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Image averaging provides a power/id method for enhancing the yield of interpretable information from electron 
micrographs c?f biologieal macromolecules. However, as originally conceived, the full benefit of averaging is 
achieved only with perJectly ordered two-dimensional crystals. More recent developments, reviewed here, allow 
one to rect([y disordered lattices, straighten randomly bent .filaments, and combine multiple images of 
./ree-standing particles, thus extending the advantages ~2[' image averaging to virtually every class of 
macromolecular specimen. 
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Introduction 

Image averaging is one of the most basic, widely used, 
and ultimately informative, image processing operations 
applied to biological electron micrographs. Averaging 
results in improved signal-to-noise ratios, producing 
images that are better defined, and thus more readily 
interpretable, particularly in the high spatial frequency 
range where their finest details are delineated. The basic 
premise underlying image averaging is that, in a set of 
different images of molecules of the same kind, the signal 
component is common to all, whereas the noise varies 
randomly from image to image: thus, averaging should 
reinforce the signal and suppress the noise 1. In practice, 
the assumption that biological electron micrographs are 
compromised only by random additive noise is certainly 
an oversimplification, although there is at least one 
important area of application - low-dose imaging of 
unstained frozen-hydrated specimens - in which it 
appears well founded. Here, the noise arises primarily 
from electron statistics, and may be eliminated by 
averaging. 

This caveat notwithstanding, a correctly averaged 
image generally has the great advantage of providing a 
reproducible, well defined, representation of the specimen, 
to serve as a basis for inferences concerning its molecular 
structure. Interpretation is, of course, subject to due 
caution with respect to possible effects on the molecule's 
native structure of specimen preparation, radiation 
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damage, or the mode of image formation 2. There are also 
potential pitfalls in the averaging process itself. For 
instance, if the molecules are not all intrinsically alike, 
their global average may be expected to contain 
artifactual features. Furthermore, if the images are not 
perfectly aligned, averaging them will result in smearing, 
thus degrading the finest structural details which the data 
are potentially capable of yielding. However, as explained 
below, it is usually possible to avoid such sources of error 
by careful optimization of the averaging process. 

Image averaging in real space and in Fourier space 

With crystalline specimens, image averaging may be 
performed either in real space or in Fourier space. In real 
space, it is performed directly on a pixel-by-pixel basis. 
In the crystal's Fourier transform, the signal is 
concentrated into discrete, regularly spaced, reflections 
(the reciprocal lattice), whereas the noise is distributed 
throughout the diffraction plane. On the reciprocal lattice, 
therefore, the signal-to-noise ratio is locally very high, 
and noise may be greatly reduced by multiplying the 
Fourier transform by a numerical filter function that sets 
the noisy off-lattice reflections to zero. Finally, the 
averaged (filtered) image is obtained by inverse Fourier 
transformation. 

These two approaches are formally equivalent: in the 
Fourier-filtered image, each motif (i.e. repeating element) 
is a local average in which the weightings depend on the 
relative sizes of the filter windows and the reciprocal 
lattice constants 3'4. In practice, however, there are certain 
situations in which it is advantageous to use one method 
rather than the other. For instance, Fourier filtering is 



to be preferred for images that have low contrast or low 
signal-to-noise ratios, since it is easier in such cases to 
index the reciprocal lattice in the diffraction pattern than 
to identify the spacings of the basic repeat in the original 
image. Furthermore, if two or more crystalline sheets are 
superposed, the resulting Moir6 pattern can be very 
complex, making it difficult to detect the basic repeat. In 
the diffraction pattern, the reciprocal lattices of the 
different crystalline layers are separated from each other 
(provided that the layers are not in the same orientation), 
and so each layer may readily be filtered out 5. On the 
other hand, with real space averaging, one has greater 
flexibility in assigning the weights used in averaging unit 
cells, and it is easier to handle crystalline patches that 
are small or irregularly shaped. Furthermore, and most 
importantly for the present discussion, it is easier in real 
space to compensate for spatial disordering which will 
otherwise degrade the averaged image. 

Spatial disorder in real space and Fourier space 

Crystalline specimens are liable to several different 
kinds of disorder, such as long-range disorder involving 
the meandering of lattice-lines, short-range disorder in 
which each copy of the motif is randomly displaced from 
its ideal lattice position, liquid-like disorder, etc. 6. The 
effects of spatial disorder on the diffraction pattern are 
that the reciprocal lattice reflections become more diffuse, 
to an extent that depends on the severity of the 
disordering. Moreover, this effect increases progressively 
as one proceeds to higher spatial frequencies (the 
outermost reflections), and ultimately has the effect of 
curtailing the radial limit to which these reflections 
extend, i.e. the effective resolution of the data. In 
Fourier-based image averaging, diffuse reflections require 
the use of relatively large windows in the filter function. 
In consequence, only a limited amount of averaging is 
achieved and thus only a relatively small improvement 
in the signal-to-noise ratio (Figure 1). Alternatively, one 
could include non-uniform 'temperature factors '7 in the 
filter function that amplify the outer reciprocal lattice 
reflections to compensate for their disorder-induced 
attenuation. However, the precise values that should be 
used for these temperature factors depend on exact 
knowledge of the nature of the disorder - information 
that is not readily available. Moreover, there is no way 
to restore the high resolution information present in outer 
reflections that have been completely smeared out. In 
contrast, with the real-space representation of the image, 
it is possible to use interpolation procedures of various 
kinds to correct for spatial disordering. In this way, the 
correction procedure is tailored to the specific disorder 
present in each individual specimen. 

Imperfectly ordered two-dimensional arrays 

In general, the specifics of the disorder present in a crystal 
vary stochastically from specimen to specimen. However, 
crystals of the same kind tend to exhibit the same overall 
characteristics in their susceptibility to disorder, which, 
as noted above, may be of several different kinds. In 
general, this disorder will depend on the rigidity (and 
homogeneity) of the repeating elements in the crystal, 
and the strength and regularity of the interactions 
between them, as well as on the stresses imposed during 
specimen preparation and imaging. With a view to 
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computational correction, one may distinguish two types 
of disorder: rigid-body displacements of the motifs from 
their ideal lattice positions; and distortions in which the 
motifs undergo plastic deformation. In the former case, 
the correction strategy preserves the sampling rate of the 
digital image, while changing the sampling sites to 
compensate for local displacements; in the latter, the 
sampling rate is varied to correct for local compression 
or stretching of the array. 

Correlation alignment 

In both cases, the use of cross-correlation and auto- 
correlation functions 8 is vital to the correction process. 
They provide a quantitative, objective, method for precise 
localization of each copy of the motif. Starting with a 
reference motif which may be either a computer- 
generated model or, more commonly, an image obtained 
by filtering or averaging the array directly (and 
consequently, of relatively low resolution) - its cross- 
correlation function with the experimental image of the 
disordered array is calculated. This function contains a 
set of local maxima whose positions mark the points 
where the reference motif is optimally aligned with the 
individual motifs in the array, thus specifying their actual 
locations*. Individual motifs are then extracted by 
interpolation, carried out in such a way that the centres 
of the interpolated motifs coincide with the cross- 
correlation maxima. These images are then averaged to 
provide an improved reference motif, and the cycle 
repeated. 

In the simplest case, only translational offsets are 
corrected 9. At the next level of sophistication, orienta- 
tional changes are also made. To correct for slowly 
varying changes in orientation, the maxima of the 
translational cross-correlation function may be used as 
reference points to re-define the lattice-line directions. 
Alternatively - and this is the method of choice when 
relatively large or random orientational offsets are 
encountered - one may convert both the reference motif 
and the individual motif of current interest into polar 
coordinate systems centred on their respective centres of 
mass, and utilizing equally spaced sampling around a set 
of concentric annuli. The cross-correlation function is 
then calculated between corresponding pixels on each 
annulus. Their relative angular offset is then given by the 
angle at which this function, summed over all the annuli, 
is maximized. Successive cycles of translational and 
orientational refinement are performed, starting with 
translation, until convergence is achieved. These final 

* The cross-correlation function is essentially the sum of cross-products 
between the pixels of one image and the corresponding pixels of the 
other image, calculated for all possible relative displacements. In the 
auto-correlation function, the image is combined in this way with itself. 
To take the simple example of the autocorrelation of a small 
one-dimensional image (a, b, c), the three cross-products to be 
considered are (a 2 + b 2 + c2), (ab + bc + ca), and (ac + ba + cb). The 
maximum clearly occurs when the image is aligned with itself, rather 
than when cyclically permuted, since 

(a 2 q- b 2 + C 2 ) > / ( a b  + bc + ca) 

on account of the triangle inequality. For larger images in more 
dimensions, this relationship may be generalized by induction. When 
seeking to align two images with the same motif, at least one of which 
is noisy, one looks for their respective signal components  (a = a') to 
lock on to each other to give the cross-correlation maximum,  even in 
the presence of noise. 
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Figure 1 Effects of disorder on the diffraction patterns, and averaging of a two-dimensional crystal (a). In (b), the motifs of the 
tetragonal lattice were offset from their ideal lattice positions by random displacements of up to 2 pixels (6 % of the lattice spacing) 
in both dimensions. In (c), the lattice was distorted by smoothly varying plastic deformation. (d)-(f) show the diffraction patterns 
(amplitude spectra) of (a)-(c), respectively: (g)-(i) show the corresponding averaged images. Without correction for disorder in (h) 
and (i), substantial degradation (smearing) of the finer motif details is evident 

estimates of the displacement parameters are then used 
to extract the corrected motif by interpolation from the 
original image. 

Plastic deformations 

When an ordered array is subject to large and 
non-uniform stresses, it may undergo distortions that are 
marked by substantial variations in the unit cell 
dimensions. If the appearance of the distorted crystal 
indicates that these distortions involve stretching or 
compression of neighbouring motifs (Figure lc), rather 
than the decoupling and moving apart  of undistorted 

motifs, it is appropriate to base the correction strategy 
on the assumption of plastic deformation. One source of 
data to which this scenario applies is cryo-electron 
microscopy of frozen-hydrated thin sections, in which 
compression factors of up to 50% in the direction of 
cutting may be encountered 1°'11 (Figure 2). In such cases, 
the computational  procedure is designed to map each 
unit cell, whose corners are defined by cross-correlation 
methods, on to an ' ideal '  unit cell of fixed dimensions. 
This may be done either by bilinear interpolation 11'12 
or by interpolation using two-dimensional cubic-splines 13, 
or quasi-hermite polynomials 14 (Figure 3) i.e. a ' rubber  
sheet' transformation. 
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Figure 2 (a) Frozen-hydrated transverse this section of rabbit psoas muscle in rigor, and its diffraction pattern (b). After image 
restoration, correction for spatial disordering, and consolidation of data from many small patches of myofilament lattice unit cells 11, 
the rectified lattice has a considerably richer diffraction pattern. The original pattern (b) shows essentially only the (10) and (11) 
( upper arrow) reflections, broadened by short-range disorder, with a faint ( 21 ) reflection (lower arrow) in one of three possible directions. 
Moreover, the reciprocal lattice is heavily distorted from hexagonality as a result of sectioning-induced compression. In the rectified 
diffraction pattern (d), visible periodic reflections extend to the (31) and (32) orders (arrows). The periodicity of the undistorted 
lattice is 45 nm t~ 

8 

~ • ~ i ~̧ • 

Figure 3 (a) Frozen-hydrated transverse thin section of rabbit psoas muscle in rigor and (b) superimposed sampling grid using 
quasi-hermite two-dimensional polynomials 14 to define a correction function 

Proofing of unit cells after correction for disorder 

To ensure that  the averaged image that  is finally obtained 
is of  the best possible quality, i.e. the highest possible 
resolution, it is helpful to screen the data  set to eliminate 

any anomalous  unit cells. An algori thm ( O M O  = Odd  
Man  Out )  has been devised for this purpose 15. It operates 
on the principle of maximizing the mutual  consistency of 
the data  set. The unit cells are sorted into an ordered list, 
ranked from most  consistent to least consistent with the 

Int. J. Biol. Macromol . ,  1991, Vol. 13, June 177 



Spatial disorders and computational cures: A. C. Steven et al. 

bulk of the data set, and a threshold of acceptability is 
imposed, based on a statistical criterion. The data thus 
approved are then averaged with equal weighting. In a 
more elaborate solution, non-uniform weightings based 
on rankings in the ordered list may be used 16. 

The above treatment is predicated on the assumption 
that all unit cells in the crystal are identical, and that any 
outliers represent unit cells to which some anomalous 
event has occurred, and are recognizable as such on the 
basis of random differences from the majority of the data. 
If, on the other hand, there is reason to suppose that 
several systematically different classes of unit cell may be 
present (i.e. one is dealing with a 'mixed' crystal), then 
the set of unit cells may be analysed by formal 
classification methods (see below) prior to averaging 17. ~ 8 

Resolution criteria 

In order to assess the improvement attained by 
computational correction of disorder, or to compare the 
relative efficacies of several different correction strategies, 
it is essential to use some quantitative measure of 
resolution. Traditionally, the resolution of crystalline 
sheets has been assessed in terms of the spacing of the 
outermost reciprocal lattice reflection in their diffraction 
patterns whose intensity is visibly above background, and 
this criterion may be applied to the data before and after 
correction. When the final data take the form of a set of 
individual unit cells, either derived from a single crystal, 
or scavenged from a number of small crystalline 
patches 19, these may be packed together into a crystalline 
lattice, whose diffraction pattern is then calculated 11 (cf. 
Figures 2b, d). The improvement in resolution may then 
be assessed by comparing it with the diffraction pattern(s) 
of the original crystal(s). Prior to packing, it is essential 
to normalize the data in a uniform way, otherwise 
dicontinuities in density between neighbouring unit cells 
may generate artifactual reflections. Alternatively, several 
quantitative resolution criteria applicable to collections 
of unit cells have been devised. These include the 
' Differential Phase Residual (D PR )'2°, the '  Fourier Ring 
Correlation Coefficient (FFRC) '21, and the 'Spectral 
Signal-to-Noise Ratio (SSNR) '22'23 criteria. Since these 
criteria do not give exactly the same figures for resolution 
when applied to the same data, it is essential to make 
consistent use of the same criterion. The SSNR has the 
appealing feature of being closely related to the 
traditional diffraction-based resolution criterion discussed 
above, of which it represents a straightforward generaliza- 
tion 22. 

Some practical considerations 

Depending on the complexity of a given analysis, a greater 
or lesser degree of iteration will, in general, be required in 
order to achieve the optimal average. The situation may 
be encountered in the analysis of single particles or 
individual unit cells that, in some cases, the alternating 
cycles of translational and orientational alignment do not 
converge to a stable solution in a reasonable number of 
cycles (see Refs. 10 12). This is symptomatic of an 
inadequate signal-to-noise ratio, and such particles are 
best discarded. The alignment precision and the speed of 
convergence depend to a considerable degree on the 
quality of the template (i.e. the reference motif), and for 
this reason, it is usually desirable to go through the whole 

analysis several times with progressively refined templates. 
However, even with a perfect template, the precision with 
which the correlation maxima are located depends on 
the signal-to-noise ratio. With very noisy (e.g. very 
low-dose) images of crystals in which it is reasonable to 
suspect that long-range disorder is more of a problem 
than short-range disorder, improved localization of the 
correlation maxima may be achieved by using a cluster 
of unit cells, rather than a single unit cell, as template. 

Flexible filaments 

Filamentous protein or nucleoprotein polymers are 
widespread in biology. From electron micrographs, their 
structural organization may be investigated by indexation 
of their diffraction patterns (if helical) 24, computation of 
their radial density profiles 25, or full three-dimensional 
reconstructions 26. However, macromolecular filaments 
are seldom absolutely straight, but usually exhibit some 
degree of curvature, a form of disorder that constrains 
the scope of any quantitative analysis. 

The corrective procedure applied in this situation is to 
transfer the image into a curvilinear coordinate system 
specifically tailored to the filament in question (Figure 
4). First, a curve is fitted along the particle's centreline, 
assumed to be a zero-strain path along which distances 
are preserved. Then, interpolation is used to sample along 
a family of lines that run perpendicular to the centreline 
curve, and cross it at equally spaced (one-pixel) intervals. 
Various alternatives may be considered for parameterizing 
the centre-line 2v, but cubic splines are a natural 
choice28-31, since a cubic-spline represents the minimum- 
strain configuration of a stiff, yet flexible, rod affixed to 
a substrate at the spline's node-points, and this gives a 
plausible account of how a macromolecular filament 
adsorbs from solution on to a carbon film prior to 
electron microscopy 28. 

One practical issue in filament straightening is how 
best to distribute nodes along the centre-line. We are not 
aware of a rigorous solution to this problem. However, 
in our experience it is advisable to seek a compromise 
between node distributions that are too sparse (risking 
imprecise definition of the axis in the inter-node regions) 
or too dense (in which case, small lateral offsets between 
successive node-points may result in anomalous bulges 
in what should be a smooth curve). For slowly bending 
filaments, a satisfactory solution is to space the nodes 
5-10 pixels apart, and somewhat more closely in 
regions of relatively high curvature. In a first pass, the 
operator marks the nodes interactively on a television 
monitor displaying the particle; their lateral coordinates 
may subsequently be refined automatically by cross- 
correlation methods. Visual inspection of the straightened 
filament, and subsequent cycles of interactive editing of 
the nodes is also helpful. A further refinement of this 
general approach makes it possible to correct for the 
somewhat more complex disorder associated with variable 
pitch 32. 

Sparsely sampled filaments 

Scanning transmission electron microscopy (s.t.e.m.) of 
unstained, frozen-dried, specimens provides data from 
which radial density profiles may be calculated which are 
not subject to stain-related ambiguities 2s. Although 
structural preservation after freeze-drying is not so good 
as in frozen-hydrated specimens, s.t.e.m, dark-field images 
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Figure 4 Computational straightening of keratin IF. (a, b) A rotary shadowed murine epidermal keratin IF, before and after 
computational straightening; (c) computer generated diffraction pattern of (b) which shows a prominent meridional reflection at 
(22.7 nm) 1; (d, e) negatively stained bovine epidermal keratin IF, before and after straightening and (f) the computer generated 
diffraction pattern of (e). Arrows indicate an off-meridional reflection at an axial spacing of ~ (23 nm)- 1. Bars -- 50 nm 

have an advantage over conventional t.e.m, bright-field 
images for the precise localization of edges in that they are 
not affected by phase contrast-associated interference 
fringes. 

In s.t.e.m., it is customary to sample the specimen 
relatively sparsely (i.e. at intervals of 1 nm, 2 nm or even 
4 nm) with the finely focused (0.25 nm) s.t.e.m, probe in 
order to minimize secondary radiation damage. These 
sampling densities limit the Nyquist frequency (sampling 
resolution) of the images to 2 nm, 4 nm or 8 nm 
respectively. Nevertheless, it is possible to obtain 
averaged transverse scans of projected density in which 
the resolution-limiting effects of sparse sampling are 
overcome by re-sorting the data into a more finely spaced 
array of bins (Vernier sampling), exploiting the symmetry 
of the specimen 25'33. To avoid lateral smearing in these 
scans, one may confine the axial averaging to short straight 
segments, and then combine these data by correlation 
averaging. Alternatively, an algorithm has been developed 
to compensate for both sparse sampling and bending 
disorder at the same time 34. 

Oligomeric fibrous proteins 
In addi t ion  to fibrous polymers,  there are m a n y  
oligomeric fibrous proteins which exhibit bending 
disorders, often of an extreme kind, when visualized by 
electron microscopy, e.g. Ref. 35. These molecules, which 

usually consist of several polypeptide chains in a parallel 
association, may also be straightened by cubic spline 
algorithms 36"37. Cases affected by particularly tight 
curvature require the use of two-dimensional cubic- 
splines. After straightening, the molecules may be 
classified and averaged 36. Filtered representations of 
individual molecules may be obtained by computationally 
bending the averaged straightened images back into their 
original shapes 3s. Furthermore, the curvature profiles 
generated as a by-product of straightening may be 
analysed in a systematic way to localize hinge-points or 
sites of enhanced flexibility 36. 

Averaging individual free-standing particles 
The most extreme case of a disordered crystal is complete 
dispersal of its repeating elements. Nevertheless, correlation 
methods, essentially the same as those used to rectify 
partially ordered arrays (see above), may be used to align 
free-standing particles 39'4°. Prior to averaging, these 
images must be carefully classified into sets of particles 
that are intrinsically alike. In principle, this process may 
be expected to be problematic in view of the unlimited 
range of possible orientations relative to the viewing 
direction that globular particles might assume. (In a 
two-dimensional crystal, the interactions between adjacent 
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molecules constrain them to the same orientation, so this 
problem does not arise). However, it transpires that 
biological macromolecules often tend to adsorb to the 
support films in a few preferred orientations (e.g. Ref. 41 ) 
which has the beneficial effect of greatly limiting the 
number of classes that must be dealt with. However, sets 
of dispersed particles have at least one advantage over 
crystalline arrays. With specimens of the latter type 
visualized at moderate resolution (say, 2 nm), there is 
frequently ambiguity in how to delineate molecular 
boundaries in the averaged image, a problem that clearly 
does not arise with free-standing particles. 

Overview and future prospects 

With single-particle averaging, resolutions are routinely 
achieved that are comparable to those attained for 
crystals, at least to the limited resolution typical of 
negatively stained specimens (e.g. 1.5 2.0 rim). With a 
view to extending the structural analysis to higher 
resolution, the prospects appear to be somewhat brighter 
for crystalline arrays than for isolated molecules, in the 
sense that reduction of electron dose to a point that 
permits survival of high resolution structural detail is 
more easily accomplished with a crystal. With isolated 
particles, it is evident that (although this limit is, to some 
extent, structure-dependent), a certain minimum number 
of electrons are required to give an image that is 
statistically well enough defined to allow sufficiently 
precise correlation alignment and identification of viewing 
geometry. A major challenge for future studies in this 
area lies in determining to what extent this inherent 
limitation may be overcome, for instance, by combining 
information from high- and low-dose micrographs of the 
same field. 
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