
MULTIRESOLUTION MOMENT FILTERS

Michael Sühling, Muthuvel Arigovindan, Patrick Hunziker�, and Michael Unser

Swiss Federal Institute of Technology Lausanne
Biomedical Imaging Group, STI/IOA

CH-1015 Lausanne, Switzerland
e-mail: michael.suehling@epfl.ch, muthuvel.arigovindan@epfl.ch, michael.unser@epfl.ch

ABSTRACT

We define multi-scale moments that are estimated locally by an-
alyzing the image through a sliding window at multiple scales.
When the analysis window satisfies a two-scale relation, we prove
that these moments can be computed very efficiently using a mul-
tiresolution wavelet-like algorithm. We also show that B-spline
windows are best suited for this kind of analysis because, in ad-
dition to being refinable, they are positive, symmetric and very
nearly isotropic.
We present two applications of our method. The first is a feature
extraction method for detecting strands of DNA in noisy cryo-
electron-micrographs. The second is an extension of the Lucas-
Kanade optical flow algorithm that assumes a local affine model
of the motion field. The results obtained in both cases are very
promising.

1. INTRODUCTION

Global moments and their invariants are widely used in many areas
of image analysis, including pattern recognition [1], image recon-
struction [2], and shape identification [3]. Some authors have also
applied moments in a local fashion for image segmentation [4]
and direction-based interpolation [5]. The idea there was to com-
pute moments locally over some square region of interest which is
moved over the image; the observation windows may be overlap-
ping or not depending on the application.

In this paper, we are extending the notion of local moments by
introducing two refinements: weighting and multiresolution. The
idea of weighting is motivated by the observation that the square
window that has been used so far is rather anisotropic. Indeed,
if the goal is to design a ”rotation-invariant” algorithm, it makes
good sense to apply an isotropic window with a radial weighting
that decreases away from the center. Multiresolution is a feature
that is highly desirable for designing image processing algorithms
that have some degree of adaptability. The down-side, of course,
is that these refinements can be computationally very expensive,
especially when the size of the window is large. In Section 2,
we will show how to overcome these limitations by proposing a
multiresolution wavelet-like algorithm to compute multi-scale lo-
cal moments of different orders with a dyadic scale progression. In
particular, we will consider B-spline weighting windows, which
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become wider and more and more Gaussian-like—also meaning
isotropic—as the degree of the spline increases.

We believe that these multi-scale local moments should be
useful tools for devising new algorithms based on what we call a
”sliding window” formulation of a problem. The basic assumption
for such an approach is that the spatially-varying feature (or pa-
rameter) that one is estimating is approximately constant within
the observation window. The unknown parameter is then esti-
mated from the available information in the window (which often
requires the evaluation of moments). Finally, the output value is
attributed to the spatial location corresponding to the center of the
window. This is a simple, yet powerful paradigm that can be made
most effective by working at the appropriate scale (multiresolution
strategy). We will illustrate these ideas in Section 3 by presenting
two such local-moment-based algorithms:

� a new method for detecting DNA strands in very noisy cryo-
electron-micrographs,

� a multiresolution extension of the Lucas-Kanade optical flow
algorithm [6], which uses a more refined local-affine model
for the motion.

These methods are fast thanks to our wavelet-like implementation.
The experimental results obtained in both cases are very encour-
aging.

2. THEORY

In this section, we will define weighted local moments and show
how they can be computed efficiently in a multiresolution frame-
work.

2.1. Weighted Local Moments

Let w be a positive window function of support 
. Given some
integer p, we define

wp(x) = x
p
w(x): (1)

For a continuously-defined function f(x), we define the local mo-
ment of order p, scale j 2 Z, and location x0 as

m
(j)
p (x0) =

Z




wp

�x� x0

2j

�
f(x) dx: (2)

Note that the window function is dilated by a factor 2j and is cen-
tered at x0, which is typically an integer in the discrete case.
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2.2. Two-Scale Equation

Computing local moments at coarser scales becomes very expen-
sive due to the increasing size of the window function. However,
multiresolution pyramids of local moments can be computed ef-
ficiently as in wavelet-like algorithms, provided that the window
function satisfies a two-scale equation.

Theorem 1 (Two-Scale Equation) Letw be a function which sat-
isfies the two-scale equation

w
�
x

2

�
=
X
l

h(l)w(x� l); (3)

for some given filter h. Then, wp satisfies the two-scale equation

wp

�x
2

�
=

pX
k=0

�
hp;k � wk

�
(x); (4)

with filters hp;k, k = 0; : : : ; p, given by

hp;k(l) =
1

2p

 
p

k

!
l
p�k

h(l): (5)

Note that h0;0 = h.

2.3. Efficient Multi-Scale Implementation

Theorem 1 can be used to derive fast algorithms for computing the
local moments m(j)

p in (2) for scales j = j0; : : : ; j1 and orders
p = 0; : : : ; P . To initialize the procedure, we compute the inner
products on the finest scale j0 by using (2). Due to Theorem 1, the
coefficients on the subsequent coarser scales can be determined
recursively as

m
(j+1)
p (n) =

pX
k=0

X
l

hp;k(l)m
(j)
k (n+ 2j l): (6)

Equation (6) is a multi-channel extension of the “à trous” algo-
rithm, which is frequently used for computing overcomplete wavelet
transforms [7]. The method is easily modified for computing local
moments in a sub-sampled, wavelet-like pyramid. The recursion
equation (6) then simplifies to a Mallat-like algorithm (cf. [7]).
If we assume that the length of the discretized window w is N , the
direct calculation of (2) is of complexity 2jN for scale j and any
order p. In contrast, the complexity of (6) is (p + 1)N for each
scale and for order p. Obviously, the use of the recursion equation
pays off, if 2j > (p+ 1).

2.4. Multiple Dimensions

Equation (6) can be applied to multiple dimensions in a straight-
forward way by using tensor products. In the 2D case, we define
window functions and corresponding moments of order (p+ q) as

wp;q(x; y) = x
p
y
q
w(x)w(y) (7)

and

m
(j)
p;q(x0; y0) =

Z



wp;q

�x� x0

2j
;
y � y0

2j

�
f(x; y) dxdy: (8)

For an efficient computation of m(j)
p;q , equation (6) can be applied

separately in each dimension.
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Fig. 1. Cubic B-spline �3 and its first two moment filters �31 and
�32 .

2.5. Choice of Window Function

Among the window functions, a case of special interest isw = �n,
where �n is the symmetrical B-spline of degree n 2 N [8]. It sat-
isfies a two-scale equation and the shape of the window can be
modified by choosing B-splines of different degrees. Addition-
ally, B-splines rapidly converge to Gaussians when their degree
increases. This ensures isotropy of the window in multiple dimen-
sions. The cubic B-spline (n = 3), �3, and its two first moments
�31 and �32 are plotted in Figure 1. The corresponding two-scale
filters hp;k up to order p = 2 are given in Table 1.

Table 1. Two-scale filters hp;k up to order p = 2 for �3.
l �2 �1 0 1 2

h0;0(l)
1
8

4
8

6
8

4
8

1
8

h1;0(l) �
1
8

�
2
8

0 2
8

1
8

h1;1(l)
1
16

4
16

6
16

4
16

1
16

h2;0(l)
1
8

1
8

0 1
8

1
8

h2;1(l) �
1
8

�
2
8

0 2
8

1
8

h2;2(l)
1
32

4
32

6
32

4
32

1
32

3. APPLICATIONS

The fast algorithm presented above is applicable to a whole variety
of image analysis problems, such as image segmentation, pattern
detection, and optical flow estimation, for which local solutions
over sliding windows have been proposed. These approaches can
also be extended by applying a multiresolution strategy which pro-
vides adaptability while also reducing computational cost. Here,
we will illustrate the concept by presenting new local-moment-
based algorithms for two specific tasks: (1) the detection of DNA
strands, and (2) the estimation of motion fields using a local affine
model.

3.1. Detection of DNA Strands

The structure of DNA molecules can be visualized by cryo-electron-
microscopy (CEM) [9]. Because of the physical process involved,
the resulting images have very low contrast to avoid destruction of
the specimen (cf. Figure 2). Biologists are highly interested in an
automatic detection of the thin strands of DNA, but the task is ex-
tremely challenging because of the poor signal-to-noise ratio (near
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0dB). Prior to coming up with our new moment method, we had
tried many other techniques without obtaining satisfactory results.
Since local moments are integral-based features, they are robust
against noise and therefore well suited to analyzing such objects
which have a marked elongated structure.
The moments mp;q have well defined geometric interpretations.
The coordinates of the local centroid are given by

�x = m1;0=m0;0 and �y = m0;1=m0;0: (9)

The so-called central moments [1] can be expressed in terms of
ordinary moments mp;q and the coordinates of the centroid. The
three central moments of second order can be used to build an
inertia matrix J. The local orientation of the object is given by the
eigenvector corresponding to the minimal eigenvalue of J. The
eccentricity " = (�1��2)

2=(�1+�2)
2, where �1 and �2 are the

eigenvalues of J, takes values between 0 and 1, indicating whether
the local object is elongated or not.

The DNA strands are detected at multiple scales j0 � j � j1,
where j0 and j1 are the finest and coarsest scale at which relevant
structures are expected. At each image pixel (nx; ny) we compute
the local moments m(j)

p;q for (p + q) � 2. From these we derive
the local orientations and eccentricities "(j). To decide whether or
not a local object is part of a DNA strand, we compute the figure
of merit


(j) = "(j)e�(�x
2+�y2)=(2(2j+1)�2): (10)

The second factor in (10) assigns more weight to cases where the
local centroid (�x; �y) is close to the center of the local window. The
parameter � controls the range of the centroid around the window
origin to be accepted. The multi-scale approach also helps us to
detect cases where the local structure is located symmetrically at
the periphery of the window function. To avoid these cases, the
figure of merit 
(j) is set to zero, if m(j�1)

0;0 < m
(j)
0;0. This means

that the local mean of the gray values at the next finer scale has to
be greater than the local mean at the current scale.
The figure of merit (10) will be maximal at a scale that approxi-
mately matches the size of the DNA strand to detect. Therefore,
we integrate the figures of merit at different scales to obtain a final
estimate for the goodness of local fit by 
 = maxj0�j�j1 
(j):

Numerical Results
As can be seen in Figure 2(a), the intensity in CEM-images may
vary globally. Therefore, the original images were first normalized
in a pre-processing step. We used moments of order zero at scale
j = 2 for local background subtraction. Then we computed for
each pixel the figure of merit 
 as described above. The figures of
merit were then thresholded to suppress values that correspond to
non-significant structures. The final figures of merit are visualized
in Figure 2(b) in form of a needle diagram. The length of the nee-
dles is proportional to the size of the figure of merit at each pixel.
The direction of the needles corresponds to the local orientation
of the object. We see that the two DNA strands contained in the
image together with their local orientation were clearly detected.
Failures due to the high noise content in the image are very sparse.

3.2. Optical Flow Estimation

Let I(x; y; t) denote the intensity of pixels at location r = (x; y)
and time t in an image sequence. Gradient-based optical flow es-
timation relies on the assumption that the intensity of a particular

(a) Original CEM-Image (b) Estimated Local Orienta-
tion

Fig. 2. A CEM-image and detected DNA strands

point in a moving pattern does not change with time. The constant
intensity assumption can be expressed as [10]

Ix(r; t)u(r; t) + Iy(r; t) v(r; t) + It(r; t) = 0: (11)

Ix, Iy and It denote the spatial and temporal derivatives of the
image intensity. The velocities u and v are, respectively, the x-
and y-components of the optical flow we wish to estimate.

Local Affine Motion
A very popular optical flow algorithm is the Lucas-Kanade method
[6], which estimates the motion locally, assuming that motion is
constant within a window of support 
. In order to account for
more complex motions, such as rotation, divergence, and shear,
we extend this approach to a local affine model for the motion.
If (x0; y0) denotes the center of the local window, this model is
defined as

u(x; y) = u0 + ux(x� x0) + uy(y � y0);

v(x; y) = v0 + vx(x� x0) + vy(y � y0):
(12)

The parameters u0 and v0 correspond to the motion at the window
center and ux, uy , vx, and vy are, respectively, the first order spa-
tial derivatives of u and v. The local motion components can be
estimated by minimizing the least-squares criterion

Z




w(x; y)
�
Ix u+ Iy v + It

�2
dxdy: (13)

The symmetric window function w gives more weight to con-
straints at the center of the local region than to those at the pe-
riphery. By differentiating (13) with respect to each of the six
unknown parameters, we obtain a linear system Av = b in terms
of local moments of orders zero to two of the spatial and temporal
derivatives of I .

It is obviously difficult to estimate large motions at fine scales.
A way around this problem is to apply a coarse-to-fine strategy.
At each scale j we compute the local moments on a grid which is
sub-sampled by 2j in each dimension. Due to this sub-sampling,
equation (6) reduces to a simple convolution.
The motion estimates are cascaded through each resolution level
as initial estimates and are then refined if possible. This strategy is
sketched in the following algorithm.
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(a) Frame (b) Estimated Motion

Fig. 3. One frame of the Yosemite sequence and its corresponding
estimated motion field.

Input: Multi-scale pyramids of local moments of the spatial and
temporal derivatives of I .

Step 1: Start at coarsest scale: j := jmax

Step 2: for each grid position 2
j
n do

Compose local linear system Av = b

if solution v is not admissible
then assign flow vector estimated at next

coarser scale j + 1 to this grid position
else assign current solution v to this grid position

end for

Step 3: if j > jmin then go to finer scale: j := j � 1;
goto Step 2

A solution of a local linear system is regarded as not admissible if
the linear system is either ill-conditioned or the length of the cen-
tral motion vector exceeds some scale-dependent limit. If the time
derivative at a given location is below a pre-defined noise level, the
local motion estimate is set to zero.

Numerical Results
The performance of the algorithm was tested on synthetic and real
image sequences. In particular, we used the well known synthetic
sequence “Yosemite”. Since the exact motion field is known, the
error of the estimated motion field was computed using the an-
gular error measure as defined in [11]. As real data we used the
“Rubik Cube” sequence1. One frame of each sequence and its
corresponding estimated motion field is shown in Figures 3 and
4. All sequences were prefiltered with a Binomial filter of vari-
ance �2 = 1:5. The angular error of the “Yosemite” sequence
is 6:33Æ � 9:98Æ with a flow field density of 100%. The error of
the corresponding adaptation of the Lucas-Kanade approach (same
window, same multiresolution strategy) is 7:43Æ � 12:72Æ . The
rotational movement in the “Rubik Cube” sequence is also clearly
recovered. These results compare favorably with all methods eval-
uated in the survey of Barron & al. [11].
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