/10.1364/AO.445078

1. INTRODUCTION

Lensless inline holography is an imaging technique where
diffracted light is recorded without any optical parts between
the sample and the camera. Given the simplicity, compactness,
robustness, and relatively low cost of this setup [1–3], inline dig-
ital holography is successfully employed in many applications
such as lensfree microscopy [2–5] or metrology [6]. However,
unlike direct imaging methods, the recorded hologram cannot
be directly visualized. Instead, computational algorithms are
required to image the phase and amplitude of the sample or to
extract parameters of interest.

The naive backpropagation of the measured hologram to
the sample plane leads to the well-known twin-image artifacts
caused by the loss of information about phase. Phase retrieval
methods rely on either phase diversity and/or prior knowledge
of the sample to estimate the missing phase. Phase diversity [7]
consists of recording several images with an additional known
phase variation (i.e., varying illumination angle [8], wavelength
[9–12], or sample-camera distance [9,13–19]). The priors can
be enforced by either constraining the solution to belong to a
given subspace (e.g., the subspaces of phase- or absorption-only
objects or the subspace of objects with a given spatial support
[20]) or imposing a priori statistics on the object. The most
generic way to account for prior knowledge is to introduce a so-
called regularization function that favors reconstructions with
desirable properties (e.g., smoothness). In diffraction imaging,
the most popular priors are the sparsity [16,21–26], total varia-
tion [27–30], and learned priors such as dictionary-based [31]
or deep-learning plug-and-play [32] regularizations.

The earliest phase-retrieval algorithm is due to Gerchberg
and Saxton [13]. It reconstructs a complex wavefront in the
object plane from intensity measurements taken at two differ-
ent depths. This alternating-projection strategy was further
improved by Fienup [20,33] and gave birth to a large family
of (non-convex) successive projection algorithms [34–38].
The proposed constrained method for lensless coherent imag-
ing (COMCI) originates from these projection methods,
as its optimization scheme is the alternating-direction-of-
multipliers method (ADMM) [39], where each step makes
use of generalized projections (the so-called proximity opera-
tor). This ADMM scheme was already successfully used in a
phase-retrieval context [40–43].

For a decade, several authors [22–25] have also proposed to
address the phase-retrieval problem through convex relaxation.
More recently, deep-learning-based methods have also been pro-
posed [44]. A state-of-the-art review of phase-retrieval methods
can be found in [29,45].

One of the main advantages of lensless inline holography
is that it can produce high-resolution images over a large field
of view (FoV), which can be even larger than the camera FoV.
Indeed, while most works [40,46–53] restrict the reconstructed
FoV to that of the sensor, other works [21,30,54,55] achieve, for
similar measurements, the retrieval of information over a much
larger FoV.

In a previous work [56], we showed that (i) the actual FoV can
be extrapolated outside of the camera FoV and (ii) the resolution
is not dependent on sampling by the detector (for instance,
in terms of sampling rate, pixel shape, pixel fill factor) and is
determined only by the propagation distance z and illumination
parameters (wavelength, coherence, incidence angle). From
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these parameters, we propose some estimates of the FoV and the
resolution of any given setup.

The estimated [56] effective resolution of the setup can be
several times higher than that of the camera, even though the
recorded signals are often undersampled and the Nyquist cri-
terion not fulfilled. This induces aliasing issues ignored in many
works [40,46–50] that reconstruct the object at the same resolu-
tion as that of the detector. To overcome this limitation, several
methods have proposed to recover aliased spatial frequen-
cies on super-resolved holograms built from subpixel-shifted
low-resolution holograms [8,30,51–53,57]. Other works
directly reconstruct the object from aliased intensity using prior
knowledge on its shape or bandwidth [58–61].

In this paper, we present a reconstruction method that
recovers high-resolution, large FoV images of the phase and
amplitude of a sample from intensity measurements taken
at a lower resolution and over a smaller FoV. It does not need
the estimation of superresolution holograms before use. The
presented framework is versatile enough to be suitable to a wide
range of applications with varying depths, wavelengths, and
illuminations. It derives from a similar framework for image
reconstruction in optical long-baseline interferometry [42,62]
and was already successfully applied in lensless microscopy
[2,3].

COMCI has the same objective as the propagation phasor
approach proposed in [63], but it has only one stage and no need
for superresolution methods while still being able to extrapolate
the FoV. Moreover, based on an inverse-problem approach,
COMCI is optimal in a likelihood-related statistical sense.

2. IMAGE FORMATION MODEL

A. Notations

We typeset symbols in lowercase for functions and scalars (e.g., o
and λ), in boldface lowercase for vectors (e.g., o), in uppercase
calligraphic for operators acting on functions (e.g., M), and
in boldface uppercase for matrices (e.g., H). In this context,
vectors are collections of values (e.g., dataset, sampled object)
while matrices are linear mappings that produce vectors when
applied to vectors. We denote by x> the adjoint (i.e., conjugate
transpose) of x , 〈x , y〉 = x> y is the scalar product between
vectors x and y, and x × y their element-wise (Hadamard)
product. The Euclidean norm of x is ||x ||2 =

√
x>x , while

||x ||W =
√

x>Wx is a weighted version of the norm (with
W Hermitian positive semidefinite). With these notations, a
wave, sayw ∈W, is a complex-valued function of the 2D lateral
coordinates x = (x1, x2). Due to the finite amount of power
transported by a physically realistic wave,w is square-integrable;
hence, W is the Hilbert space of square-integrable functions
from R2 to C. The discretized version of this wave is the vector
w= (w1, . . . , wN) ∈CN ordered in lexicographical order of N
samples. Functions and vectors with a hat (i.e., ŵ) and without
a hat (i.e.,w) are in the Fourier and space domains, respectively.
We note by ω= (ω1, ω2) ∈R2 the 2D angular frequency and
by F the continuous (non-unitary) 2D Fourier-transform
operator defined as

f̂ (ω),F { f } (ω)=
∫∫

R2
f (x)e− j x>ωdx . (1)

Fig. 1. Setup.

B. Setup

We consider the lensless setup depicted in Fig. 1. There, a thin
(2D) sample, described by the function o :R2

→C, is placed
orthogonally to the optical axis at z= 0. For each observation
t = {1, . . . , T}, the sample is illuminated by the wave ut of
wavelength λt (or a wavenumber kt = n 2π

λt
) arriving at the

incidence angle θ t = (θ1,t , θ2,t) relative to the optical axis. After
propagation in a medium of refractive index n, the diffracted
wave wt is recorded by a detector of size (`1 × `2) placed at a
distance zt orthogonally to the optical axis. The detector pro-
duces the discrete measurements dt ∈RP . The detector is of
size `= (`1 × `2)with a square pixel pitch of1 and number of
pixels P = `1`2/1

2.

C. Varying Parameters

The phase-retrieval problem can be solved only by varying the
parameters between observations to provide sufficient diversity.
The parameters that can vary are:

• the distance zt between the sample and the detector;
• the wavelength λt or the wavenumber kt = n0

2π
λt

of the
illumination light;

• the illumination wave ut and its angle θ t = (θ1,t , θ2,t)

with the optical axis (in addition to providing diversity to solve
the phase retrieval, an inclined illumination also increases the
spatial resolution through aperture synthesis);

• the lateral shift γ t = (γx ,1, γy ,2) of the detector. As
no phase diversity is introduced, detector shifts do not add
information for phase retrieval.

3. CONTINUOUS MODEL

To interpret the measurements dt , one has to derive a rig-
orous model that accounts for the totality of the measured
information. This model is summarized in the forward oper-
ator Ht : L2(R2)→RP that acts on the Hilbert space of
square-integrable functions L2 and links the object o to the
measurements d ∈RP as in

dt =Ht(o)+ et , (2)

where et is an error term.
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A. Sample Illumination

The complex electrical field vt right after a sample illuminated
by a wave ut with an incident angle θ t is

vt(x)= o(x)ut(x) exp( j kt x> sin(θ t)). (3)

The fact that the incidence is tilted induces a modulation that
can be expressed as a kt sin(θ t) shift in the Fourier domain,
defining sin(θ t)= (sin(θ1,t), sin(θ2,t)).

B. Propagation

As lensless setups can have high numerical apertures, the propa-
gation from the sample plane to the detector plane is modeled
by the mean of the angular-spectrum (AS) propagation model
[47]. Under a tilted illumination; this propagation kernel writes
as [56]

ĥAS
t (ω)=

{
e j zt
√

k2
t −‖ω+kt sin(θ t )‖

2
, ‖ω+ kt sin(θ t)‖

2
≤ k2

t
0, otherwise.

(4)

C. Detector Shift

From one measurement to another, the detector may experience
lateral shifts γ t with respect to the system of coordinates used in
the propagation model. Thus, in the detector plane, the relation
between the electrical field in the system of coordinates qt of the
sample and the electrical field in the system of coordinateswt of
the detector is modeled as

qt(x + γ t)=wt(x). (5)

Equivalently, it can also be expressed as a modulation in the
Fourier domain:

ŵ(ω)= q̂(ω)e− jγ t
>ω. (6)

D. Overall Model

Taking into an account illumination, propagation, and detector
shifts, the model that links the object and the measurements in
the detector plane is

wt(x)=F−1
{

ĥ t ×F {ut × o}
}
(x)e j kx> sin(θ t ), (7)

with the kernel ĥ t given by

ĥ t(ω)=

{
e j
(

zt

√
k2

t −‖ω+kt sin(θ t )‖
2
−γ t

>ω
)
, ‖ω+ kt sin(θ t)‖

2
≤ k2

t
0, otherwise

.

(8)
If the object spatial-frequency bandwidth is narrow or if the

paraxial-approximation hypothesis is fulfilled (see [56]), this
propagation model can be approximated by

ĥF
t (ω)= e

j
(

kt zt−γ t
>ω−

zt
2kt
‖ω+kt sin(θ t )‖

2
)
. (9)

E. Sensing

The intensity of the diffracted wavewt is sampled on P pixels by
the detector according to

d p,t =

∫∫
ϕp,t(x)|wt(x)|2dx + e p,t , (10)

where ϕp,t(x) is the response of the pixel p of the observation t
at position x . The error term e p,t accounts for the noise of the
detector, for photon noise, and for approximation errors such as
quantization.

4. DISCRETIZATION

A. Field of View and Superresolution

In practice, to numerically model the propagation, one has to
establish a discrete version of the equations found in Section
3. To that end, it is important to determine the FoV and the
spatial-frequency bandwidth probed by the setup. Due to the
bandlimited nature of the propagation kernel given in Eq. (4),
the theoretical FoV of a lensless setup is infinite, and its angular
spatial-frequency bandwidth is B = 2k, centered on k sin(θ). In
a recent paper [56], we derived more realistic bounds on the size
`t ′ of the FoV and the bandwidth Bt ′ for the set {zt , λt , θ t , γ t}

of setup parameters. These bounds can be easily derived from a
few setup properties, namely, the noise level and the spatiotem-
poral coherence of the source. In this work, we define the FoV
and the bandwidth of the object o as the maxima `′ =maxt(`

′
t)

and B ′ =maxt(B ′t), over all T observations.
To ensure the separability of the likelihood term in the recon-

struction algorithm, we impose commensurability between the
sampling rates of the detector and object o . Consequently, if we
sample the object on a grid, its pixel pitch1′ is given by an inte-
ger superresolution factor S such that

1′ =1/S, (11)

S =
⌈
1B ′

2π

⌉
. (12)

At optical wavelengths, detectors cannot measure complex
amplitudes of the electric field but only the intensity of the light.
The Fourier spectrum of the intensity is the auto-correlation
of the Fourier spectrum of the complex amplitude [47]. As a
consequence, the bandwidth of the intensity can be twice as
wide as the bandwidth B ′ of the diffracted wave w. Thus, in
modeling [Eq. (10)] the sensing, w must be oversampled by a
factor of two along each dimension before being converted to
intensity. Hence for an object o sampled on N pixels, the electric
fieldw in the detector plane must be oversampled on 4N pixels.

Among all possible interpolation functions, we choose to
sample the functions of the object o , waveswt , operators, and ĥ t

using Dirac delta functions to form the vectors o ∈CN , u ∈CN ,
w ∈C4N , and ĥ t ∈CN , where

on = o(xn), (13)

ut,n = u(x t,n), (14)
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wt,n =wt(xn), (15)

ĥ t,n = ĥ t(ωn). (16)

Here, xn is the position of the nth pixel, andω is the angular fre-
quency of the nth pixel. It is possible to use better sampling func-
tions when permitted by the spatio-frequency properties of the
observed sample [64].

B. Discrete Forward Model

With discretization of Section 4.A, for each observation t , the
complex electrical field on the surface of the detector is given by

wt =Ht o, (17)

where the forward operator Ht ∈C4N×N is a propagation opera-
tor given by

Ht = F−1
4N ·Q · diag(ĥ t) · FN · diag(ut), (18)

where FN is the 2D discrete Fourier operator of size N.
Q ∈C4N×N is a zero-padding operator accounting for the
spatial over-sampling ofw.

From Eq. (10), this intensity is linked to the measured image
intensities dt ∈RP

+
by

d p,t =
∑
n∈Sp

ϕp,t,n

∣∣wn,t

∣∣2 + e p,t . (19)

As the wave is sampled at a rate higher than that of the detector,
Sp is the set of samples of the wave wn,t in the sensitive area of
the detector pixel p , and ϕp,t,n = ϕp,t(xn) is the discretized
response of the pixel p in the observation t for a wave sample at
position xn .

5. INVERSE PROBLEM

The goal of this work is to estimate the complex object o from
the observation of the diffracted intensity, which is an inverse
problem. It is classically solved in a variational framework where
one estimates o+ minimizing a cost function built as the sum of
the likelihood termL and a regularization termR as in

o+ = argmino∈DN
(
L(o)+µR(o)

)
, (20)

where D is the subspace of C where lies the object. In this
approach, known as penalized maximum likelihood or maxi-
muma posteriori (MAP), the data term is defined according
to the forward model and the statistics of the noise, whereas
the regularization function is designed to enforce some prior
knowledge about the object such as support, nonnegativity, or
smoothness.

A. Likelihood

The likelihood term L is computed according to the forward
model described in Section 4.B and the statistics of the noise. We
assume that the noise e p is independent and there is no cross talk
between pixels (Sp ∩ Sp ′ = ∅∀ p 6= p ′). As a consequence, the
likelihood term is separable with

L(o)=
T∑

t=1

∑
p∈Pt

Lp,t

∑
n∈Sp

φp,n

∣∣wn,t

∣∣2 . (21)

The setPt provides an easy way to cope with badly measured pix-
els, such as saturated ones that do not belong toPt .

In most applications, only two types of noise are considered:
non-stationary Gaussian noise or Poisson noise in the low-flux
case. In the Gaussian case, the likelihood term writes as

Lp,t(x )=
1

σ 2
p,t
(x − d p,t)

2, (22)

where σ 2
p,t is the variance of the noise at the pixel p of the tth

image.
In the photon-counting case, the noise follows a Poisson dis-

tribution, and the likelihood function writes as

Lp,t(x )= x − d p,t log(x + βp,t), (23)

where βp,t is the expectation of some spurious independent
Poisson process that accounts for incoherent background
emission and detector dark current at the pixel p of the tth
image.

B. Regularization

The regularization function R enforces some prior knowledge
about the observed sample. In this work, we use total variation
[27]. For a complex object o, it is

R(o)= ‖Bo‖2,1 (24)

=

N∑
n=1

‖[Bo]n‖2, (25)

while B is the spatial gradient operator

B=
[
∇1

∇2

]
, (26)

where ∇1 and ∇2 are finite-difference operators along the hori-
zontal and vertical directions, respectively. Under a circulant
boundaries condition, these finite-difference operators can be
defined in the Fourier domain as

B=

F−1
· diag

(
b̂1

)
F−1
· diag

(
b̂2

) F, (27)

where b̂1 and b̂2 are spatial differentiation operators expressed
in the Fourier domain along dimensions 1 and 2, respectively.
Compared to the total variation applied separately on the
phase and modulus of o, as in [65], this complex regularization
function enforces a correlation between edges in both real and
imaginary parts. This means that different areas of the sample
are supposed to differ in their real and imaginary parts or, equiv-
alently, for both the modulus and phase. That makes sense, as
different media may differ at the same time in their refractive
indices and absorptions.
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C. Constraints

Depending on the object, various constraints can be chosen to
define the subspace D. We define the characteristic function of
the subspaceD as

CD(x )=
{

0, x ∈D
+∞, otherwise.

(28)

No amplification. As no emission occurs within the sample,
the modulus of the object must be lower than one, so that

D1 = {x ∈C; |x | ≤ 1}. (29)

Phase-only object. Biological samples are often transpar-
ent and can be modeled as phase-only objects. In this case, the
modulus of the object is constrained to have a unit modulus
leading to

D2 = {x ∈C; |x | = 1}. (30)

Absorption-only object. If the sample is composed of
opaque structures, then its phase is null, and its magnitude must
be either zero or one. Such a prior is highly non-convex; we relax
it to the convex constraint

D3 = {x ∈R; 0≤ x ≤ 1}. (31)

Support constraint. The constraint can also be a support
constraint, as classically done in phase retrieval [33]. It con-
strains the object to be one outside of the support G of the
object:

D4 = {xn ∈C; xn = 1 if n /∈G}. (32)

6. MINIMIZATION SCHEME

From the forward model of Section 4.B and the separable like-
lihood in Eq. (21), Eq. (20) can be rewritten in the constrained
form, introducing auxiliary variables y ∈CN and z∈C2N :

o+ = argmino

T∑
t=1

P∑
p=1

Lp,t

∑
m∈Sp

φp,n

∣∣wm,t

∣∣2

+µ‖z‖2,1 +

N∑
n

CD(yn)

subject to

Ht o=wt , ∀t
o= y
z= Bo

. (33)

These constraints are enforced by means of an augmented-
Lagrangian formulation. The augmented Lagrangian
is

J (o,w, y, z, q, v, r)

=

T∑
t=1

P∑
p=1

Lp,t

∑
m∈Sp

∣∣wm,t

∣∣2
+µ

N∑
n

‖zn‖2,1 +

N∑
n

Cn(|yn|
2)

+
ρ1

2

T∑
t=1

∥∥Ht o−wt + qt

∥∥2
2

+
ρ2

2
‖o− y+ v‖2

2 +
ρ3

2
‖Bo− z+ r‖2

2 , (34)

where qt ∈CN , v ∈CN , r ∈C2N are the scaled Lagrange mul-
tipliers and ρ1 > 0, ρ2 > 0, and ρ3 > 0 the augmented-penalty
scalar parameters. As there are no theoretical guidelines to set
this augmented penalty, we choose to rely on the empirical rules
described in Section 6.E.

Under this form, the problem can be solved by means of
ADMM [39], solving at each iteration k the series of problems

w
(k+1)
t = prox1/ρ1L

(
Ht o(k) + q(k)t

)
, (35)

y(k+1)
= prox1/ρ2CD

(
o(k) + v(k)

)
, (36)

z(k+1)
= proxµ/ρ3‖ ‖2,1

(
Bo(k) + r(k)

)
, (37)

o(k+1)
= argmino∈CN

ρ1

2

T∑
t=1

∥∥∥Ht o−w
(k)
t + q(k)t

∥∥∥2

2

+
ρ2

2

∥∥o− y(k) + v(k)
∥∥2

2 +
ρ3

2

∥∥Bo− z(k) + r(k)
∥∥2

2 .

(38)

Here, prox1/ρ1L, prox1/ρ2CD , and proxµ/ρ3|| ||2,1
are proximity

operators (Moreau’s proximal mapping operators) of the likeli-
hood function, the constraints characteristic function, and the
regularization function, respectively.

At each iteration, the scaled Lagrange multipliers are updated
using the rule

q(k+1)
t = q(k)t +Ht o(k+1)

−w
(k+1)
t , (39)

v(k+1)
= v(k) + y(k+1)

− o(k+1), (40)

r(k+1)
= r(k) + Bo(k+1)

− z(k+1)
t . (41)

A. Likelihood Sub-Problem

The solution of the first inner problem Eq. (35) is given by the
proximity operator of the likelihood function L. As the likeli-
hood function is separable, its solution is given by the proximity
operator of the function Lp,t for each observation t and each
low resolution pixel p :
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prox1/ρLp,t
( y)= argminx

(
Lp,t(x)+

ρ

2
‖x − y‖2

2

)
. (42)

For Gaussian and Poisson likelihoods, and without cross talk
between pixels, this proximity operator admits closed-form
solutions [66] that are used further in the paper. A generaliza-
tion of these proximity operators in the presence of cross talk is
proposed in [67].

B. Constraints Sub-Problem

The solution of the second inner problem Eq. (36) is given by
the proximity operator of the characteristic function of the
constraints. All the constraints described in Section 5.C are
separable, and the solution is given for each pixel p by

prox1/ρC(yn)= argminx

(
CD(x )+

ρ

2
‖x − yn‖

2
2

)
. (43)

For each constraint described in Section 5.C, this proximity
operator is a simple projection on the subspace D and has a
closed-form solution.

C. Regularization Sub-Problem

The solution of the third inner problem Eq. (37) is given by the
proximity operator of the mixed norm || ||2,1. This proximity
operator has the closed-form solution [68][

prox1/ρ‖ ‖2,1
( y)
]

n,d
= yn,d

(
1−

(
ρ

√
y 2

n,1 + y 2
n,2

)−1
)
+

,

(44)
with (x )+ =max(0, x ), x ∈R. The pixel index is given by n,
and d ∈ {1, 2} is the direction of the derivative.

D. Fourth (Consensus) Sub-Problem

The fourth problem Eq. (38) is a quadratic problem. It has the
closed-form solution

o+ =

[
ρ1

2

T∑
t=1

Ht
>Ht +

ρ2

2
+
ρ3

2
B>B

]−1

×

[
ρ1

2

T∑
t=1

Ht
>(wt − qt)+

ρ2

2
( y− v)+

ρ3

2
B>(z− r)

]
.

(45)

Unfortunately, in the general case, owing to the size of H and
B, the matrix inversion of the first term cannot be performed in
practice. However, this problem can be solved approximately by
conjugate-gradient steps as is classically done [39]. In this case,
the number M of Fourier transforms of size N computed per
iteration is

M =MCG(4T + 2)+ 2T + 3, (46)

where MCG is the number of conjugate-gradient steps. In addi-
tion, at each iteration, there are (T × P ) estimations of a root of
a cubic or quadratic polynomial needed in Eq. (35).

The use of the conjugate gradient makes the computa-
tional burden very high and prevents the use of the algorithm

for large problems. However, there are some cases where the
exact solution of Eq. (45) can be efficiently estimated: when
the illumination is a plane wave and when the illumination is
uniform.

1. PlaneWave Illumination

When the sample is illuminated by plane waves, the term ut in
Eq. (3) is constant: ut,p = at , ∀p . In this case, for each obser-
vation t , the matrix H>t Ht becomes diagonal in the Fourier
domain:

H>t Ht = |at |
2F−1diag

(∣∣∣ĥ t

∣∣∣2) F. (47)

The solution of Eq. (38) can be written in the Fourier domain as

ô+ =

ρ1

T∑
t=1

a2
t + ρ2 + ρ3

∑
d∈{1,2}

|b̂d |
2

−1

×

(
ρ1

T∑
t=1

at ĥ t
∗

(ŵt − q̂t)

+ ρ2

∑
d∈{1,2}

b̂d
∗

(ẑd − r̂d )+ ρ3( ŷ − v̂)

 . (48)

Let us notice that in this case, it is possible to spare Fourier
transform computations by performing all ADMM steps [Eqs.
(35)–(38)] in the Fourier domain. Equations (37) and (36)
are solved in accordance with the following property of the
proximal operator [69]:

g (x)= f (Fx)& FF> = I⇒ proxg (x)= F>prox f (Fx).
(49)

The number of Fourier transforms per iteration is reduced to

M = 2T + 6. (50)

2. Uniform Illumination andFresnel Propagation

In the Fresnel regime, the Fresnel propagation operator
h F described in Eq. (9) has a unit modulus. Whatever the
phase of the illumination wave, if its magnitude is uniform
(|ut,p | = bt , ∀p), the expression H>t Ht becomes

H>t Ht = b2
t I. (51)

The matrix inversion Eq. (45) can then be computed efficiently
in the Fourier domain. The number of Fourier transforms per
iteration becomes

M = 4T + 5. (52)

E. Setting Parameters

In addition to the hyperparameterµ common to all MAP meth-
ods, there are three more parameters to be set in this method:
augmentation parameters ρ1, ρ2, and ρ3. As the overall problem
is not convex, its solution depends on them. The optimum for
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these four parameters cannot be found by trial and error with
such iterative methods. Fortunately, after investigating the range
of possible parameters, we found empirically the rules

ρ = 100µ, (53)

ρ1 = ρ/(T I0), (54)

ρ2 = ρ, (55)

ρ3 = ρ, (56)

where I0 is the mean intensity per pixel. These rules are used
throughout all our results, leaving only the hyperparameterµ to
tune.

The superresolution parameter s is usually set according to
the rules derived in [56]. We experimentally found that the
hyperparameter µ is approximately independent of this super-
resolution parameter s . Using this observation, one can rapidly
estimate the hyperparameter at a small superresolution before
performing a full reconstruction at larger superresolution.

7. NUMERICAL RESULTS

The proposed method covers a wider panel of applications that
we can deal with. Nevertheless, we present in this section some
results on synthetic data covering typical setups. All simula-
tions and reconstructions presented in this paper were done in
Matlab using the GlobalBioIm library [70]. The open-source
code used is available in the COMCI repository [71]. To assess
its FoV extrapolation and superresolution capabilities, all
COMCI reconstruction were performed on an larger, extended
FoV, with smaller pixels than prescribed in [56].

The computation time is dominated by the Fourier trans-
form involved in the propagation modeling. Due to the GPU
implementation of the FFT algorithm, it is possible to main-
tain acceptable processing times despite the method being
computationally intensive: a handful to tens of minutes on an
NVIDIA TITAN X GPU. However, given the superresolution
and the extrapolation capabilities of COMCI, the dimensions
of the estimated vectors can reach tens of million pixels. It is
limited by the amount of memory of GPU cards to less than
(10000× 10000) pixels, which corresponds to a few mm2

sampled atλ/2.
Whether COMCI was already used in its preliminary form

on real experiments ([2,3], its performance was never assessed.
We assessed it in terms of actual FoV, resolution, and reconstruc-
tion signal-to-noise ratio (SNR). This SNR is computed only on
the camera FoV to be comparable with the reconstruction SNR
of the error reduction (ER) algorithm, when possible. The ER
algorithm [13,33] is an alternating projection algorithm. It con-
sists of propagating the wavefront back and forth between object
and detector plane, constraining the modulus of the wavefront
to be equal to the square root of the measured intensities in the
detector plane, and enforcing prior knowledge on the object by
means of constraints as defined in Section 5.C.

The half-pitch resolution of the reconstructed target is given
by the finest-resolved element of the target. It can be compared

Fig. 2. Vectorial USAF-1951 resolution chart.

to the theoretical half-pitch resolution at the center of the FoV
given by [56]

R =
λ

2n0

(
`/2√

(`/2)2 + z2
+ sin(|θ |)

)−1

, (57)

with `=max(`1, `2) the largest width of the detctor and
θ =max(θ1, θ2) the higher illumination angle.

A. Simulating Data

To assess the performance of COMCI, we built a synthetic
vectorial image of a USAF-1951 resolution target [72] shown in
Fig. 2. This vectorial image contains all resolution groups from
group −1 to group 11. The smallest resolution element (11-6)
has a width of 65 nm.

To avoid the so-called inverse crime, where one reconstructs
the object from simulated data with exactly the same numeri-
cal model as the one used for simulation, the propagation is
simulated using bandlimited AS [73] with a very high resolu-
tion over a very large FoV that is much larger than the camera
FoV. This prevents the border artifacts caused by propagation
over a small FoV, as well as the frequency aliasing caused by the
undersampling by the camera.

B. Low-Light Single Exposure of Absorbing Object

To assess the performance of COMCI under various noise
conditions, we reconstruct an absorbing object from a single
exposure for two levels of illumination: a low-light condition
with one photon per pixel on average and an intense-light
condition with 106 photons per pixel. The hologram of an
opaque USAF-1951 target is simulated at z= 1.5 mm for
normal illumination at λ= 532 nm and a refractive index
of one. To prevent aliasing, the propagation is done over
(23000 × 23000) square pixels of width 1s = 140 nm.
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Fig. 3. Simulated hologram and modulus of the reconstructed target by the ER and COMCI algorithms for two levels of flux. On the COMCI
reconstruction, the inner square represents the camera FoV, and the outer square represents the extrapolated FoV. As a scalebar, an element of group
5-1 is of size 78× 16 µm2.

Table 1. Reconstruction Parameters and Assessment
of Reconstruction Quality for Two Illumination-Flux
Cases

Mean Number of Photons per Pixel

1 106

Reconstruction Parameters

1′ (reconstruction) 560 nm
FoV (3120× 3120)pixels

(1.7× 1.7)mm2

µ 0.2 10−6

COMCI

Extrapolation along
each direction

210µm 14µm

FoV (1.57× 1.57)mm2 (1.12× 1.12)mm2

Half-pitch resolution 7.81µm 1.1µm
SNR 14.76 dB 36.25 dB

Error Reduction

1 2.24µm
FoV (1.1× 1.1)mm2 (1.1× 1.1)mm2

SNR 4.07 dB 19.92 dB
Half-pitch resolution 13.92µm 2.19µm

The modeled intensity in the detector plane is then down-
sampled on pixels of width 1= 2.24 µm with unit fill factor
[φp,n = 1 in Eq. (21)]. The central area of (512× 512) pixels

is then corrupted by Poisson noise and used as the simulated
measurements.

The target is reconstructed in 3000 iterations under an
absorption-only object as described in Section 5.C and a likeli-
hood term adapted to photon counting Eq. (23). The data and
the reconstructed targets are shown in Fig. 3 and compared to
the result of the ER algorithm [74] that appears, in this case,
still competitive with the state of the art [75]. Reconstruction
parameters and quantitative assessments in terms of size of
the FoV, resolution, and reconstruction SNR are given in
Table 1. The modulus of the reconstructed target is shown
in Fig. 3 with zooms on high-resolution groups in Figs. 4
and 5. Due to the absorption-only constraint, the phase is zero
everywhere.

In the high-flux (low-noise) case, the reconstructed target by
the ER algorithm is qualitatively good but suffers from border
artifacts near the edges of the camera. Its resolution is limited by
the sampling of the camera to a half-pitch of 2.19 µm (group 7-
6). By comparison, the COMCI reconstruction enjoys a much
higher SNR (36.25 dB versus 19.92 dB) and, above all, has high
resolution and a larger FoV as predicted from [56]. The extrapo-
lation is clearly visible in Fig. 3. As stated in [56], lensless setups
cannot capture low-spatial frequencies from regions outside of
the FoV, but the edges of the resolution elements that contain
high frequencies are clearly visible as far as 210 µm away from
the detector FoV. The smallest element being resolved by the
reconstruction is group 8-6, with a half-pitch resolution of 1.1
µm (NA= 0.24), which corresponds to a superresolution factor
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Fig. 5. Zoom on groups 8 and 9 of (a) Fig. 3 in the 106 photons/pixel case compared to the ground truth (b) rasterized at the camera resolution
(top) and the resolution of the COMCI reconstruction (bottom). As a scalebar, an element of group 6-1 is of size 9.75× 1.95 µm2.

of S = 2 and a space–bandwidth product of thereconstruction almost eight times larger than that of the camera. It is still larger

than the theoretical half-pitch resolution at the center of the

FoV of R = 760 nm.

Fig. 6. Reconstructed target in the multiangle case (nine angles). The nine black squares represent the FoV of the nine different measurements.
The central gray square depicts the area common to the nine holograms. The very small inner white square covers the zoom on group 10 shown Fig. 7.
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Fig. 4. Zoom on groups 6 and 7 of the modulus of the reconstructed
target by the ER and COMCI algorithms. As a scalebar, an element of
group 6-1 is of size 39× 7.8 µm2. (a) 106 photons/pix. (b) One pho-
ton/pix.

Fig. 7. Zoom on groups 10 and 11 of the reconstructed target
shown as the inner white square in Fig. 6 compared to the ground
truth. (a) Target at the camera resolution. (b) Target at reconstruction
resolution. (c) Reconstructed phase.

In the very-low-flux case, the ER algorithm fails to
reconstruct the target. COMCI achieves the recovery of low-
resolution elements down to the 6-1 group. This corresponds
to a half-pith of 7.8 µm (NA= 0.03), similar to the theoretical
half-pitch resolution at the center of the FoV of 8 µm estimated
from [56]. The noise in the measurements almost prevents
extrapolation and limits it to a few pixels (14µm).

C. Multi-Angle Illumination

By combining holograms with various illumination angles,
it is possible to increase the resolution by aperture synthesis.
We test the performance in resolution of COMCI by simulat-
ing nine holograms under various incidence angles, varying
θi ∈ [−50 : 25 : 50]◦ along both axes separately. The simulated
target is a transparent USAF-1951 target whose phase is either

Fig. 8. Profile of the phase of the reconstructed target along the line
plotted in Fig. 7(c) along group 10 of the resolution target.

Fig. 9. Simulated data at two different heights.

zero or one. The illumination is at λ= 700 nm and the refrac-
tive index 1.52. The propagation to z= 0.1 mm is done over
(23000× 23000) pixels of width 1s = 120 nm. The modeled
intensity in the detector plane is then downsampled on pixels of
width 1= 1.2 µm with unit fill factor [φp,n = 1 in Eq. (21)].
The central area of (308× 308) pixels is then corrupted by 60
dB Gaussian noise and used as the simulated measurements.

The target is reconstructed with 1′ = 120 nm pixel pitch
over a FoV of (7200× 7200) pixels. Its phase, after 3000 iter-
ations, is shown in Fig. 6 with a zoom on group 10 shown in
Fig. 7. As a tilted illumination shifts the hologram, the camera
FoV varies from one frame to the next. Only a small area of
(104× 104) µm2 centered on group 8 is visible on the nine
holograms. However, the structures are well recovered even in
area in the FoV of only a single hologram. The edges are visible
well outside of the FoV of all holograms, which sets the actual
reconstructed FoV to (810× 810) µm2, more than five times
the detector area. The finest resolved element in Fig. 7 is group
10-6, giving a half-pitch resolution of 275nm (NA= 1.25),
at twice the theoretical resolution of R = 138 nm. This corre-
sponds to an actual superresolution factor of S = 4 and gives a
space–bandwidth product of the reconstruction that is 20 times
larger than the camera space–bandwidth product. Even at such
high resolution, the reconstructed phase is accurate, as can be
seen in the profile plotted in Fig. 8 where the phase varies on a
range of 1 rad in accordance with the ground truth.

D. Multi-Height Reconstruction

To show the versatility of the COMCI framework, we recon-
struct in this section an object with amplitude and phase from
measurements with two different distances between the sample
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Fig. 10. Amplitude and phase of the reconstructed object from
the multi-height data given in Fig. 9. The black square and the white
square cover the camera field of view and the area zoomed in the inset,
respectively.

and the sensor: z= {250, 270} µm. The data were simulated
with parameters similar to [63]: a normal incidence illumina-
tion at λ= 530 nm, refractive index of n0 = 1, and camera of
(500× 500) square pixels of width1= 1.12 µm [camera FoV
of (560× 560) µm2]. To prevent aliasing, we simulate data
over a FoV of (1.3× 1.3)mm2 with pixels of width 93nm. As
gigapixel images are needed, we build a ground truth image from
a NASA MODIS Earth observation color image, using the hue
and saturation channels as the phase and amplitude, respec-
tively. The simulated data are corrupted with 30 dB Gaussian
noise and shown in Fig. 9.

According to [56] prescription, the target is reconstructed
with 1′ = 560 nm pixel pitch (superresolution S = 2) over a
FoV of (0.8× 0.8)mm2 (1432× 1432 pixels). As the object
has features in both phase and modulus, it was reconstructed
under “no amplification” constraint, enforcing only a modulus
equal to or below one. The hyperparameter was set toµ= 10−2.
The reconstruction after 3000 iterations is shown in Fig. 10. It
shows that on an object much more complex than a USAF-1951
target, the COMCI provides qualitatively good reconstruction
in terms of both resolution and FoV extrapolation.

8. CONCLUSION

The key contributions of this paper are twofold. First, we have
shown that, as we suggested in [56], it is possible to perform
lensless holographic image reconstruction over a FoV larger
than the camera FoV with a half-pitch resolution that is several
times finer than that of the camera without relying on subpixel-
shifted holograms. This means that images are reconstructed
with a space–bandwidth product that is an order of magni-
tude greater than that of the camera (i.e., there are an order
of magnitude fewer data than unknowns). Therefore, some
prior knowledge must be introduced into the reconstruction
process. Second, we have proposed a quantitative reconstruction
method (COMCI) that allows us to recover an image over an
area five times larger than the camera FoV, with a resolution
four times better. COMCI is an open-source generic frame-
work that can be applied to a wide variety of lensless imaging
setups (e.g., multi-heights, multi-wavelength, multiangle). It
follows a complete “inverse problems” approach that involves
three terms: a likelihood term that is adapted to the noise statis-
tics (either Gaussian or Poisson noise); a constraint term that
prevents unphysical solutions; and a regularization term that
enforces more generic knowledge about the object statistics. The
regularization adopted in this work was the general-purpose
total variation regularization, which appears to be well suited
to the USAF-1951 target. It can easily be replaced by any
regularization involving a proximity operator such as learned
plug-and-play priors [32]. It is likely that such a regularization
will be more effective on biological samples.
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