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ABSTRACT

We present a new framework to estimate and visualize heart motion from echocardiograms. For velocity esti-
mation, we have developed a novel multiresolution optical flow algorithm. In order to account for typical heart
motions like contraction/expansion and shear, we use a local affine model for the velocity in space and time.
The motion parameters are estimated in the least-squares sense inside a sliding spatio-temporal window.

The estimated velocity field is used to track a region of interest which is represented by spline curves. In
each frame, a set of sample points on the curves is displaced according to the estimated motion field. The
contour in the subsequent frame is obtained by a least-squares spline fit to the displaced sample points. This
ensures robustness of the contour tracking. From the estimated velocity, we compute a radial velocity field with
respect to a reference point. Inside the time-varying region of interest, the radial velocity is color-coded and
superimposed on the original image sequence in a semi-transparent fashion. In contrast to conventional Tissue
Doppler methods, this approach is independent of the incident angle of the ultrasound beam.

The motion analysis and visualization provides an objective and robust method for the detection and quantifi-
cation of myocardial malfunctioning. Promising results are obtained from synthetic and clinical echocardiographic
sequences.
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1. INTRODUCTION

Echocardiography is one of the most widely used diagnostic techniques to evaluate the heart function of patients
with known or suspected heart disease. It is non-invasive, relatively non-expensive and fairly simple to use.
The analysis of ventricular wall motion, in particular, allows to assess the extent of myocardial ischemia and
infarction.1, 2 In clinical practice, the detection of wall motion abnormalities is usually performed by visual
inspection or manual measurements. This can be very time consuming and allows only an observer dependent
diagnosis. Automating the analysis of echocardiographic images is desirable but also challenging because of the
low image quality and the high amount of speckle noise. In this paper, we propose a framework for a robust,
automated and quantitative analysis of echocardiographic sequences. We make two key contributions:

Motion Estimation: We propose a novel optical flow algorithm to estimate ventricular wall motion from
echocardiographic sequences. In order to account for typical heart motions like contraction/expansion
and shear, we use a local affine model for the velocity in space and time. The motion parameters are
estimated in the least-squares sense inside a sliding spatio-temporal window. Robustness is achieved by a
coarse-to-fine multi-scale strategy.

Motion Visualization: The radial component of the velocity with respect to a reference point is then visualized
inside a time-varying region of interest (ROI). The ROI is defined by a set of spline curves which are tracked
in time by using the estimated velocity fields. In each frame, a set of sample points on the spline curves
is displaced according to the motion field and the contour in the subsequent frame is obtained by a least-
squares B-spline fit to the displaced sample points. Inside the time-varying region of interest, the radial
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velocity is color-coded and superimposed on the original image sequence in a semi-transparent fashion.
The motion trajectory of the ROI-centroid, the principal axes of inertia and the area-size of the ROI are
also displayed.

The paper is organized as follows. We describe the motion estimation algorithm in some detail in Section 2. The
ROI-tracking and motion visualization is described in Section 3. We then validate the algorithm in Section 4 by
applying it to synthetic and clinical image sequences.

2. MOTION ESTIMATION

Several methods have been proposed to quantify heart motion from two-dimensional (2D) echocardiograms.
Special attention has been paid to optical flow methods which have led to promising results.3 Let I(x, y, t)
denote the intensity of pixels at location r = (x, y) and time t in an image sequence. Gradient-based optical flow
estimation relies on the assumption that the intensity of a particular point in a moving pattern does not change
with time. The constant intensity assumption can be expressed as4

Ix(r, t) u(r, t) + Iy(r, t) v(r, t) + It(r, t) = 0, (1)

where Ix, Iy and It denote the spatial and temporal derivatives of the image intensity. The velocities u and v

are, respectively, the x- and y-components of the optical flow we wish to estimate. Since (1) is a single equation
in two unknowns, u and v, it cannot be solved uniquely without introducing additional constraints.

2.1. Local Affine Velocity in Space-Time

A popular optical flow algorithm is the Lucas-Kanade method,5 which estimates the motion locally, assuming
that it is constant within a local window. To account for typical heart motions, such as expansion, contraction,
and shear, we extend this approach to a local, spatial-affine model for the motion. Additionally, we also use a
linear model for the velocity along the time direction. This allows to capture local accelerations in time much
better than a locally constant model. Another advantage is that we can base our estimation on multiple frames
around a given time point; this is much more robust than using only two frames as many classical optical flow
methods do. Let r0 = (x0, y0, t0) denote the center of a small spatio-temporal image region Ω. Inside this local
region, the spatio-temporal-affine model is defined as
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The parameters u0 and v0 correspond to the velocity at the center point r0 and ux, uy, ut, vx, vy, and vt are
the first order spatial and temporal derivatives of u and v, respectively.
We estimate the local motion components by minimizing the weighted least-squares criterion

∫
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The symmetric window function w gives more weight to constraints at the center of the local spatio-temporal
region than to those at the periphery.

A very well suited window function is w(x, y, t) = βn(x)βn(y)βn(t), where βn is the symmetrical B-spline
of degree n ∈ N.6 B-splines rapidly converge to Gaussians when their degree increases which ensures isotropy
of the window in multiple dimensions. Additionally, the B-splines satisfy a two-scale equation which allows for
an efficient computation of B-spline-weighted inner products at dyadic scales by using a wavelet-like algorithm
(cf. Section 2.2).

By differentiating (3) with respect to each of the eight unknown parameters, we obtain a symmetric linear
(8 × 8)-system Av = b in terms of local moments of the spatial and temporal derivatives of I . This local linear
system is set up and solved for each spatio-temporal position of the sliding window.



2.2. Coarse-To-Fine Multi-Scale Strategy

It is obviously difficult to estimate large motions at fine scales. A way around this problem is to apply a
coarse-to-fine strategy. This is realized by dilating and shifting the window function in space by powers of two:

wj(x − x0, y − y0, t − t0) = w

(
x − 2jx0

2j
,

y − 2jy0

2j
, t − t0

)
. (4)

The integer j denotes the spatial scale. As shown in Fig. 1, the motion vectors are transferred from the coarser
to the next finer resolution level as initial estimates and are then refined if they do not already exceed a scale-
dependent size. For each local estimate, we compute a confidence measure which is based on the magnitude of
the residual in (3). A local estimate is refined only if its confidence measure is larger than the corresponding
one at the next coarser scale. Furthermore, a local solution is regarded as not admissible if the linear system is
either ill-conditioned or if the length of the estimated central motion vector exceeds some scale-dependent limit.
Finally, a motion estimate is set to zero if the local mean of the time derivative at the given location is below
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Figure 1. Coarse-to-fine multi-scale strategy in space.

a pre-defined noise level. From the discrete output, we fit a spatio-temporal spline model to obtain a global,
continuous representation of the velocity field.

3. ROI-TRACKING AND MOTION VISUALIZATION

From the estimated velocity model, we extract and visualize radial velocity information inside a time-varying
deformable region of interest (ROI). For each frame, the ROI is defined by a set of closed spline curves (typically,
the inside and outside of the myocardium). For a given time t, each spline curve is parameterized as rt(τ) =
(xt(τ), yt(τ)) in terms of the variable τ . In this paper, we represent rt(τ) as a linear combination of B-spline
basis functions6

rt(τ) =

∞∑

l=−∞

ct(l)β
n

( τ

m
− l

)
. (5)

The integer n denotes the degree of the B-spline and ct(l) denotes a sequence of vector spline coefficients given
by ct(l) = (ct(l), dt(l)). The basis functions are dilated and shifted by some integer m meaning that spline
knots on the curve are located at distance m. Since the curves are closed, the sequence of spline coefficients ct

is periodic with some period length K. To track a curve in time, we compute a series of sample points rt(k),
k = 0, . . . , mK−1, at integer distance on the curve. For these sample points, we compute the displacement from
the continuous spline representation of the velocity field. By adding the displacements to the current position of
the sample points, we obtain their position

r̂t+1(k) = rt(k) +
(
u(rt(k), t), v(rt(k), t)

)
(6)
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Figure 2. ROI-tracking by least-squares B-spline fitting.

in the next frame t + 1 as shown in Fig. 2. In order to increase the robustness of the tracking process to noise,
we approximate the mK displaced sample points by the spline model (5) that has K degrees of freedom, i.e.,
the spline coefficients ct+1(l), l = 0, . . . , K − 1. These spline coefficients are determined by minimizing the
least-squares approximation error

ε2 =

mK−1∑

k=0

‖rt+1(k) − r̂t+1(k)‖
2

l2
. (7)

The choice of the parameter m determines the trade-off between closeness to the sample points and smoothness
of the spline curve. An efficient filter-based approach to compute the spline coefficients is described in Unser et
al..7, 8 The set of obtained spline curves then defines the ROI at time t+1. The tracking process is initialized by
placing landmarks on the first frame of the image sequence to obtain the initial spline curves. The corresponding
spline coefficients c0(l) in (5) are determined by B-spline interpolation of the landmarks (m = 1).

Having computed the ROI for each frame, we compute the centroids (centers of gravity), the areas, and the
principal axes of inertia of the ROIs. These parameters can be computed exactly from the spline representation
of the contours.9 The velocity field of each frame is then projected onto the centroid of a particular frame
(end-diastolic or end-systolic) to obtain radial velocity fields. Optionally, the velocity can also be projected onto
the floating centroid of the ROI. In this case, the global translational motion of the ventricle is compensated by
subtracting the velocity of the floating centroid from the estimated overall velocity. The choice of the optimal
centroid (fixed vs. floating) depends on the conditions under which the heart is imaged. Under conditions where
excessive translation of the heart occurs, such as might be the case after cardiac surgery, a floating centroid
approach would be more appropriate.

Inside the time-varying ROI, we color-code the radial velocity using a similar color map as in Tissue Doppler
Imaging (TDI). The color-coded velocity is then superimposed on the underlying image sequence in a semi-
transparent fashion. The motion trajectory of the centroids, the principal axes of inertia and area-size of the
ROIs are also displayed. The color display helps to quantify the degree of myocardial wall excursion. The
principal axes of inertia allow to identify the extend of ventricular rotation (heart-twisting).

4. NUMERICAL RESULTS

4.1. Application to Synthetic Data

We have tested our method on synthetic image sequences simulating an apical short axis view of a heart. The
expansion/contraction motion of the myocardium was modeled such that its area remains constant. This results



in a radial velocity field with a magnitude decreasing with the distance from the center. This kind of motion
reflects the wall-thinning and thickening of a beating heart during diastole and systole. Additionally to the
myocardial excursion, the heart model is translating towards the upper right direction to simulate an underlying
rigid motion. The heart tissue is assumed to be a collection of point-scatterers with random echogenicity. The
echographic signal is obtained by a convolution of the warped point-scatterer images with a point spread function
(PSF). For the PSF, we have used a cosine modulated Gaussian envelope. The resulting B-mode images are
given by the envelope computation of the echographic signal.

The applied motion field was then estimated by the algorithm from the simulated B-mode images. For radial
motion visualization, the estimated velocity was projected onto the floating centroid of the ROI to compensate
for the underlying translational motion. One frame of the synthetic sequence, the estimated velocity field and
the color-coded radial velocity during diastole are shown in Fig. 3. The ROI clearly tracks the myocardium and

(a) Frame of synthetic sequence during
diastole

(b) Estimated velocity field

(c) Superimposed color-coded radial ve-
locity, centroid and principal axes of
inertia of the ROI

Figure 3. Results obtained from a synthetic sequence.



the radial myocardial velocity gradient due to wall thinning is well reflected by the colors.

The error between the estimated velocity v̂ and the exact velocity v is evaluated by the angular error measure

θ = arccos
〈v, v̂〉

‖v‖l2
‖v̂‖l2

. (8)

In this particular experiment, the maximum velocity was 2.0 pixels per frame and the average angular error over
all pixels in the image sequence was 3.18± 3.63 degree.

4.2. Application to Clinical Data

The usefulness and efficiency of the method for detecting myocardial malfunctioning is also demonstrated by
applying the method to clinical echocardiographic sequences. Fig. 4 shows one frame of a long axis view TEE-
echocardiogram during systole and the corresponding motion estimation results. Here, the velocity was projected
onto a fixed reference point that is given by the ROI-centroid at end-diastole. The ROI clearly follows the
movement of the myocardium and the colors reflect its degree of expansion and contraction. Although only
partially imaged, the dyskinesia (expansion during systole) in the anterior apical segment of the myocardium
(upper right segment) is clearly indicated by the green-blue color and the displayed motion field.

5. CONCLUSIONS

We have presented a novel framework to estimate myocardial velocity from echocardiograms and to visualize
radial velocity within a time-varying deformable ROI. In contrast to conventional Tissue Doppler methods,
this approach is independent of the incident angle of the ultrasound beam. In comparison to active contour
approaches, which track myocardial borders, we obtain myocardial motion information inside the complete ROI.
The method is accurate and robust due to a multiresolution strategy for motion estimation and the use of spline
models for the velocity and the ROI-contours. The method allows to objectively detect and quantify myocardial
malfunctioning and looks promising for clinical applications.
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(a) Frame of sequence during systole (b) Estimated velocity field

(c) Superimposed color-coded radial velocity, cen-
troid and principal axes of inertia of the ROI

Figure 4. Results obtained from clinical data.
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