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Abstract

We present a new method based on B-spline snakes (active contours) for measuring high-accuracy contact angles. In this approach, we avoid
making physical assumptions by defining the contour of the drop as a versatile B-spline curve. When useful, we extend this curve by mirror
symmetry so that we can take advantage of the reflection of the drop onto the substrate to detect the position of the contact points. To keep a wide
range of applicability, we refrain from discretizing the contour of the drop, and we choose to optimize an advanced image-energy term to drive
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he evolution of the curve. This term has directional gradient and region-based components; additionally, another term—an internal energy—is
esponsible for the snake elasticity and constrains the parameterization of the spline. While preserving precision at the contact points, we limit
he computational complexity by constraining a non-uniform repartition of the control points. The elasticity property of the snake links the local
ature of the contact angle to the global contour of the drop. A global knowledge of the drop contour allows us to use the reflection of the drop
n the substrate to automatically and precisely detect a line of contact points (vertical position and tilt). We apply cubic-spline interpolation over
he image of the drop; then, the evolution procedure takes part in this continuous domain to avoid the inaccuracies introduced by pixelization and
iscretization.

We have programmed our method as a Java software and we make it freely available [A.F. Stalder, DropSnake, Biomedical Imaging Group,
PFL, [ON LINE] visited 2005. http://bigwww.epfl.ch/demo/dropanalysis]. Our experiments result in good accuracy thanks to our high-quality

mage-interpolation model, while they show applicability to a variety of images thanks to our advanced image-energy term.
 2006 Elsevier B.V. All rights reserved.

eywords: Image processing; Drop shape analysis; Snake (Active contour); Contact angle; Contact point

. Introduction

Wetting phenomena have been studied scientifically during
he past 200 years with strongly varying interest. An excellent
verview appeared recently in literature [2]. Thomas Young in-
roduced in 1805 a simple equation that equilibrates the forces at
he contact point of a liquid drop on a solid surface [3].Thomas
oung’s equation is

l,g cos θ = γl,g − γs,l, (1)

here γ denote the excess free energy per unit area of the in-
erface indicated by its indices g, l, and s, corresponding to the

∗ Corresponding author. Tel.: +41 21 693 51 89; fax: +41 21 693 37 01.
E-mail address: daniel.sage@epfl.ch (D. Sage).

gas, liquid, and solid phases, respectively. This expression is
called Young’s equation and remains to this day the most-used
expression in the study of surface wetting. The well-known and
tabulated values for the liquid/gas-excess free energy γl,g cor-
respond to the surface tension of the liquid with its vapor. Of
even more relevance to this paper is the contact angle θ, which
is the other experimentally easily accessible factor in Young’s
equation.

In recent years, there has been an incredible renaissance of
wetting studies, starting with the discovery of the lotus effect
[4] and leaving many questions open [5]. The measurements of
static angles of contact are generally considered to be precise to
±3◦, this residual variation being due to experimental conditions
and operator non-reproducibility. The latter can be improved by
less-subjective image-processing algorithms, as we shall discuss
in this paper.
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The study of the dynamics of liquid drops impinging onto
surfaces [6] has recently been shown to help improving the fabri-
cation of micro-arrays [7]. (Micro-Arrays are recognized as key
devices in present and future biomedical research.) Another way
of studying dynamic aspects of wetting is by tilting the substrate
or by increasing or decreasing the volume of the drop. Such stud-
ies typically measure the advancing and receding contact angle
and reveal its hysteresis; they are carried out on time scales of
several seconds, if not minutes. During that long duration, liq-
uid molecules might spread on the not-yet wetted surface, and
are considered as being the cause for the existence of a wetting
hysteresis [8]. Meanwhile, fast dynamic measurements of liquid
drops impinging onto surfaces can be carried out by high-speed
cameras. Since those show that the drops deviate strongly from
being spherical, the determination of the contact angles is more
difficult, but a single movie of the interaction of the drop onto
the solid surface is sufficient to measure the dynamic angles
of the liquids and to permit the determination of the advancing
and receding angles, at time scales coming close to the limit of
supersonic monolayer coverage.

To better understand the temporal evolution of the contact
angles, it would be very useful to determine the latter at sufficient
high speed and precision. We therefore need a rapid and robust
method to determine the angle of contact for the systematic study
of wetting properties on micro- and nano-structured surfaces
with homogeneous surface chemistry.
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Since global models have a limited validity, more local mod-
els may be preferable. The polynomial-fitting approach is one of
them, where a certain number of coordinates from the contour
of the drop near the contact points are extracted and fitted to a
polynomial of a certain degree. Unfortunately, the resulting con-
tact angle depends highly on the polynomial degree and on the
number of coordinates points [11]. Despite these delicate issues,
polynomial fitting remains the method of choice when consid-
ering non-axisymmetric drops, as shown in several comparative
studies [11,12].

In this paper, we propose an alternative method that retains
the better aspects of both local and global models. Our new ap-
proach, based on snakes, reconciles the fact that the shape of a
drop is global, with the fact that its angles of contact are local.
Conversely, a snake may reveal local contact angles while keep-
ing a global shape, because it depends on elasticity constraint
which maintain it as a global entity, even though the forces in-
fluencing it are of limited range [13].

Although the position of the contact points is of critical im-
portance when measuring an angle of contact, up to now it has
been mainly measured by hand because, when using the sessile-
drop method for characterizing surfaces, the position of the line
of contact may change from one experiment to the next due to
surface thickness or misalignments. In this paper, thanks to our
global knowledge of the shape of the drop, we have been able to
automatize the detection of the interface between the drop and
t
r
r
p
o
p

m
w
t
t
a

c
s
J
t
e
c
s

a
t
a
A
i
f
t
I
o
v

Nowadays, the technique of the sessile drop is the most-
idely used method to measure the contact angle. Due to the
ifficulties encountered to accurately estimate the contact an-
le, the domain has had a long-standing development. Direct
easurement using goniometer on telescope, protractor on pic-

ures (or its computer-based equivalent) are still widely used.
he major drawback of these methods are the subjectivity due

o the operator action. Therefore, it is often preferred to mea-
ure this angle indirectly. This can be done using either a global
odel of the drop or a local model at its contact points.
By approximating the contour as a sphere, a few points from

he profile of a drop is all it takes to easily obtain a contact angle.
ut, in many situations, neglecting gravity and using the spher-

cal assumptions is inaccurate because the sessile-drop method
s most often used in the presence of gravity (or of any other
eld that is constant and perpendicular to the surface). In such
onditions, if the surface is horizontal and homogeneous, one
ay consider the drop to be axisymmetric.
The ADSA method, which stands for axisymmetric drop-

hape analysis [9,10], has been thoroughly investigated and its
imitations are well-known [10]. It requires solving a Laplace
quation, often by numerical integration. After discretization
f the contour of a drop on an image, it searches for the best
aplace profile that corresponds to this contour. One may then
btain an accurate contact angle as well as a value for the capil-
ary constant. However, drops are rarely perfectly axisymmetric.

hen characterizing surfaces, the difference in contact angle on
ifferent sides of a drop is a precious indicator of surface het-
rogeneities. Therefore, the use of axisymmetric models is in-
erently limited because the axisymmetricity hypothesis is not
ulfilled in many cases.
he substrate it rests on. This interface may not be detected di-
ectly as it appears blurry and curved on the image. However, the
eflection of the drop from the surface allows us to determine the
osition of the contact points. Finally, we use the global shape
f the snake to accurately detect the profile of the drop at the
oints of contact.

In other words, the snake may be equivalent to the polyno-
ial fitting approach for the determination of the contact angle,
hile still using global knowledge of the drop to accurately de-

ermine position of the drop and contact points. This is why it is
he perfect tool to analyze images of entire drops profiles with
pparent drop reflection.

Traditionally, the analysis of drop shapes was based on dis-
rete contours which were obtained using simple edge detectors
uch as Sobel [14] or using more advanced methods such as
ensen-Shannon divergence-based methods [15]. Depending on
he image characteristics and on the segmentation method, the
dges of the drop were detected with various degrees of suc-
ess. In some cases, especially when the image is not sharp,
uch discrete approaches fail [16].

A recent variant of ADSA, called theoretical image fitting
nalysis (TIFA), deals with a continuously defined drop con-
our. It uses a gradient-based error function and is consequently
ble to handle smooth images (e.g., captive bubbles) for which
DSA fails [16]. First, a theoretical gradient image is built us-

ng a numerical solution to the Laplace equation; then, the error
unction is defined as the sum of the square of the difference be-
ween an experimental gradient image and the theoretical one.
n this approach, the contour is no more discretized, and the
ptimization takes into account continuously defined gradient
alues. This can extend the analysis of drop shapes to domains
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where the approaches based on edge detectors would fail be-
cause the images of the drops are too smooth.

To base segmentation on image energies is a very active re-
search domain. For example, it has been suggested that exploit-
ing the direction of the gradient could be useful in building some
form of gradient-based image energies [18]. (Indeed, the direc-
tion of the gradient is certainly relevant when it comes to mea-
suring angles.) Meanwhile, region-based energies are no less in-
teresting, in part because they are known to be very robust. This
is particularly true in the context of the analysis of drop shapes,
since measurements are realized most of the time in dedicated
environments and result in images with well-controlled pixel in-
tensities. Following advances in this domain, we suggest to use
a unified image energy that takes into account both a directional
gradient energy and a region-based energy [19].

Cubic-spline interpolation has already been used to sample
the contour of the drop [14]; in that approach, the role of inter-
polation is to allow for a sub-pixel refinement of the contour. In
another contribution [17], horizontal spline interpolation on the
gradient image has been used in the context of gradient energies.
In this paper, we too choose to consider that the image pixels
are the samples of a continuously defined image; but then, we
pay attention to ensure that all the subsequent operations we ap-
ply are consistent with this model, in accordance with sampling
theory. We propose to apply cubic-spline image interpolation to
obtain sub-pixel resolution, and, accordingly, to consider an im-
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minimum curvature position. Eventually, if a contour deviate
strongly from the minimum curvature, non-curvilinear splines
are suggested (Section 4.1). A correct representation of the con-
tour of a drop may thus be expected using only a limited number
of B-spline segments.

A cubic-spline parametric open curve in the x-y plane may
be described

∀t ∈ [0, M] :

{
x(t) =∑M+1

k=−1 cx,kβ
3(t − k)

y(t) =∑M+1
k=−1 cy,kβ

3(t − k)
(2)

and by its derivatives

∀t ∈ [0, M] :

{
x′(t) =∑M+1

k=−1 cx,kDβ3(t − k)

y′(t) =∑M+1
k=−1 cy,kDβ3(t − k),

(3)

where β3 is the cubic B-spline, where (cx,k, cy,k) are the coor-
dinates of the kth control point among M control points ck, and
where D is the differential operator d

dt
.

Note that a cubic spline does not interpolate its control points.
Using IIR filter, one may obtain interpolating equivalents of
control points: the knots, or nodes [22].

2.2. Boundary conditions

A cubic spline at regular breakpoints has a continuity C2: the
first and second derivatives are continuous. However, the curve
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ge energy based on a continuously defined contour of the drop.
ue to its good properties, a spline-based gradient operator may

lso be used [20].

. Spline-based representation of the drop contours

Parametric spline curves are very common in computer
raphics. A spline of order d1 is a piecewise-polynomial func-
ion consisting of concatenated polynomial segments of order d
hat are joined at breakpoints [21]. Such parametric curves are
ttractive because of their capability to represent simple shapes
ith just a few spans. In the particular form of splines called
-splines, the spline function is obtained as a sum of a finite
umber of basis functions. As each basis function has a finite
upport, this is a computationally efficient way of representing
plines.

.1. Parametric spline representation

Because of their minimum-curvature property, computational
ffectiveness, and simplicity, cubic B-splines have been cho-
en as interpolating basis function. Indeed, as B-spline produce
mooth curves, drops present as well only continuous regular
ontours. In addition, as the optimal solution for a curvature-
onstrained snake is a curvilinear cubic spline [22], a B-spline
nake may ideally represent the contour of resting drop in the
bsence of external forces. If a contour deviate from the mini-
um curvature property, the knots would deviate from their ideal

1 Note that d = n + 1, where n is the degree of the spline or polynomial.
f the drop must have a discontinuity of its first derivative in
rder to represent angles. Consequently, border conditions must
e applied to the spline at the contact points. In order to achieve
hat, triple control points may be used [21]. However, such an
pproach would introduce straight segments and a spurious pa-
ameterization [23].

Phantom vertices are additional control points at boundaries.
hantom vertices constrain the spline to interpolate the boundary
ontrol points as well as to have its tangent at these boundary
oints passing through the phantom point and its source [23]. In
rder to achieve such a goal, a phantom point added at one end
f the spline must be a prolongation of the spline by symmetry
hrough the last control point. We illustrate in Fig. 1 an end-
ertex interpolation that uses phantoms.

ig. 1. Illustration of end-vertex interpolation via phantom vertices. The phan-
om control point c−1 is obtained by a symmetry of c1 through c0.
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Fig. 2. Illustration of control-points parameterization. The native contour of the
drop is represented with the spline defined by the cks. The reflected contour of
the drop is represented with the spline defined by the cr

k
s. The mirror symmetry

line is defined by the position of c0 = cr
0 and cM = cr

M . It exhibits a tilt-angle
θh with the horizontal.

2.3. Symmetric model of drops using drop reflection

When the reflection of the drop on the substrate is present
in the image, the contact points may be detected automatically.
In order to do so, the drop spline should be extended by mirror
symmetry at its boundary control points. The contour of the drop
is now defined by one spline for its non-reflected contour, and
by one spline for its reflected contour. The non-reflected drop
profile is defined by{

xsup(t) =∑M+1
k=−1 cx,kβ

3(t − k)

ysup(t) =∑M+1
k=−1 cy,kβ

3(t − k),
(4)

where (cx,k, cy,k) is the coordinate of the control point for
the non-reflected profile spline, and where (cx,−1, cy,−1) and
(cx,M+1, cy,M+1) are the phantoms edge control points coordi-
nates. The reflected profile of the drop is defined by a symmetry
of the control points from the original profile, as in{

xinf(t) =∑M+1
k=−1 cr

x,kβ
3(t − k)

yinf(t) =∑M+1
k=−1 cr

y,kβ
3(t − k),

(5)

where (cr
x,k, c

r
y,k) is the coordinate of the control point for the re-

flected profile spline, which is obtained by a symmetry transform
of (cx,k, cy,k), and where (cr

x,−1, c
r
y,−1) and (cr

x,M+1, c
r
y,M+1) are

the coordinates of the phantom control points of the reflected

3.2. Unified image energy

3.2.1. General formulation
Optimization schemes based on gradient energies are very

accurate but their major drawback is their convergence radius.
The convergence radius may be increased by first applying a
smoothing filter to the image. On one hand, this may result in a
loss of details and a decrease in accuracy. On the other hand, sta-
tistical region-based image energies provide good convergence,
but less accuracy. In order to benefit from the advantages of
both methods, a unified image energy has been proposed [19].
This approach uses a new gradient energy that takes into ac-
count the gradient direction and that has the advantage of being
parameterization-invariant.

Considering a simple surface S with a contour delimited by
C, the gradient-based image energy is given by

Eedge =
∮

C

k · (∇f (r) × dr), (6)

where k denotes the unit orthogonal vector to the image plane,
and where ∇f (r) is the gradient of the image f at the point r of
the curve. We illustrate in Fig. 3 this integration process, where
n is the inward normal vector.

Using Green’s theorem, this can be expressed as the surface
integral
profile. (Note that c0 = cr
0 and cM = cr

M .) We illustrate in Fig. 2
a model of the drop that includes the phantoms at the boundary
and the reflection defined by the two edge control points.

3. Evaluation of the image energy

3.1. Image interpolation

In order to minimize the influence of the discretization, it
is suggested to interpolate the image of the drop. B-spline in-
terpolation offers good quality at a limited computational cost.
Consequently, cubic-spline basis functions have been used. The
interpolating coefficients should first be computed. This can be
done using efficient methods [20]. Getting an image value at
any position necessitates the evaluation of a limited window of
neighboring pixels (4 × 4 for cubic splines).
Eedge =
∫∫

S

∇ · ∇f (s)︸ ︷︷ ︸
Te{f }

ds, (7)

where ∇· is the divergence operator.
The region-based energy discriminates an object from its

background by taking in consideration the pixel intensities. It
is given by

Eregion =
∫∫

S

Tr{f }(s) ds, (8)

where Tr{f } is the probability-distribution image.
In order to use region energies, one needs to establish the

statistical value of the drop and of the background. Considering
that sessile drops are often taken in a dedicated environment
under standard lighting conditions, this may be determined only
once. If the probability distribution is not known, it may be
estimated from a temporary contour during optimization.

Fig. 3. Gradient and normal to the curve.
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Having expressed the gradient energy as a surface integral,
the unified image energy may be obtained as

Eimage =
∫∫

S

fu(s) ds, (9)

where fu = α Te{f } + (1 − α) Tr{f }. Using Green’s theorem
again, this unified energy may also be rewritten as the contour
integral

Eimage =
∮

C

fy
u (x, y) dx = −

∮
C

fx
u (x, y) dy, (10)

where

fy
u (x, y) =

∫ x

−∞
fu(x, τ) dτ (11)

fx
u (x, y) =

∫ y

−∞
fu(τ, y) dτ. (12)

3.2.2. Spline parameterization of drops
Let us define Csup and Cinf so that they represent the non-

reflected profile and the reflected profile, respectively, with
C = Csup ∪ Cinf. The image energy then becomes

Eimage =
∫

Csup

fy
u (x, y) dx +

∫
Cinf

fy
u (x, y) dx (13)

= −
∫

fx
u (x, y) dy −

∫
fx

u (x, y) dy, (14)
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3.3.2. Derivation for the axis of symmetry
The positions of c0 and cM are of great importance as they

define the position of the whole reflected profile. Furthermore,
the position of these points is greatly influencing the contact
angle. Consequently, in order to let them adjust to the image
energy in the best way, and considering that the symmetry axis
is almost horizontal, only their vertical derivative is affected by
the symmetry derivative.

The position (xh, yh) is defined in the middle of the control
points c0 and cM . The angle of the axis of symmetry with the
horizontal may then be written as

tan θh = cy,M − cy,0

cx,M − cx,0
. (18)

We can derive the image energy with respect to the position of
these boundary control points as follows:

∂Eimage

∂cy,0
= ∂Eimage

∂yh

∂yh

∂cy,0
+ ∂Eimage

∂θh

∂θh

∂cy,0
(19)

∂Eimage

∂cy,M

= ∂Eimage

∂yh

∂yh

∂cy,M

+ ∂Eimage

∂θh

∂θh

∂cy,M

, (20)

where

∂yh = ∂yh = 1
. (21)
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Csup Cinf

r, using the parametric representation,

image =
∫ M

0
fysup

u (xsup, ysup)
∂xsup

∂t
dt

+
∫ M

0
fyinf

u (xinf, yinf)
∂xinf

∂t
dt (15)

image =
∫ M

0
fxsup

u (xsup, ysup)
∂ysup

∂t
dt

+
∫ M

0
fxinf

u (xinf, yinf)
∂yinf

∂t
dt. (16)

.3. Energy derivation

.3.1. Derivation for normal control points

Using (16) and
∂f x

u

∂x
= fu, the derivative of the image energy

ay be calculated with respect to the horizontal position of a
ontrol point as

∂Eimage

∂cx,k

= −
∮

C

fu
∂x

∂cx,k

dy

= −
∫ M

0
fu

∂xsup

∂cr
x,k

∂ysup

∂t
dt −

∫ M

0
fu

∂xinf

∂cr
x,k

∂yinf

∂t
dt.

(17)

Note that the computation of
∂Eimage

∂cx,k

and of
∂Eimage
∂cy,k

can be

ealized efficiently (see Appendix A).
∂cy,0 ∂cy,M 2

sing (18), we finally get

∂θh

∂cy,0
= − ∂θh

∂cy,M

= cos2 θh

cx,0 − cx,M

. (22)

he efficient computation of
∂Eimage

∂yh
and of

∂Eimage
∂θh

is reported in
ppendix B.

. B-Snake

Active contours, or snakes, are widely used in computer-
ssisted tools for segmentation. Some of their applications are
edical image analysis or feature tracking in video sequences.
nakes were originally defined as a spline energy minimization
nder internal and external forces [13]. These forces provide at
he same time a way to ensure the smoothness of the curve and
way to adapt to specific features. B-spline snakes (B-snakes)

re a particular category of snakes that use a parametric B-spline
epresentation of the curve. While having the same basic philo-
ophy than snakes, they incorporate the smoothness constraint
n an implicit fashion. Thus, they provide a very intuitive model,
hich also requires fewer parameters and is consequently faster.
-snake formulation is further justified by the fact that the opti-
al solution for a curvature-constrained snake is a cubic spline
hich may be easily represented using B-spline basis functions

22].
In our implementation, external forces are governing the im-

ge energy from Section 3.2. A re-parameterization energy is
equired for the snake to keep its smoothness (internal energy),
hich we describe now.
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4.1. Reparameterization energy

It has been determined that the number of pixel coordinates
taken in consideration in a polynomial-fitting approach is of
particular importance [11]. A B-spline is nothing else than a
piecewise polynomial, so it is very similar to the polynomial
fitting approach for the determination of a contact angle. We can
thus expect that the contact angle measured with B-spline will
be dependent on the length of the contour taken in consideration.
With the phantom boundary conditions, a contact angle depends
on the interpolating control point at the edge as well as on the
previous control point. Consequently, the control of the distance
between knots at the contact points is of particular importance.

A drop with no external forces applied tends to minimize its
curvature and takes a spherical shape. It has been shown that the
optimal solution for a curvature-constrained snake is a curvilin-
ear cubic-spline snake [22]. In order to increase the curvature
of a snake, the distance between knots may be reduced. Con-
sidering that a sessile drop under gravity presents an increased
curvature near the substrate interface, it is interesting to decrease
the distance between knots near the contact points. Finally, in a
contact angle measurement application, it is more important to
follow closely the contour of the drop at its contact points than
at its apex.

Consequently, a progressive (non-uniform) repartition of the
control points is constrained and a curve velocity with linear
v

d

w
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∀
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E

s

we normalize them at each iteration. During optimization, we
adjust the step length with respect to the variation of displace-
ment from one iteration to the next. Convergence is reached
when the step length is below a threshold, and after a prescribed
number of iterations during which the contact angles have not
evolved (above a certain threshold). The convergence criterion
on the contact angle may be adjusted but a typical value is 0.01◦.
In this way, we achieve a finer control of the convergence of the
critical points for the contact angle.

Before actually running the optimization algorithm, an ini-
tialization contour is required. This contour may be manually
defined placing roughly a few knots or an automatic approach
may be adopted. We successfully used simple image size consid-
erations for automatic initialization in a certain number of stan-
dard drop images. However, using more advanced initialization
approaches could allow producing an initialization scheme of
wider applicability. From an initialization spline, the detection
of the contour of the drop is realized by a two-step evolution
procedure. First, the spline is evolved in a fast-snake mode with
a limited number of knots and a variable sampling period to
globally detect the drop shape. Then, a finer spline is evolved
to accurately detect the contour of the drop. In this optimization
step, the number of knots is dynamically adjusted according to
the desired knot-spacing at interface and the sampling period
is set to the unit pixel. The desired distance between knots at
the interface is an important parameter of the algorithm and it
i
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ariation is adopted as follows:

(t) =
√

(x′(t))2 + (y′(t))2 = d̄

(
1 + γ − 2 γ

∣∣∣∣2 t

M
− 1

∣∣∣∣
)

(23)

ith 0 ≤ γ < 1, where d(t) is the norm of the velocity, and where
¯ is the average velocity. Note that, if γ = 0, the parameteriza-
ion is curvilinear.

The internal energy penalizes the deviations of the snake from
ts ideal parameterization. It is given by

int =
∫ M

0

(√
(x′(t))2 + (y′(t))2 − d(t)

)2

dt (24)

nd can be differentiated with respect to the control points po-
ition, as in

∂Eint

∂cx,k

=
∫ M

0
2

(
1 − d(t)√

(x′(t))2 + (y′(t))2

)

× x′(t) Dβ3(t − k) dt. (25)

1 < k < M − 1

.2. Optimization

The final snake energy to be minimized is given by

= Eimage + Eint. (26)

Following the results from [19], we are using the simple
teepest-descent algorithm. In order not to try a too-big step,
s more logical to set this parameter rather than to set the total
umber of knots.

This simple optimization scheme yields satisfactory results
t a reasonable speed (a few seconds).

. Implementation and application

.1. Software

The method described in this article has been programmed as
plugin for ImageJ, which is a free open-source multi-platform

ava image-processing program [24]. Our plugin is independent
f any imaging hardware and, thanks to ImageJ, any common
le format may be used for the drop picture. This plugin is called
ropSnake and is made freely available [1].

.2. Application examples

In the following examples, contact angles have been mea-
ured using an image energy based solely on the gradient. The
elative good contrast of those images did not justify the use
f a region component. However, region-based energies are no
ess attractive and should demonstrate their full power in low-
ontrast applications where repeated measurements in similar
onditions are performed so that an accurate pixel probability
istribution can be obtained.

.2.1. Measurement of a contact angle with automatic
nterface detection

In order to demonstrate the new possibilities offered by our
ethod, it has been tested on tilted drops as represented on Fig. 4.
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Fig. 4. Drop of ultra-pure water (resistivity 18 Mohms cm, produced by a Mil-
lipore MilliQ device, 7–8 �l) on a vertical PMMA substrate (by Goodfellow,
research grad). Picture is courtesy of M. Brugnara, Polymers and Composites
Laboratory, University of Trento, Trento, Italy.

In the setup used, the camera is fixed to the sample holder which
can be rotated. Due to a small misalignment of the camera hori-
zontal axis with the substrate, the line passing through the con-
tact points reveals a small tilt angle with respect to the horizontal
axis of the image. There is a limited drop reflection on the sub-
strate. This image was taken with a digital camera (Nikon995)
connected to a 10× lens. The drop had back-light illumination.
After selection of the relevant part of the image, the size of the
image was 924 × 650 pixel.

The contour of the drop was determined using the follow-
ing parameters: fast snake with 6 knots after manual initializa-
tion, Laplacian smoothing-filter radius of 2.0 pixel, gradient-
only image energy, knot-spacing constraint at interface 20
pixel, knot-spacing ratio 2.0 (γ = 1/3), energy normalization
Eint/Eimage = 0.3, convergence criterion 0.01◦. The average
computation time was 3 s on a Pentium IV 2 GHz.

The detected drop contour is represented in Fig. 5. The mea-
sured contact angles for this example are 98.964◦ and 66.486◦.
The detected camera tilt angle was 0.2◦.

F
o
s

Fig. 6. Advancing angles. The dots represent the positions of the knots. The
tangents at the contact points are represented by the lines. CA stands for contact
angle.

5.2.2. Measurement of contact angles for projected drops
As a second example to illustrate the potential of our method,

we show contact angle measurements on projected, and therefore
deformed, water droplets. The droplet deformation originates
mainly from the inhomogeneous detachment of the droplet from
the liquid supply needle by an air flow. The air flow is guided
along the needle using a tube that has a diameter slightly larger
than the needle. The air flow is launched for 50 ms by an elec-
tric valve operated by a function generator. The pressure in the

F
t
a

ig. 5. Detected drop contour and contact angles. The dots represent the position
f the knots. The tangents at the contact points are represented by the lines. CA
tands for contact angle.
ig. 7. Receding angles. The dots represent the positions of the knots. The
angents at the contact points are represented by the lines. CA stands for contact
ngle.
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air tube is adjusted between 80 and 135 mbar, which results in
a speed of detached droplet of 0.28 and 0.8 m/s, respectively.
The outer needle diameter is 260 µm, and the droplet diameter
ranges from 1 to 1.4 mm. The flight and the impact of the droplet
on the surface was followed by a high-speed camera (Photron
Fastcam) at a rate of 10,000 image/s. The droplet shapes are
changing during flight, at impact, and bouncing. The droplet
edges are then partially out of focus, making them blurry and
noisy. The snake-based algorithm allows the exact determina-
tion of contact angles from blurred images. The development of
dynamic contact angles at surface impact (advancing and reced-
ing contact angles, Figs. 6 and 7, respectively) can therefore be
studied in detail.

The contour of the drop was determined using the follow-
ing parameters: fast snake with 5 knots after manual initializa-
tion, Laplacian smoothing-filter radius of 2.0 pixel, gradient-
only image energy, knot-spacing constraint at interface 20
pixel, knot-spacing ratio 2.0 (γ = 1/3), energy normalization
Eint/Eimage = 0.3, convergence criterion 0.01◦.

5.3. Robustness experiments

In order to evaluate the robustness of our image-energy and
contact angle-measurement approach, various filters have been
applied to synthetic drop data. The synthetic data set consisted of

Fig. 9. Contact angle error vs. applied noise.

Fig. 10. Image of a synthetic drop with perfect reflection.

Logically, the contact angles near 90◦ should not be much
affected by the smoothing filter. Angles above 90◦ tend to be in-
creased while angles below 90◦ tend to be decreased. It should
be noted that the measured contact angles remain within a rea-
sonable interval of ±0.36◦ for a Gaussian-filter radius of up to
2 pixel.

5.3.2. Robustness to noise
Using the same synthetic data, we have assessed the effect

of various noise levels on the measured contact angle. Gaussian
noises of increasing standard deviation have been applied to
the data set. The contact angles have then been measured and
compared to their original value. The average contact angle error
is represented in Fig. 9.

The contact angle error increases as the noise influence is in-
creased. However, thanks to the robust image energy, it remains
reasonable. The average contact angle error is still less than 1◦
for applied noise with a standard deviation of up to 100 (pixel
span: 8 bit).

For illustration purposes, one image of the synthetic data is
represented in Fig. 10. Upon addition of the maximum amount
of noise, it corresponds to Fig. 11.

F
o

ig. 11. Image of a synthetic drop with perfect reflection, with an added noise
f standard deviation 100 (pixel span: 8 bit).
three binary images of spherical drops with perfect horizontal
symmetry. All the drops had a maximum radius between 300
and 400 pixel. In order to assess the contact angle dependence,
each synthetic drop had a different contact angle (29◦, 81◦, and
130◦).

5.3.1. Smoothness dependence
To evaluate the robustness of our method, various Gaussian

filters have been applied to the synthetic data set. We have mea-
sured the angles of contact on the resulting images and we have
compared them to the measurements on the original image. We
report the results in Fig. 8.

Fig. 8. Measured variation of the contact angles vs. smoothing-filter radius for
different initial contact angles.
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Fig. 12. Contact angle variation vs. inter-knot distance. The contact angle vari-
ation is given in reference to the contact angle at 20.9 pixel inter-knot distance.

5.4. Inter-knot distance

The contact angle dependence on the distance between knots
has been assessed on the drop from Section 5.2.1. Thanks to the
variety of contact angles that this drop provides, we can evaluate
the influence of the inter-knot distance for angles below and
above 90◦ on the same image. In order to represent clearly the
effect of a lack of control points, the image from Section 5.2.1
has been resized to 231 × 162. Indeed, with a smaller resolution,
there is less control points for a same inter-knot distance. As the
distance between knots may not always be constant around the
drop profile, the distance between knots at the contact points
is taken into consideration. The contact angle variation with
respect to the distance between knots at the contact points is
represented on Fig. 12.

Fig. 12, is giving contact angle evolution with progressing
inter-knot distance. The contact angles for a 20.9 pixel knot dis-
tance have been taken as reference subsequently. At very small
inter-knot distance, both contact angles could be visually re-
jected. Indeed, due to the discrete property of images, consid-
ering a too short segment of the contour in the contact angle
determination may result in erroneous results (in spite of the
sub-pixel interpolation). In addition, due to the limited contrast
at the contact points, the contact angle may become uncertain for
too small inter-knot distances. This is particularly visible for the
small contact angle on Fig. 12. At very large inter-knot distance,
w
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i
d
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o
m
d
l
l
v

the curve corresponding to the largest contact angle is decreasing
much faster.

With reasonable inter-knot distances, a limited dependence
of contact angles on inter-knot distance is observed. As a con-
sequence, it is important to keep this parameter fixed for all
measurements within a study. The inter-knot distance should be
set above a minimum value allowing a reasonable pixel aver-
aging. However, it should allow a sufficient number of knots in
order to correctly follow the drop contour. The latter point rep-
resents normally no problem and is easy to ensure (10 knots are
normally enough). We typically use an inter-knot distance of 20
pixel in our studies.

5.5. Software evaluation

Comparison between contact angle measurements methods
is a challenging task. Indeed, different methods make differ-
ent assumptions (e.g., axisymmetricity), necessitates different
inputs (e.g., automatic or manual positioning of the substrate
level) and can give extra informations (e.g., capillary constant
with ADSA). In addition, results can be highly dependent on
a particular software application and a same drop model can
be used with several edge detection methods sometimes. How-
ever, in order to give an evaluation of the implementation of
the method, comparisons have been performed with other meth-
ods for which the software implementation was available to us.
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i

e also observe an increased contact angle variability when the
nots can no more represent correctly the drop contour. For an
nter-knot spacing of about 60 pixel, there was only 5 knots to
efine the drop contour at this resolution. The maximum limit
or the inter-knot distance is related to the minimum number
f knots required to accurately represent a drop contour. This
inimum number of knots is independent of the resolution but

epends on the total curvature of the drop. Thus, the maximum
imit on the inter-knot distance may be more easily reached at
imited resolution or large contact angles. We see indeed that at
ery high inter-knot distances both contact angles decrease, but
hus, this subsection cannot claim to compare methods but only
oftware applications based on different methods. In this sub-
ection, we refer to axisymmetric for our implementation of
n axis-symmetric method based on Laplace equation. Our ax-
symmetric implementation was done as a plugin for ImageJ.
t is largely based on [10,9] but uses a segmentation method
epending on thresholded gradient. This latter point results in
slight overestimation of the contour and of the contact angle.
he measurements based on the polynomial method were per-

ormed with a commercial software (Windrop++ V4.10, GBX,
omans-sur-Isère, France).

Dynamic contact angles were measured on the same sequence
f a drop of water on an isotropic silicium substrate. Images were
cquired on a commercial contact angle meter (Digidrop, GBX,
omans-sur-Isère, France). For Dropsnake and the axisymmet-

ic method, the initialization on each frame but the first was
sing the solution of the preceding frame. Results are presented
n Fig. 13.

Considering the offset of our axisymmetric implementation,
bsolute contact angle considerations may difficultly be taken
nto account. However, the stability of the measurements may
e evaluated. The DropSnake curve is relatively smooth and its
easurements are much more stable than measurements from

he other methods. In the area of receding angle (frame 270–320)
tandard deviations were measured to be 0.2◦, 0.6◦ and 1.3◦, re-
pectively for DropSnake, the axisymmetric and the polynomial
ethod. It should be noted as well that according to DropSnake

nd the polynomial method, the drop is not perfectly axisym-
etric although it was supposed to be. This latter aspect appears

edundantly in our studies as isotropicity is hard to achieve dur-
ng surface preparation and contact angle measurement.
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Fig. 13. Comparison of contact angle measurement methods on a sequence of images (370 images). (a) Snake method using our implementation on ImageJ, the
DropSnake plugin presented in this paper, 370 measures of the left angle (symbol �) and right angle (symbol �). (b) Axisymmetric method using our implementation
on ImageJ: 370 measures of one angle (symbol �). (c) Polynomial method using a commercial software (GBX Windrop++ V4.10): 370 measures of the left angle
(symbol �) and right angle (symbol ©). (d) Hand-made method: 10 measures of the left angle (symbol �) and right angle (symbol ♦). For visual simplification,
symbols are represented every 5 samples.

5.6. Experiments conclusion

Using the method described in this article, the contour of
the drop as well as the interface (vertical level and tilt) may be
automatically detected. A limited presence of drop reflection is
sufficient to ensure accurate interface detection. Strongly non-
axisymmetric drops and non-spherical drops may be analyzed
successfully.

The method proved to be very robust and little dependency on
parameters has been observed (with the exception of the inter-
knot distance discussed in Section 5.4). It presented a limited
contact angle dependence when smoothing filters were applied.
However, this is already a great improvement compared to meth-
ods based on the discretization of the contour of the drop since
they fail when confronted to smooth images. Our method also
presented excellent inherent robustness to noise. Thus, these
good properties allow the method to be used with a very broad
range of image types. The inter-knot distance is an important pa-
rameter influencing the contact angle results. As a consequence,
it is of particular importance to keep this parameter at a reason-
able value and constant within a study.

6. Conclusion

A new image energy function based on statistical region and
g
s
s
r
o
a

methods based on a discretization of the contour. The snake-
based approach is a novel basis for measuring contact angles of
general drops. As it does not make limiting assumptions on the
shape of the drop, it may be applied to drops that do not follow
any global model. This allows the method to be suitable to a very
wide range of applications (e.g. non-axisymmetric drops, tilted
drops, projected drops). It is based on a cubic B-spline snake
whose minimum-curvature property allows a good description
of drop contours with a limited number of control points. In
essence, it is similar to the polynomial-fitting approach, but, due
to its elasticity, the snake also takes advantage of the global shape
of the drop. Thanks to its unifying approach, the snake method-
ology offers the best tradeoff between the use of the general
drop shape to guide the detection of the contour of the drop, and
the use of an algorithm with local behaviour to compute contact
angles. As a consequence of the definition of a symmetric spline
model of the drop, we were able to detect the offset and tilt angle
of the line of contact points.
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Appendix A. Derivative computation for normal control
points

d

radient information has been applied to the domain of drop
hape analysis. This energy function, combined with cubic-
pline image interpolation, provides a framework for the very
obust and highly accurate detection of the contour of the drop,
ver a broad range of images. The first results obtained with this
pproach are already promising and the applicability surpasses
Supposing θh small, the following approximation may be
one:
∂xinf

∂cx,k

= ∂xinf

∂cr
x,k

,
∂yinf

∂cy,k

= − ∂yinf

∂cr
y,k

.
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The energy derivative (17) may be rewritten as:

∂Eimage

∂cx,k

= −
M+1∑
l=−1

[
cy,l

∫ M

0
fu

∂xsup

∂cx,k

Dβ3(t − l)dt

− cr
y,l

∫ M

0
fu

∂xinf

∂cr
x,k

Dβ3(t − l)dt

]
(A.1)

Note that:
∂xsup

∂cx,k

= ∂ysup

∂cy,k

= β3(t − k) ∀ 2 ≤ k ≤ M − 2 (A.2)

and due to the phantom edge definition:

∂xsup

∂cx,1
= ∂ysup

∂cy,1
= β3(t − 1) − β3(t + 1)

∂xsup

∂cx,0
= ∂ysup

∂cy,0
= β3(t) + 2β3(t + 1)

∂xsup

∂cx,M−1
= ∂ysup

∂cy,M−1
= β3(t − (M − 1))

− β3(t − (M + 1))
∂xsup

∂cx,M

= ∂ysup

∂cy,M

= β3(t − M) + 2β3(t − (M + 1))

(A.3)

The spline representing the reflected contour has identical
derivatives for its respective control points.
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The image derivative energy with respect to the angle θh may
be written as an average of its computations using f

y
u and fx

u :

∂Eimage

∂θh
= 1

2

∫ M

0

(
∂f

y
u

∂y

∂yinf

∂θh
+ ∂f

y
u

∂x

∂xinf

∂θh

)
∂xinf

∂t
dt

+ 1

2

∫ M

0

(
∂f x

u

∂x

∂xinf

∂θh
+ ∂f x

u

∂y

∂yinf

∂θh

)
∂yinf

∂t
dt (B.2)

Which can be rearranged as:

∂Eimage

∂θh
= 1

2

∫ M

0

[(
∂f

y
u

∂y

∂xinf

∂t
+ ∂f x

u

∂y

∂yinf

∂t

)
∂yinf

∂θh

+
(

∂f
y
u

∂x

∂xinf

∂t
+ ∂f x

u

∂x

∂yinf

∂t

)
∂xinf

∂θh

]
dt (B.3)

The terms ∂f
y
u

∂x
and ∂f x

u

∂y
may be computed, however that would

require twice the computation over the whole image. In practice,
if we are close enough to the drop, the path should remain parallel
to the contour and its energy image. That means that the product
of the differentiation of the energy image in a direction and the
displacement in the same direction should remain small. Hence,

we neglect the products ∂f x
u

∂y
∂yinf
∂t

and ∂f
y
u

∂x
∂xinf
∂t

.
The computed derivative is then:
Note that the cubic spline basis function β3 as well as its
erivative Dβ3 have a finite support and the integral in (A.1)
oes not need to be computed over its whole range. However,
are should be taken with the boundaries.

Note also that the integral (A.1) may be calculated as a finite
um. Although the phantom border conditions are complicat-
ng the notation, the spline basis function product may be pre-
alculated. These computation considerations were thoroughly
nvestigated in [19], and the phantoms border conditions are only

aking things (and notation) a little bit more complicated.
Similarly, using (15), the y-axis derivative may be obtained:

∂Eimage

∂cy,k

=
M+1∑
l=−1

[
cx,l

∫ M

0
fu

∂ysup

∂cx,k

Dβ3(t − l)dt

− cr
x,l

∫ M

0
fu

∂yinf

∂cr
x,k

Dβ3(t − l)dt

]
(A.4)

ppendix B. Derivative computation for the axis of
ymmetry

Here again, it is supposed that θh is small:
∂yinf
∂yh

= 2 and ∂xinf
∂yh

= 0

Hence:

∂Eimage

∂yh
=
∫ M

0

∂f
y
u

∂y

∂yinf

∂yh

∂xinf

∂t
dt

= 2
M+1∑
l=−1

cr
x,l

∫ M

0
fuDβ3(t − l)dt (B.1)
∂Eimage

∂θh
= 1

2

∫ M

0

[
∂f

y
u

∂y

∂xinf

∂t

∂yinf

∂θh
+ ∂f x

u

∂x

∂yinf

∂t

∂xinf

∂θh

]
dt

(B.4)
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