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Abstract

Echocardiography is a widely used imaging technique to examine myocardial
function in patients with known or suspected heart disease. The analysis of ven-
tricular wall motion and deformation, in particular, allows to assess the extent
of myocardial ischemia and infarction. In clinical practice, the analysis mainly
relies on visual inspection or manual measurements by experienced cardiologists.
Manual methods are tedious and time-consuming, and visual assessment leads
to qualitative and subjective diagnoses that suffer from considerable inter- and
intraobserver variability. Automating the analysis of echocardiographic images
is therefore highly desirable but also challenging because of the low image qual-
ity and the high amount of speckle noise. In this thesis, we propose a framework
for robust and quantitative analysis of echocardiographic sequences. We make
the following key contributions:

Motion and Deformation Analysis—We propose a novel optical-flow-based
algorithm to estimate ventricular wall motion from B-mode echocardiograms.
To account for typical heart motions such as contraction/expansion and shear,
we use a local affine model for the velocity in space and time. An attractive
feature of the affine motion model is that it gives also access to local strain rate
parameters that describe local myocardial deformation such as wall thickening.
The motion parameters are estimated in the least-squares sense within a sliding
spatio-temporal B-spline window. The estimation of large motions is made
possible through the use of a coarse-to-fine multi-scale strategy, which also adds
robustness to the method.

Computational Efficiency—We introduce the notion of multiresolution mo-
ment filters, a novel filtering scheme to compute local weighted geometric mo-
ments efficiently at dyadic scales by using a wavelet-like algorithm. Beyond
their application in motion analysis, we demonstrate their usefulness for image
denoising and feature extraction.

Multi-Modality—We extend the proposed motion analysis algorithm by inte-
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grating directional, Doppler-based velocity measurements. The exploitation of
two ultrasound modalities, i.e., B-mode and tissue Doppler, renders the method
more accurate and robust.

Visualization—We display diagnostically meaningful motion data inside a
user-defined region of interest that is tracked in time. Myocardial inward and
outward motion is visualized by color coding the radial motion component with
respect to the ventricular center. Two-dimensional strain rate information is
superimposed in the form of deforming ellipses. The display allows a more
intuitive and simplified identification of regions with abnormal motion patterns.

Validation—The proposed method is validated on 1) synthetic data, 2) real
ultrasound phantom data, and 3) clinical echocardiograms. A large-scale valida-
tion study that includes 114 patients confirms its ability to detect and quantify
wall motion abnormalities.



Version Abrégée

L’échocardiographie est une technique d’imagerie qui est tres souvent utilisée
pour examiner le fonctionnement du myocarde de patients potentiellement su-
jets a une maladie cardiaque. En particulier, 'analyse du mouvement et de
la déformation de la paroi du ventricule permet d’évaluer le degré d’ischémie
et d’infarctus du myocarde. Dans la pratique clinique, cette analyse repose
principalement sur l'inspection visuelle et sur les mesures manuelles réalisées
par des cardiologues expérimentés. Or, les méthodes manuelles sont longues et
pénibles; quant a I’évaluation visuelle, elle conduit & des diagnostics qualitat-
ifs et subjectifs qui souffrent considérablement de la variabilité inter et intra-
observateur. Automatiser I'analyse des images par échocardiographie est donc
fortement souhaitable, mais aussi difficile en raison de la médiocre qualité des
images et de la grande quantité de bruit de granularité. Dans cette theése, nous
proposons un ensemble de méthodes pour analyser de facon robuste et quantita-
tive les séquences d’image en échocardiographie. Nos contributions principales
sont les suivantes:

Analyse des mouvements et des déformations—Nous proposons un algo-
rithme basé sur le flot optique pour estimer le mouvement de la paroi du
ventricule & partir d’échocardiogrammes B-mode. Pour bien tenir compte de
certains mouvements typiques du cceur tels que contraction/expansion et ci-
saillement, nous décrivons la vitesse dans l’espace et le temps a l'aide d’un
modele affine local. Un aspect intéressant du modele de mouvement affine
est qu’il permet aussi de connaitre localement les contraintes associées a cer-
taines déformations locales du myocarde, telles que 1’épaississement de sa paroi.
Au sein d’une fenétre B-spline spatio-temporelle glissante, nous estimons les
parametres de mouvement au sens des moindres carrés. L’utilisation d’une
stratégie multi-échelle grossiere-a-fine tout a la fois rend la méthode plus ro-
buste et nous permet d’évaluer les mouvements de grande amplitude.

Efficacité de calcul—Nous présentons la notion de filtre multi-échelle de mo-
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ments, qui consiste en une nouvelle structure de filtres & échelle dyadique des-
tinés au calcul efficace de moments géométriques avec pondération locale, et
qui emploie un algorithme similaire a celui des ondelettes. Outre leur applica-
tion a l’analyse de mouvement, nous démontrons leur utilité pour le débruitage
d’image et pour I'extraction de caractéristiques.

Multi-modalité—Nous complétons 1’algorithme d’analyse de mouvements
proposé par des mesures de vitesse directionnelle basées sur l'effet Doppler.
Nous rendons la méthode encore plus précise et plus robuste en exploitant simul-
tanément les deux modalités d’ultrason que sont B-mode et Doppler tissulaire.

Visualisation—Nous affichons les données de mouvement pertinentes au di-
agnostic a I'intérieur d’une région d’intérét qui est définie par 'utilisateur et qui
est continiment mise & jour. Nous visualisons les mouvements centripetes et cen-
trifuges du myocarde par un codage en fausses couleurs de la composante radiale
du mouvement par rapport au centre du ventricule. La représentation bidimen-
sionnelle des contraintes s’y superpose sous la forme d’ellipses déformables. Cet
affichage permet une identification plus facile et plus intuitive des régions qui
comportent des mouvements anormaux.

Validation—Nous validons la méthode proposée au moyen 1) de
données synthétiques, 2) de données réelles d’ultrasons de fantomes et 3)
d’échocardiogrammes cliniques. Une étude de validation a large échelle, qui
inclut 114 patients, confirme la capacité de notre méthode a détecter et a quan-
tifier les anomalies de mouvement de la paroi du ventricule.
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A good heart is worth gold.

— William Shakespeare

Chapter 1

Introduction

The heart is the most active organ in the human body. Beating about every
second throughout our lifetime, it continuously supplies the body with vital
blood. The heart has always played a key role in medical science and has even
become a major symbol for life. Its life-sustaining pumping function is realized
by its powerful muscular structure—the so-called myocardium. Its activity is
kept up by an efficient circulatory system of coronary arteries that supplies the
muscle with the essential oxygen and nutrients.

Silent but progressive occlusion and hardening of the coronary arteries is the
main cause for cardiac malfunction. It is caused by a build-up of fatty deposits
in the lining of the artery walls—a process known as atherosclerosis. The lack
of blood supply—the so-called ischemia—reduces the heart’s ability to contract
normally. When one or more of the coronary arteries get completely occluded,
blood to the heart muscle is cut off and the affected myocardial segments get
seriously damaged or even die. This so-called myocardial infarction, also known
as “heart attack”, often occurs suddenly and may be life-threatening. Coro-
nary artery disease—specifically, heart attack—is the main cause of long-term
disability and death throughout the industrial world. In Europe, about four
million people die of cardiovascular disease every year, which is claiming more
lives than the next five leading causes of death altogether.

Modern technology provides a number of tools to access myocardial func-
tion. Echocardiography, in particular, has evolved as a well-established imaging
technique for the non-invasive evaluation of regional and global wall motion



2 Introduction

abnormalities. Whereas echocardiographic imaging has reached a high level
of technical sophistication, the analysis of ventricular function itself still re-
lies mainly on the visual assessment and manual measurements by experienced
cardiologists. According to a standardization of the American Heart Associ-
ation, the function of myocardial segments is usually assigned to one of five
descriptive categories, ranging from hyperactive contraction via virtually ab-
sent activity to paradoxical, counterproductive wall motion. The presence of
segmental variations in contractility adds an additional level of difficulty to this
semi-quantitative analysis. Consequently, the diagnosis depends highly on the
observer’s subjective interpretation and thus suffers from a considerable degree
of inter- and intraobserver variability.

The ability to assess heart function in an objective and reproducible manner
is therefore highly needed for a number of reasons: the detection and quantifi-
cation of impaired myocardial function and the ability to objectively measure
the impact of therapeutic treatments may considerably increase the efficiency
of clinical interventions. Measuring ventricular contraction at different levels
of physical stress may render non-invasive diagnostic methods such as stress
echocardiography more effective, allowing the detection of myocardial malfunc-
tion at an earlier stage.

Since the left ventricle provides the whole body with oxygen-rich blood, it
is the strongest and most dominant part of the heart. Therefore, during the
analysis of heart motion, most of the attention is drawn to this chamber whose
role is absolutely vital.

1.1 Cardiac Motion Patterns

The nature of myocardial function is complex and encompasses various motion
patterns. Conceptually, the two most basic aspects of myocardial function are:
wall displacement and deformation. Fig. 1.1 shows a typical echocardiogram of
the left ventricle during contraction. As indicated in Fig. 1.1a, the myocardium
contracts, moving inwards to eject the blood into the body. Measuring the veloc-
ity of the inward motion yields valuable information to characterize ventricular
function.

In addition to the global inward motion, the myocardium usually thickens
considerably to further increase its pumping efficiency. This deformation is
highlighted in Fig. 1.1b. Additional deformations also include a longitudinal
and circumferential shortening of the muscle fibers. The rate of deformation
may be an indicator of regional contractility and is reflected by the velocity
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(a) Ventricular inward motion (b) Wall thickening

Figure 1.1: Basic motion patterns of contracting ventricle. The myocardium
moves inwards (a) and thickens significantly (b) to maximize pumping efficiency.

gradient between neighboring tissue segments. The quantitative assessment of
regional deformation rates is likely to be the key for distinguishing between
actively contracting segments and infarcted ones which are completely passive.

The most successful current technique—tissue Doppler-based analysis of mo-
tion and deformation—is hampered by the critical dependence on the ultrasound
beam direction, leading to signal dropouts and velocity underestimation. To
date, there has been a considerable amount of research on the quantification
of heart motion from ultrasound data, but there is not yet a fully satisfactory
solution. Some popular approaches are reviewed in the next section.

1.2 Related Work

There is a large literature describing the application of so-called active contour
or snake techniques [1] to cardiac ultrasound [2, 3, 4]. These methods track
the inner (endocardial) and/or outer (epicardial) border of the myocardium
by minimizing a combination of internal and external energies of the contour
representation. The internal energy is defined to keep the contour smooth, while



4 Introduction

the external energy is designed to attract the contour towards the boundary.
The external energy is usually composed of low-level image features such as
high-intensity gradients. Since ultrasound images are typically noisy and of low
quality, the inner and, especially, outer borders are usually not clearly defined,
limiting the applicability of standard border detection algorithms significantly.
The presence of additional structures such as the papillary muscles and the
mitral valve creates a multitude of perturbing edges even in good quality images.
Therefore, human guidance is often needed to guarantee acceptable results.

Active shape models (ASM) [5] are a generalization of active contours and
were developed to overcome the latter problems. The key difference is that an
active shape model can only undergo shape deformations that are consistent
with a statistical model derived from some training data. Probabilistic shape-
spaces are usually obtained using point distribution models (PDM) [6]. These
models are determined by performing a principal component analysis (PCA) on
landmark coordinates that are placed manually on many example images. The
principal component analysis determines the strongest modes of shape variation
which are then used as a priori information to constrain the contour deforma-
tion in sequences to be analyzed. Active shape models have been applied in
echocardiography with partial success [7, 8, 9]. The major shortcoming of these
border tracing approaches is that they only yield motion information normal
to the myocardial boundaries. Motion parallel to the contours, such as longi-
tudinal lengthening and shortening, and deformation of myocardial structures
in-between the boundaries cannot be assessed.

The approach of active shape models was extended to the concept of active
appearance models (AAM) by Cootes et al. [10]. Active appearance models
describe both the image appearance, i.e., its gray value information, and shape
as a combined statistical shape-appearance model. The approach was applied
to cardiac motion analysis by [11]. Trainable-model-based approaches are ex-
tremely labour intensive because they require the manual tracing of a large set
of echocardiograms. The training set should also include a sufficient number
of cases with abnormal motion to be applicable for detecting myocardial mal-
function. Furthermore, echocardiograms need to be normalized with respect to
image size and number of frames using interpolation methods. Since the image
brightness and contrast depend highly on the patient, the examiner and the
ultrasound system used, the gray values of the echocardiograms need also to be
normalized. The practical value of these approaches remains uncertain due to
the limited testing on a wide range of clinical data.

Other motion analysis approaches are based on Markov-random-fields to
segment cardiac ultrasound images [12, 13]. These methods take into account
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ultrasound-specific noise models such as Rayleigh statistics. Since, however, the
noise characteristics of commercial ultrasound systems are usually difficult to
assess, the applicability of these methods to routine ultrasound remains limited.

Some researchers proposed to compute dense cardiac displacement fields
using non-rigid registration techniques. Although elastic registration is applied
in several areas of medical image analysis, its application to ultrasound is still
limited [14, 15].

A related approach to cardiac motion assessment is based on the so-called
optical-flow principle [16]. This technique estimates a dense velocity field of the
moving image content from spatio-temporal intensity gradients. The instanta-
neous motion vectors are determined such that they point into the direction of
minimum gray value changes. Application examples of this approach to echocar-
diograms yielded promising results [17, 18]. A popular optical-flow algorithm
is the Lucas-Kanade method [19], which estimates the motion locally, assuming
that the velocity field is constant within an observation window. This method
was applied to ultrasound in [20]. An evaluation of different optical-flow meth-
ods applied to echocardiograms can be found in [21].

1.3 Thesis Organization

In this thesis, we propose a comprehensive approach to quantify different as-
pects of cardiac motion from echocardiograms independently from borders and
Doppler. The thesis is organized as follows.

Following this general introduction, the thesis proceeds in Chapter 2 with
an overview of the heart anatomy and of its normal function. We introduce
technical terms that are frequently used throughout this work. We then describe
symptoms and origins of typical wall motion abnormalities and review their
conventional diagnostic assessment that is based on a semi-quantitative wall
motion scoring.

In Chapter 3, we review the basic principles and instrumentation techniques
of echocardiography. We give an overview of different imaging modes and in-
troduce the standard two-dimensional views that are usually acquired during
clinical examinations. We also introduce the echocardiographic nomenclature
that is used to describe the different myocardial segments imaged.

The subsequent chapters present the scientific contributions of this work.
Beginning in Chapter 4, we present a novel optical-flow-based method for es-
timating heart motion from two-dimensional B-mode echocardiograms. This
sliding-window-type method uses a local affine velocity model that is partic-



6 Introduction

ularly well suited to the description of typical heart motion. We employ a
multiresolution strategy to be able to estimate large motions and to increase
the robustness to noise. Motion models within windows of dyadic sizes are com-
puted efficiently by using the concept of multiresolution moment filters—a novel,
versatile filtering scheme that is discussed in detail in Appendix A at the end of
this thesis. To assist the physician in evaluating cardiac function, we introduce
an intuitive visualization of the motion data in a color-coded fashion inside a
time-varying region of interest. A first clinical validation of the algorithm is
performed on ultrasound data obtained from an animal study.

In Chapter 5, we investigate the feasibility of the so-called total-least-squares
method to fit the local model parameters. This discussion is motivated by the
observation that the least-squares estimator used in the previous chapter may
be biased if the system matrix is corrupted by noise. We discuss the relation
between the two estimators and also consider the so-called scaled total-least-
squares method that represents a trade-off between the two different approaches.

In Chapter 6, we present an extension of the proposed motion analysis
method that takes advantage of additional measurements from tissue Doppler
ultrasound. We derive a corresponding bimodal motion estimation algorithm
and demonstrate that the incorporation of the partial, Doppler-based velocity
measurements increases the accuracy of the algorithm. We validate the approach
with controlled phantom experiments and also present some clinical results that
correlate well with the expert echocardiographic reading.

We then concentrate on the estimation of myocardial deformation in Chap-
ter 7. The deformation is described in terms of strain rate, a quantity that is
inherently contained in the affine motion parameters. In contrast to the state-
of-the-art Doppler-based strain rate imaging, the method is not limited to the
scan line directions; it rather allows to determine the two principal directions
as well as the amount of deformation. We account for the physical incompress-
ibility of the myocardium by adding a divergence-free constraint to the local
velocity model. The accuracy and noise sensitivity of the approach is tested on
synthetic ultrasound data. First applications to clinical echocardiograms yield
reasonable qualitative results.

In Chapter 8, we validate the proposed motion analysis algorithm on a large
set of B-mode echocardiograms obtained from 114 patients during routine clin-
ical examinations. The algorithm is first compared with Doppler velocities that
were available on a subset of the patients. We also conduct a detailed statisti-
cal comparison between velocities computed by the algorithm and conventional
echocardiographic reading. Lastly, we investigate the diagnostic relevance of
the extracted motion parameters by using a neural network-based classifier. We
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also highlight the clinical value of the algorithm on exemplary case studies.

Appendix A includes additional research results that are relevant to echocar-
diography but have a wider range of applicability. In particular, we introduce
the general concept of multiresolution moment filters. Inspired by the frame-
work of Wavelets, we developed this multi-channel filtering scheme to compute
weighted geometric local moments efficiently at dyadic scales. Beyond its appli-
cation in the proposed motion analysis algorithm, we demonstrate its versatile
usefulness in other areas of image analysis such as image denoising and feature
extraction.
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It is not by the gray of the hair that one knows the
age of the heart.

— Henry Bulever

Chapter 2

Basic Heart Anatomy and
Physiology

Abstract — We give a brief overview of the heart anatomy and of its
normal function. We then discuss common cardiovascular diseases that
lead to wall motion abnormalities. Finally, we present the conventional
diagnostic assessment of myocardial dysfunction using a semi-quantitative
wall motion scoring.

2.1 Introduction

The heart is a restless working muscle that provides blood circulation to the
whole human body. At an average rate of 72 times per minute, the heart beats
about 100 000 times per day and 30 to 42 million times per year. This corre-
sponds to a daily pumping capacity of about 7200 liters and 2.5 million liters per
year. This enormous activity is due to the heart’s highly optimized structure
and functioning. To provide the reader with the necessary background and to
be able to understand the origin and symptoms of cardiac malfunction, we first
review the heart’s basic anatomy and its associated terminology in Section 2.2.1.
We then discuss the normal heart physiology and electrical conduction system
in Sections 2.2.2 and 2.2.3, respectively.

9



10 Basic Heart Anatomy and Physiology

Several heart diseases affect the heart muscle and reduce its ability to con-
tract normally. The resulting loss in pumping efficiency leads to an undersupply
of the vital oxygen to the body, which may seriously harm other organs. The
most frequent source for impaired wall motion is a process called atherosclerosis,
which, in its worst case, may lead to a life threatening heart attack. This and
other common diseases and their impact to cardiac function are summarized in
Section 2.3.

In clinical routine, myocardial dysfunction can be diagnosed by a number
of tools including physical examinations, electrocardiograms, blood tests, and,
in particular, medical imaging techniques such as echocardiography. Although
current imaging technologies are highly sophisticated, myocardial malfunction
is usually assessed by visual inspection and subjective rating of the acquired
images by experienced cardiologists. In echocardiography, the presence and
extend of wall motion abnormalities is commonly classified according to the
so-called wall motion score index; this conventional assessment is reviewed in
Section 2.4.

2.2 Heart Anatomy and Normal Functioning

In this section, we review basic heart anatomy and physiology. We also introduce
the medical terminology that will be frequently used in this thesis.

2.2.1 Heart Anatomy

The heart is a muscular organ that is located between the lungs in the middle
of the chest, behind and slightly to the left of the breastbone (sternum). It is
surrounded by a double-layered membrane that is called the pericardium. The
heart has four chambers as illustrated in Fig. 2.1. The two upper chambers
are called the left and right atria, and the lower chambers are called the left
and right ventricles. The atria act as reservoirs for venous blood; they have
a small pumping function to assist ventricular filling. The ventricles are the
major pumping chambers that deliver blood to pulmonary (right ventricle) and
systemic circulations (left ventricle). The heart’s muscular walls are called my-
ocardium. Its outer surface is called the epicardium and its inner lining the
endocardium. The wall that separates the left and right atria and the left and
right ventricles is called the septum.

Four valves ensure that the blood flows only in one direction and prevent
blood from leaking backwards from one chamber to the upstream chamber



2.2 Heart Anatomy and Normal Functioning 11

External View:

. Right Coronary (RCA)

. Left Anterior Descending (LAD)
. Left Circumflex (LCX)

. Superior Vena Cava

. Inferior Vena Cava

. Aorta

. Pulmonary Artery

. Pulmonary Vein

ONO U WN -

Internal View:

9. Right Atrium

10. Right Ventricle

11. Left Atrium

12. Left Ventricle

13. Papillary Muscles
14. Chordae Tendineae
15. Tricuspid Valve

16. Mitral Valve

17. Pulmonary Valve

Figure 2.1: Anatomy of the human heart. Anterior external view with coro-
nary arteries and veins (top) and internal view (bottom). (Image source:
http://www.cardioconsult.com/Anatomy/)

(valvular regurgitation). The aortic and pulmonic valves are referred to as
the semilunar valves and are located at the downstream sides of the left and
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Figure 2.2: Normal heart physiology during diastole and systole. The right
atrium (RA) receives the de-oxygenated blood from the body that is pushed to
the lungs by the right ventricle (RV). The re-oxygenated blood flows via the
left atrium (LA) into the left ventricle (LV) that pumps it into the body. In
addition to systolic inward motion and longitudinal shortening, the myocardium
thickens considerably. The process is reversed during diastole. (Figure adapted
from: http://www.tmc.edu/thi/valves.html)

right ventricle, respectively. The two atrioventricular valves, the mitral and
tricuspid valve, are located between the atria and ventricles. The leaflets of
the atrioventricular valves are connected to the papillary muscles that are, in
turn, connected to the walls of the ventricles. The papillary muscles shorten
during the contraction of the ventricles in order to prevent a bulging of the
atrioventricular valves towards the atria that would lead to regurgitation.

2.2.2 Normal Physiology

The heart cycle is a pumping action that is divided into two alternating periods
of diastole (relaxation) and systole (contraction). As indicated in Fig. 2.2, the
two phases proceed as follows:

Diastole: During diastole, the atria contract and push the blood into the re-
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laxed ventricles. More precisely, the de-oxygenated blood returning form
the body flows from the right atrium through the tricuspid valve into the
right ventricle. In parallel, the left atrium pushes the re-oxygenated blood
that arrived from the pulmonary veins through the mitral valve into the
left ventricle. More specifically, the diastole consists of four sub-phases:
(1) isovolumetric relaxation: the ventricular pressure decreases, but its
volume remains constant prior to opening of the atrioventricular valves;
(2) rapid filling: after opening of the atrioventricular valves, the pressure
gradient drives blood from each atrium into the respective ventricle; (3)
diastasis: the ventricular filling is mainly due to direct blood flow from
the veins; (4) atrial systole: the atria contract actively and complete the
ventricular filling.

Systole The second part of the heart cycle, the systole, begins when the ventri-
cles are filled and start to contract. The right ventricle pumps the oxygen-
poor blood through the pulmonic valve into the pulmonary artery towards
the lungs to be re-oxygenated. The left ventricle pushes the oxygen-rich
blood through the opened aortic valve into the aorta and further into the
body. Since the left ventricle supplies the whole body with re-oxygenated
blood, it is the most dominant and strongest muscle of the heart. Its
pumping capacity is achieved by a highly optimized motion pattern of
the ventricular walls: as indicated in Fig. 2.2, the myocardium moves
transversely towards the ventricular center and also shortens in the longi-
tudinal direction. In addition, the ventricular walls thicken significantly to
increase the ejection efficiency. A rotational “wringing” or “twisting” ac-
tion around the longitudinal axis increases its efficiency even further. After
the pulmonary and aortic valves have closed, the myocardium performs
the reverse motion, causing the ventricles to relax. The lower pressure in
the ventricles causes the tricuspid and mitral valves to open, and the cycle
begins again.

2.2.3 Electrophysiology of the Heart

The coordinated contraction of the various chambers of the heart is controlled
by the electrical system of the heart. The so-called electrocardiogram (ECG)
is a recording of the electrical changes that occur in the myocardium during a
cardiac cycle. A typical ECG is shown in Fig. 2.3. The electrical changes result
from depolarization and repolarization of cardiac muscle fibers. The electrical
signal that initiates each heart beat arises from a small structure—called the
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Figure 2.3: Typical ECG during heart cycle. The P-wave corresponds to atrial
depolarization followed by the QRS-complex, initializing ventricular contrac-
tion. The T-wave indicates ventricular repolarization.

sinoatrial (SA) node—that is located at the top of the right atrium; it is the
heart’s natural pacemaker. The depolarization of the SA-node generates an
electrical signal that rapidly spreads across the right and the left atrium and
causes them to contract. This impulse is referred to as the P-wave in the ECG.
The impulse is then delayed at the atrioventricular (AV) node that is located
in the septal wall of the right atrium. The AV-node is connected to a bundle of
special cells in the heart designed to rapidly conduct the electrical signal through
the ventricles. These fibers are referred to as the bundle of His. The bundle of
His branches downstream into a right and a left bundle which eventually branch
out to distant ventricular tissues that are referred to as Purkinje fibers. When
the cardiac impulse reaches the ventricular fibers, they rapidly depolarize giving
rise to the QRS-complex in the ECG. The depolarization induces the contraction
of the ventricular muscles. During contraction, the ventricular muscle fibers
repolarize slowly, corresponding to the T-wave in the ECG.

2.2.4 Coronary Circulation

The heart muscle, like every other organ or tissue in the body, needs oxygen-
rich blood and vital nutrients to survive. Blood is supplied to the heart by its
own vascular system, called coronary circulation. As can be seen in Fig. 2.1 on
page 11, the aorta branches off into two main coronary blood vessels, the so-
called coronary arteries. These coronary arteries branch off into smaller arteries,
which supply oxygen-rich blood to the entire heart muscle. The right coronary
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artery (RCA) supplies blood mainly to the right side of the heart. The left
coronary artery, which branches into the left anterior descending artery (LAD)
and the circumflex artery (LCX), mainly supplies blood to the left side of the
heart. Partial or complete occlusion of the coronary arteries is one of the most
frequent cause for cardiac malfunction; it is discussed next.

2.3 Common Cardiovascular Diseases

Ischemic heart disease and myocardial infarction most commonly affect the left
ventricle because of its larger size and greater need for oxygenated blood. Be-
cause this chamber supplies most of the heart’s pumping power, it is very es-
sential for normal function. Right-ventricular heart failures often occur as a
result of left-sided dysfunction; therefore, most of the attention to describe and
analyze myocardial malfunction is drawn to the left ventricle.

2.3.1 Coronary Artery Disease

Most frequently, wall motion abnormalities are caused by the so-called coro-
nary artery disease (CAD) that is the end result of a complex process called
atherosclerosis (hardening of the arteries). Substances such as inflammatory
cells, proteins and calcium that travel in the bloodstream start sticking to the
vessel walls. Fat and other substances combine to form a material called plaque
that builds up and narrows the arteries (stenosis). When plaque narrows the
inside of an artery to a point where it cannot supply enough oxygen-rich blood
to meet the organ’s needs, cramping of the muscle occurs; this is called ischemia.

The most common symptom in patients with ischemia is chest discomfort
or pain, known as angina pectoris. A distinction is drawn between two types of
angina: stable angina is caused by a temporarily reduced blood supply to the
heart and usually appears as the result of exertion or intense emotions. It is
relatively predictable and its intensity and frequency remains similar over long
periods. The second type, unstable angina, may even occur when the patient
is resting. It is severe and unpredictable and often threatens to progress to an
acute myocardial infarction.

A myocardial infarction is the result of a prolonged artery occlusion lasting
for more than 15 minutes. It is also referred to as a “heart attack”. The areas
of heart muscle that are supplied by the blocked arteries die. Since myocardial
tissue does not regenerate after injury, it is replaced by scar tissue that usually
inhibits contractility. The larger the affected area of the myocardium the greater
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the loss of contractility will be. The detection and quantification of regional wall
motion abnormalities is an important tool to evaluate the degree of ischemia
and infarction.

If the occluded artery is not cleared by surgery or medical intervention, the
infarction may lead to other complications, including various disturbances in
the normal heart rhythm, congestive heart failure, cardiogenic shock, or throm-
boembolisms.

2.3.2 Other Diseases

Although coronary artery disease is the principal cause for regional wall motion
disturbances, they may also originate from a variety of other cardiac dysfunc-
tions. Among others, the most frequent diseases are:

Dilated (congestive) cardiomyopathy: The heart cavity is enlarged and
stretched (cardiac dilation), but the wall-thickness remains normal. This
results in a diffuse, globally restricted myocardial contraction. There may
be multiple causes including alcoholic excess, various infections and some-
times heredity.

Hypertrophic cardiomyopathy: This genetic disorder causes an abnormal
growing of the left ventricular wall thickness. The thickening leads to wall
stiffness and might prevent the heart from relaxing during diastole.

Myocarditis: Myocarditis is an inflammatory disease of the myocardium that
can result from a variety of causes such as viral infections, drugs, and
hypersensitive immune reactions. It may lead to distinct regional wall
motion abnormalities.

Valvular heart disease: Wall motion disturbances may also appear as late
effects of mitral or aortic valve insufficiencies and aortic stenosis.

Pure septal defect: Wall motion abnormalities that are restricted to the sep-
tum appear frequently. They are usually characterized by a temporally
perturbed contraction pattern, but show a normal wall thickening. In par-
ticular, the septum is called “paradoxical” if it moves outwards at early
systole. This defect can be caused by overpressure in the right ventricle,
left branch block or pericardial effusion and might also appear after heart
surgery.

For an extensive description of heart anatomy, physiology and cardiovascular
diseases we refer to [22, 23].
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Figure 2.4: Conventional categorization of wall motion abnormalities according
to their degree of severity. Shaded regions represent the course of motion of the
endocardium during systole. (Figure adapted from [26])

2.4 Conventional Diagnostic Assessment of My-
ocardial Malfunction

The presence of regional contraction abnormalities strongly suggests the diagno-
sis of coronary artery disease. Several studies have shown a very good correlation
between the extent of wall motion abnormalities and the size of an infarction
[24].

In clinical practice, myocardial motion is usually assessed by visual inspec-
tion and manual evaluation of echocardiograms. The most common approach
is based on the so-called wall motion score index. The ventricular wall is di-
vided into regional segments, each of which is assigned a score based on the
severity of the dysfunction. The segmental partitioning that is typically used
in echocardiography is described in Section 3.3 later on. A widely used scoring
system, developed by Kan et al. [25], is illustrated in Fig. 2.4. Correspondingly,
the degree of infarction is ordered according to the following categories:

Hyperkinesia (-1): The non-affected, normally perfused part of the my-
ocardium may contract excessively to compensate for the impaired con-
traction of ischemic or infarcted segments.
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Normokinesia (0): The myocardium moves and thickens normally.

Hypokinesisa (1): The affected segments move slower and thicken less than
normal.

Akinesia (2): The infarcted region has completely lost its ability to contract
and moves passively along with its surrounding tissue.

Dyskinesisa (3): The infarcted region behaves paradoxically and bulges dur-
ing systole due to the ventricular blood pressure.

Aneurysm (4): The infarcted region has become very thin, bulges extremely
during systole and even remains bulged during diastole.

As clinical practice shows, this subjective, semi-quantitative assessment of
myocardial dysfunction relies heavily on the observer’s experience; resulting di-
agnoses suffer from a high intra- and interobserver variability. Thus, a more
quantitative, observer-independent motion analysis is highly desirable to in-
crease their objectivity and reproducibility.



There are similarities, but each heart is different.

— Michael DeBakey

Chapter 3

Principles and
Instrumentation of
Echocardiography

Abstract — In this chapter, we briefly review the role of ultrasound in
cardiac imaging and introduce its physics and basic principles of image
formation. We give an overview about different imaging modes and views
that can be obtained from the heart by using different acquisition tech-
niques. The reader is also familiarized with the standard technical and
anatomical nomenclature that is used in clinical echocardiography.

3.1 Introduction

Various imaging modalities are available for investigating the structure and
dynamics of the heart. They differ largely with respect to image quality, ease
of operation, infrastructure requirements, and degree of invasiveness.
ECG-gated single photon emission computed tomography (SPECT) [27, 28]
and positron emission tomography (PET) [29] are radionuclide-based methods
that are mainly designed to analyze myocardial perfusion. Their ability to assess
myocardial motion is limited due to their low spatial and temporal resolution.

19
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The high infrastructure requirements such as an on-site cyclotron and the elab-
orate way of operation further limit its applicability in clinical routine.

X-ray computed tomography (CT) has also been applied for cardiac imaging.
In particular, cine CT, also known as ultrafast CT (UFCT) or electron beam CT
(EBCT), has been used for cardiac motion assessment [30, 31]. Although CT
has mainly been used to screen for coronary atherosclerosis based on calcium
scoring, it is becoming more and more popular for functional studies. This is
due to the recent development of fast ECG-gated multislice spiral computed
tomography (MSCT) [32]. This technique offers a higher in-plane resolution
and thinner slice collimation but still suffers from a lower temporal resolution.

Cardiac magnetic resonance imaging (MRI) [33] has emerged as an important
approach to assess myocardial anatomy. MRI offers a high contrast discrimina-
tion between soft-tissue and blood without the need of a contrast medium. MR
tagging [34, 35], in particular, was introduced to analyze myocardial motion.
This technique is able to generate grid lines at one point in the cardiac cycle by
spatial modulation of magnetization (SPAMM). The tissue motion is then indi-
cated by the displacement and deformation of the grid. However, it is difficult
to track the tags over the complete cardiac cycle since the magnetization decays
with time. Phase-encoded MRI is a different motion analysis approach that is
based on measurements of MR phase changes. The phase change is used to es-
timate the instantaneous velocities of myocardial tissue [36]. Wide application
of MR imaging remains limited by cost and the difficulty in routinely applying
these MR approaches to critically-ill patients.

Echocardiography offers significant advantages over the aforementioned
modalities. Reasons for its wide acceptance are its non-invasiveness, porta-
bility, ease of use, and cost effectiveness. However, echocardiography is limited
by the quality of the images that can be obtained in an individual patient. The
rib cage and lungs may preclude good visualization of the entire heart because
sound waves cannot penetrate these structures. Three types of echocardiogra-
phy are commonly used: M-mode, two-dimensional B-mode and Doppler. Each
has important applications which are briefly described in this chapter.

This chapter is organized as follows: we first review the basic principles of
ultrasound physics and image formation in Section 3.2. In Section 3.3, we intro-
duce the different instrumentation techniques in clinical echocardiography; in
particular, we explain the standard two-dimensional views and the correspond-
ing cardiac sections imaged.
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3.2 Basic Principles of Ultrasound

Diagnostic ultrasound employs pulsed, high frequency sound waves to image
cardiac structures and its motion. The ultrasound wave is generated by an
ultrasound transducer, which usually employs a piezoelectric material. An elec-
trical pulse, generated by a pulser/receiver unit, is converted into an acoustic
pressure field with some carrier frequency. The inverse piezoelectric effect is
used to receive the ultrasound wave that is converted into an electrical radio
frequency (RF) signal. The RF-signal is then processed by the ultrasound ma-
chine to create characteristic images. The transducer emits the acoustic pulses
with a repetition frequency typically ranging from 0.5 to 20 kHz, based on the
maximum target depth. The propagational speed of the ultrasound pulses is
determined by the elasticity and density of the medium, and is nearly constant
in the soft tissues of the body (approximately 1540 m/s).

The emitted ultrasound waves undergo a complex interaction with the in-
sonified tissue; the interaction can basically be divided into the following three

types:

Reflection and Refraction

Reflection or refraction of the sound wave occurs at approximately planar sur-
faces that have irregularities that are much smaller than the acoustic wave-
length. Such surfaces are referred to as specular. Like in optics, sound waves
are reflected from a specular interface at an angle that is equal to the angle
of incidence. The portion of the reflected intensity depends on the difference
between the sound impedances of the two adjacent tissues. The part of sound
that is transmitted through the interface is refracted by an angle that depends
on the ratio of the propagation velocities in the two tissues.

Excessive reflection may significantly degrade the resulting image quality.
It appears mainly in cases where the epicardial and pericardial surfaces are
oriented such that much of the beam energy is reflected out of the line of sight.

Scattering

The interaction of the acoustic wave with cellular structures that are much
smaller than its wavelength is very different than the one with specular surfaces.
According to Huygens’ principle, such point targets act as scatterers that emit
spherical secondary waves. Their intensity depends on the ratio of the acoustic
wavelength and the scatterer radius. The superposition of all scattered waves
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Figure 3.1: Block diagram of image formation of a typical ultrasound system.
TGC: time-gain compensation; A /D: analog-to-digital converter; LPF: lowpass
filtering.

results in a constructive and destructive interference pattern. This portion of
the image is referred to as acoustic speckle and is the major reason for the noisy
appearance of ultrasound images.

Absorption

As a sound wave passes through the tissue, it progressively looses energy. The
amplitude attenuation is primarily due to the inner friction or viscosity of the
tissue that transforms sound energy into other energy forms such as heat. The
signal attenuation depends highly on the carrier frequency w.; higher frequencies
allow a better spatial resolution, but are more attenuated than lower ones and
thus have less penetrating ability. Conversely, a lower frequency transducer
has a greater depth of penetration but poorer resolution. The optimal carrier
frequency is a trade-off between the requirements of penetration depth and
image resolution. Frequencies generally used in diagnostic ultrasound range
from 3.5 to 10 MHz. The spatial resolution in axial direction of a typical 5 MHz
probe is about 0.3 to 0.6 mm. The lateral resolution is usually four to five times
lower, i.e., 1.2 to 3.0 mm.

As illustrated in Fig. 3.1, the received electronic signals go through several
steps of signal processing before they are displayed: first, the receiver ampli-
fies the returned signal in proportion to the target depth that is given by the
time required by the signal to return. This step—called time-gain compensation
(TGC)—-corrects the signal attenuation during the propagation of sound in the
tissue. Other amplitude controls such as the user-adjustable coarse gain con-
trol may also be applied. After amplification, the radio frequency (RF) signal
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is sampled by an analog-to-digital converter. Then, the carrier frequency w,
is removed by techniques such as quadrature demodulation. In this technique,
the RF-signal is multiplied by cos (w.t) and sin (w.t) and then lowpass filtered
(LPF) to obtain the complex baseband-equivalent signal I(¢) +iQ(t). I(t) and
Q(t) are the time varying inphase and quadrature components of the demod-
ulated signal, respectively. The down-mixed signal is usually sub-sampled to
reduce the amount of data. The amplitude E(t) = \/I(t)? + Q(t)? is obtained
by envelope detection of the complex baseband signal.

If the amplitude of the returned echo is displayed in form of gray levels, it
is logarithmically compressed to adjust the dynamic range of the signal to the
small grayscale range of the monitor. This non-linear mapping enhances darker
gray levels at the expense of the brighter gray levels. Several techniques such as
speckle suppression may then be applied to improve the quality of the displayed
signal. The final amplitude corresponds to the strength of the returned echo
and is presented to the physician for interpretation.

For a detailed description of ultrasound physics and its image formation, we
refer to [37, 38, 39].

3.2.1 Imaging Modes

The detected echoes may be displayed in one-dimensional formats such as A-
mode, B-mode, M-mode, or in the two-dimensional B-mode format. These
different display modes are briefly described in the following.

Single-Beam Systems

One-dimensional ultrasound systems are designed to measure the distance from
the transducer surface to reflecting structures in the heart along a pre-defined
direction. The received signal can be displayed in several ways:

A-mode Amplitude mode is a one-dimensional ultrasonic display showing echo
intensities along the ultrasonic beam as vertical spikes on a horizontal time
axis indicating the depth of the reflectors.

B-mode This method displays the received echo as a spot whose brightness is
proportional to the echo intensity. This type of display is referred to as
the brightness mode.

M-mode The motion mode corresponds to a dynamical display of brightness
mode intensities. The M-mode tracing displays distance from the trans-
ducer on the vertical axis and time on the horizontal axis. Since M-mode
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employs only a single beam, it achieves a high temporal resolution which
allows to analyze quick motions such as of moving heart valves.

In many cardiac applications the display of anatomic structures and spatial
relationships is preferred to a one-dimensional analysis, although this is only
feasible at a lower temporal resolution. The display of multiple B-mode lines in
a two-dimensional image is discussed in the next section.

Two-dimensional Ultrasound Systems

In two-dimensional echocardiography, the ultrasound beams are transmitted at
a series of angles to analyze a sector of a plane. At each scan line position, one
ultrasound pulse is transmitted and all echoes from the surface to the deepest
range are recorded before the ultrasound beam moves on to the next scan line
position, where pulse transmission and echo recording are repeated. Various
transducers are used in ultrasound imaging. Single element transducers must
be steered mechanically over the region of interest, whereas array transducers
can steer the beam electronically. In addition, array transducers are able to
vary the depth of the focus plane. The dynamic beam steering and focusing is
accomplished by firing the individual elements with suitable time delays. Such
phased-array transducers are most widely utilized in cardiology since, among
others reasons, their compact size accommodates the transmission between the
ribs.

For display purposes, the data given in polar coordinates is transformed to
the cartesian grid in a process that is known as scan conversion. As shown in
Fig. 3.2, each pixel value on the cartesian grid is interpolated from its surround-
ing data in polar coordinates. This task is usually accomplished by means of
nearest neighbor or linear interpolation. Recently, we have proposed a more
general and comprehensive method that uses higher interpolation orders and a
global smoothness constraint [40].

In the past decade, three-dimensional echocardiography has become more
feasible and is emerging as a promising approach to cardiac imaging. A relatively
widespread 3D-imaging technique is provided by transoesophageal echocardio-
graphy (TEE). It involves the placement of the ultrasound transducer into the
oesophagus in proximity to the heart. The TEE-probe is typically mounted at
the tip of a flexible endoscope and rotated at defined angle increments. Gated
by respiration and the electrocardiogram (ECG), two-dimensional images are
sequentially acquired. The quality of the images is superior to transthoracic



3.2 Basic Principles of Ultrasound 25

Figure 3.2: Data before scan conversion (left) and after scan conversion (right).
The data is converted from cylinder coordinates (r,) to the cartesian grid

(z,y).

recordings because interferences with the chest wall and lungs are excluded.
The acquired image planes may be post-processed off-line to reconstruct a con-
ical volumetric data set [41, 42]. Since the method is semi-invasive and time
consuming compared with standard transthoracic echocardiography, it is only
utilized for specific indications.

Recently, development has proceeded towards transducers that consist of
two-dimensional crystal matrix arrays [43]. Here, scan lines can be directed by
two-dimensional phasing in any direction within a pyramidal volume and thus
provide true three-dimensional imaging. However, image quality is still limited
by a low spatial and temporal resolution; it is therefore not yet widely applicable
in clinical practice.

3.2.2 Doppler Echocardiography

Tissue Doppler imaging (TDI) is an ultrasound modality that is based on the
so-called Doppler principle [44]. TDI is a further development of conventional
Doppler ultrasound that measures blood flow velocity [45]. Since myocardial
tissue moves about ten times slower than blood cells, it is possible to extract
regional myocardial velocities by using thresholding and filtering algorithms that
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reject the echoes originating from the blood pool. TDI quantifies tissue velocities
by detection of consecutive phase shifts of the ultrasound signal reflected from
the myocardium. The frequency shift is due to the relative motion between
the wave source and the receiver. If the reflecting tissue is moving towards
the transducer, the frequency of the returning signal increases; conversely, the
frequency of the returning signal decreases if the reflector moves away from the
transducer.

The Doppler shift can be measured by using two different techniques: in
pulsed Doppler, a single crystal is used to transmit and receive signals. The
advantage of pulsed Doppler is that a specific depth of interest can be targeted.
However, the maximum velocity that can be measured unambiguously is limited
by half the frequency shift of the pulse-repetition frequency. If the tissue velocity
exceeds this Nyquist limit, aliasing artifacts occur. Aliasing can be avoided
by using continuous wave Doppler. This technique uses two crystals, one to
transmit continuously and one to receive the returned signal. This allows to
measure higher velocities than in pulsed Doppler. A disadvantage of this method
is the lack of spatial focus, since the signal is recorded along the full length of
the ultrasound beam. Consequently, velocities from different moving structures
will be averaged.

Velocities can be measured along a single beam or across a whole image sec-
tion. Single-beam measurements are usually displayed in the so-called spectral
format, where velocities are plotted versus time in a coordinate system. If the
Doppler signal is measured for an image region, it is usually color-coded and
superimposed on the B-mode grayscale images in real-time. This display format
is also known as color Doppler.

The fundamental limitation of tissue Doppler is that it only measures the
axial velocity component along the scan line. In contrast to blood flow, which
is essentially one-dimensional, as it is oriented along the blood vessels, the my-
ocardium performs complex, multi-dimensional motion patterns that can be
hardly assessed by Doppler. However, in Chapter 6, we will propose a novel
method to integrate this partial information into a B-mode-based motion anal-
ysis algorithm to obtain more reliable, two-dimensional motion data.
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Figure 3.3: Acquisition windows for transthoracic echocardiography. (Figure
adapted from [46])

3.3 Standard Views for Two-Dimensional
Echocardiography

Among the different types of imaging modes mentioned above, two-dimensional
echocardiography is the backbone of cardiac ultrasound. However, access to the
heart is limited because the emitted sound beam cannot pass through either
bone or the lungs. As illustrated in Fig. 3.3, there are a few strictly limited
acoustic windows through which the heart can be interrogated transthoraci-
cally. Two of these windows, the apical and parasternal ones, permit the heart
to be cut along its long or short axis, respectively. These two windows are used
mainly for the analysis of ventricular function, whereas the suprasternal and
subcostal windows are primarily applied for other investigations. For instance,
the suprasternal window is well suited for imaging the aorta while the sub-
costal window allows the imaging of the interatrial septum and the inferior vena
cava. In practice, the sonographer manipulates the transducer on the patient’s
chest to optimize image quality and position via real-time image feedback before
recording each view. Not all views will have acceptable image quality, or are
even obtainable, in all patients.
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3.3.1 Apical Views

The two orthogonal planes that are routinely acquired from the apical window
are the four- and two-chamber views. They are acquired along the heart’s long
axis as illustrated in Fig. 3.4a.

(a) Examining planes from apical window. A: apical four-chamber
view, B: apical two-chamber view (Figure reproduced from [46])

1

1

(b) Frame of apical four-chamber view (c) Frame of apical two-chamber view

Figure 3.4: Echocardiographic image acquisition from apical window.

IThe images are courtesy of the author’s heart.
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The apical four-chamber view, shown in Fig. 3.4b, is one of the most im-
portant views since it includes parts of each of the four cardiac chambers and
gives a good overview of the complete heart. In particular, the section shows
the interventricular and interatrial septa in the center, with the left ventricle
and atrium to the right, and the right ventricle and atrium to the left.

The primary application of the two-chamber view is to assess the function of
the left ventricle. By definition, only the left atrium and ventricle are imaged.
This view is difficult to acquire, but it is the only one where the whole anterior
(front) wall is visible. A typical example is shown in Fig. 3.4c.

3.3.2 Parasternal Views

The parasternal views, normal to the long axis of the left ventricle, are obtained
by directing the ultrasound beam through a gap in the ribcage. It permits the
heart to be imaged from front to back, and also in short axis.

As illustrated in Fig. 3.5a and 3.5c, the parasternal long axis views are
particularly useful for displaying the left atrium, the mitral valve, the inflow
and outflow tracts of the left ventricle, and the aortic valve. The apex of the
left ventricle is often excluded from the parasternal long axis view since it is
well visualized in the apical two-chamber view.

By changing the angulation on the chest wall, it is possible to obtain any
number of short axis views. The standard four views are at the level of the
aortic valve (AV), mitral valve (MV), left ventricular papillary muscles (PM),
and left ventricular apex (AP); their acquisition is illustrated in Fig. 3.5b. An
echocardiogram obtained at the papillary muscle level is shown in Fig. 3.5d.

3.3.3 Echocardiographic Nomenclature

In this work, we follow the nomenclature of the American Society of Echocar-
diography [47] to denote the wall segments that are imaged in the different
cross-sectional views. As shown in Fig. 3.6, this nomenclature divides the left
ventricle vertically into three parts: the apical (top), the mid-cavity and the
basal (bottom) segment.

Circumferentially, the basal and mid segments are further divided into ante-
rior (front wall), lateral, posterior, inferior (back wall), septal, and anteroseptal
parts, respectively. The apical segment is only divided into four circumferential
parts (anterior, septal, lateral, inferior) because its size is much smaller than
the one of the mid and basal segments. All 16 segments are shown in Fig. 3.7
in the form of a “bull’s eye”-plot.
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(c) Frame of parasternal long axis view

(b) Examining planes in parasternal short
axis views: A: aortic valve level, B: mitral
valve level, C: papillary muscle level, D: api-
cal levell

(d) Frame of parasternal short axis view at
papillary muscle level (C)?

Figure 3.5: Echocardiographic image acquisition from parasternal window.

IFigure reproduced from [46].

2The images are courtesy of the author’s heart.
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Figure 3.6: 16-segment model of the left ventricular myocardium according to
the American Society of Echocardiography. Shaded regions indicate the blood
supply by the corresponding coronary arteries, respectively.
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Figure 3.7: “Bulls eye”’-plot of the 16-segment model of the left ventricular
myocardium according to the American Society of Echocardiography. Shaded
regions indicate the blood supply by the corresponding coronary arteries, re-
spectively.
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3.4 Conclusions

The basic principles of ultrasound and its instrumentation have been summa-
rized. Echocardiography yields information on the heart’s anatomy and dynam-
ics non-invasively that can be displayed in various fashions. Partial, quantitative
motion information can be obtained by using the Doppler principle. The great-
est limitation of echocardiography is the lack of an adequate access to the heart.
This means that a fair amount of technical skill is required to obtain images of
acceptable quality.

With this review, we hope that we have helped the reader to develop a
better appreciation of the problems and challenges that one is faced with when
developing an automated and quantitative analysis of echocardiograms.
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It is not the size of a man but the size of his heart
that matters.

— Evander Holyfield

Chapter 4

Motion Analysis from
B-mode Echocardiograms

Abstract — We present a new optical-flow-based method for estimating
heart motion from two-dimensional B-mode echocardiograms. To account
for typical heart motions such as contraction/expansion and shear, we an-
alyze the images locally by using a local affine model for the velocity in
space and a linear model in time. The regional motion parameters are esti-
mated in the least-squares sense inside a sliding spatio-temporal B-spline
window. Robustness and spatial adaptability is achieved by estimating
the model parameters at multiple scales within a coarse-to-fine multires-
olution framework. We use a Wavelet-like algorithm for computing B-
spline-weighted inner products and moments at dyadic scales to increase
computational efficiency. To characterize myocardial inward/outward mo-
tion and to simplify the detection of myocardial dysfunction, the radial
component of the velocity with respect to a reference point is color-coded
and visualized inside a time-varying region of interest (ROI). The algo-
rithm is first validated on synthetic data sets that simulate a beating
heart with a speckle-like appearance of echocardiograms. The ability to
estimate motion from real ultrasound sequences is demonstrated by a ro-
tating phantom experiment. The method is also tested on a set of in vivo
echocardiograms from an animal study.
This chapter is largely based on our paper [48].

35
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4.1 Introduction

Echocardiography is an effective imaging modality that enables clinicians to
study the shape, size and dynamics of the heart. It is non-invasive, relatively
inexpensive and fairly simple to use. The analysis of ventricular motion, in
particular, provides an efficient mean to evaluate the degree of ischemia and
infarction [49, 37, 50]. In clinical practice, the analysis mainly relies on visual
inspection or manual measurements by experienced cardiologists. Manual meth-
ods are tedious and time-consuming and visual assessment leads to qualitative
and subjective diagnoses that suffer from a considerable inter- and intra-observer
variability. Therefore, an automated, computer-based analysis is highly desir-
able to obtain more objective and quantitative diagnoses.

Several approaches have been proposed to quantify heart motion from 2D
echocardiograms. One approach consists in segmenting and tracking myocar-
dial borders using active contours [1, 2, 9] or active appearance models [11].
However, motion information is only obtained for myocardial borders which are
often poorly defined, especially in the case of the epicardial border. A different
approach is to estimate motion for the entire image content; optical-flow meth-
ods, in particular, have led to promising results: Mailloux et al. [17] extended
the optical-flow algorithm of Horn and Schunk [16] by adding a linearity con-
straint to the motion field. Zini et al. [18] added an additional incompressibility
constraint. A popular optical-flow algorithm is the Lucas-Kanade method [19],
which estimates the motion locally, assuming that the velocity field is constant
within a window. This method was applied to ultrasound by Chunke et al. [20].
An evaluation of different optical-flow methods applied to echocardiograms can
be found in [21].

We propose a novel optical-flow-based algorithm that is tuned for the analy-
sis of ventricular wall motion from dynamic B-mode echocardiograms. Inspired
by the Lucas-Kanade method [19], we use a local motion model inside a slid-
ing spatio-temporal window. We use a local affine model for the velocity in
space that allows to describe typical heart motions such as rotation, contrac-
tion/expansion and shear. The motion parameters are estimated in the weighted
least-squares sense inside the sliding spatio-temporal window. Instead of work-
ing at a fixed scale, we consider estimation windows of dyadic sizes and develop
a multiresolution strategy to improve the estimation of large motions and to
reduce the sensitivity to noise. We introduce a B-spline weighting scheme that
has important computational advantages for multi-scale processing. In partic-
ular, we develop a wavelet-like multiresolution implementation. We also add a
temporal linear component to our motion model. This leads to a more robust
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motion estimation, combining information from multiple frames. It also yields
an additional acceleration parameter—a useful indicator of heart dynamics.

Since the estimated velocity data itself is not of direct use for the clinician, it
is processed and visualized properly to facilitate the diagnosis. In order to focus
on the relevant regions of the heart, the motion information is only displayed
inside a user-defined region of interest (ROI) that typically corresponds to the
myocardium. In order to follow the movement of the myocardium, the ROI-
contour is automatically tracked in time by using the estimated velocity field.
Robustness of the tracking process is achieved by using a spline representation of
the ROI-contours that is fitted in the least-squares sense to the estimated motion
field. To extract myocardial contractility information from the overall motion
field, we compute the radial component of the estimated velocity field with
respect to the ROI-centroid (center of gravity). This radial velocity component
is then color-coded and superimposed on the original image sequence in a semi-
transparent fashion that is similar to tissue Doppler imaging. The color display
allows a more intuitive and simplified identification of regions with abnormal
motion patterns. As additional information, the motion trajectory of the ROI-
centroid, the principal axes of inertia and the area-size of the ROI can also be
displayed.

This chapter is organized as follows. We describe the motion estimation
algorithm in Section 4.2. The ROI-tracking and radial motion visualization is
presented in Section 4.3. The algorithm is validated in Section 4.4: first, we
apply it to synthetic data that simulates the characteristics of a beating heart,
and compare it with alternative motion estimation approaches. In particular,
we test its robustness by simulating the ultrasonic image formation to generate
characteristic speckle noise. Second, we demonstrate the ability of the pro-
posed method to analyze motion from real echocardiograms by performing an
experiment with a tissue mimicking phantom that is described in Section 4.4.2.
Finally, in Section 4.4.3, we validate the algorithm on a set of clinical echocar-
diograms obtained from an animal study. Data sets that were acquired before
and after an artificially induced infarction were analyzed and compared.

4.2 Local-Affine, Multi-Scale Motion Estima-
tion

Several methods have been proposed to quantify heart motion from two-
dimensional echocardiograms. Special attention has been paid to optical-flow
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methods which have led to promising results [21]. Gradient-based optical-flow
estimation relies on the assumption that the intensity of a particular point in a
moving pattern does not change with time. Let I(z,y,t) denote the intensity
of pixels at location r = (z,y) and time ¢ in an image sequence. The constant
intensity assumption can be expressed as [16]

L(r,t)u(r,t) + I(r,t) v(r,t) + Li(r,t) = 0, (4.1)

where I, I, and I; denote the spatial and temporal derivatives of the image
intensity. The velocities v and v are, respectively, the z- and y-components of
the optical-flow that we wish to estimate. Since (4.1) is a single equation in two
unknowns u and v, it cannot be solved uniquely without introducing additional
constraints.

4.2.1 Local Affine Velocity in Space-Time

A popular optical-flow algorithm is the Lucas-Kanade method [19], which was
applied to ultrasound in at least two studies [21, 20]. The method estimates
the motion locally assuming it to be constant within a spatial window. Since
typical heart motions are given by rotation, expansion, contraction, and shear,
we use a local affine model for the motion in space. Additionally, we introduce a
linear model for the velocity along the time direction. This allows us to capture
local accelerations in time better than by a locally constant model. Another
advantage is that we can base our estimation on multiple frames around a given
time point which is more robust than using only two frames as many classical
optical-flow methods do. Let (xq,yo,%0) denote the center of a small spatio-
temporal image region ). Then the spatio-temporal-affine model is defined as

u(z,y,t) U Uy Uy Ug T To

y _ x Yy _

< v(x,y,t) ) ( Vg >+< Uy Uy U > Y= |- (4.2)
- t— to

The parameters ug and vy correspond to the velocity at the center point

(20,Y0,%0); Uz, Uy, U, Vg, Vy, and v, are the first order spatial and temporal

derivatives of u and v, respectively. The derivatives are assumed to be constant

within the local neighborhood.

An attractive feature of the local affine model is that it gives also access to
local strain rate information. The sub-matrix of spatial derivatives

g s Uy
(I
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describes the local variation of the velocity field in space which corresponds to
myocardial tissue deformation. The computation of local strain rate parameters
and its visualization is discussed in detail in Chapter 7.

We estimate the motion components at (xg,yo,to) by minimizing the
weighted least-squares criterion

2
/w(m—mo,y — Yo, t — to) (Iwu—&—lyv—i—lt) dx dy dt. (4.3)
R?)

The symmetric window function w gives more weight to constraints at the cen-
ter of the local spatio-temporal region than to those at the periphery. A well
suited window function is w(z,y,t) = 6"(x)8™(y)B"(t), where 8" is the sym-
metrical B-spline of degree n € N [51]. B-splines rapidly converge to Gaussians
when their degree increases which ensures isotropy of the window in multiple
dimensions. Varying the B-spline degree also allows to change the size of the
window function. Additionally, the B-splines satisfy a two-scale equation which
leads to an efficient computation of B-spline-weighted inner products at dyadic
scales by using a wavelet-like algorithm (cf. Section 4.2.2).

By differentiating (4.3) with respect to each of the eight unknown parame-
ters, we obtain the so-called Normal Equations ATAv = ATb in terms of local
moments of the spatial and temporal derivatives of I, as defined in (4.5) on
page 40. These symmetric linear systems are small (8 x 8) and can be solved
efficiently. The system-coefficients at a given position (zg, yo,to) are of the form

Mp.q.r(To, Yo, t0) = /w(x—xmy—ymt—to) X (4.4)
RS
(x —x0)P(y — yo)I(t — to)" f(x,y,t) dv dy dt,

where 0 < p+qg+r <2 and f represents the functions 13,15, I 1, 1.1, or I, 1.
Note that we do not compute the system components A and b explicitly, which
would contain row-wise the weighted optical-flow constraint for each pixel in

the window.

4.2.2 Choice of Window Size—Multiresolution Moments
Computation
The optimal size of the window function w depends on the underlying motion

field and is thus not known a priori. In regions where the displacement field
is essentially homogenous in space, the motion can be well fitted by the affine
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model within a large observation window. On the other hand, smaller win-
dows will be better suited for processing areas where the motion pattern varies
rapidly, which is for example the case at myocardial boundaries. Our strategy
is thus to use a window function that is as large as possible such that the lo-
cal motion model is not violated. Estimating model parameters inside larger
windows increases the robustness to noise because the parameters are averaged
over a larger sample size.

To find the most promising solution at a given position (xg, Yo, to), we com-
pute first of all the local model parameters within windows of different sizes.
More specifically, we use window functions that are dilated in space by dyadic
factors 27, j € N; i.e.,

WD (z — 20,y — yo,t — o) = w (x 2jx°, Y ijo,t - t0> . (4.6)
The coefficients of the local Normal Equations (4.5) are computed for different
window sizes and the systems are then solved for the model parameters. A
solution is only admissible if the condition number of the corresponding linear
system is below a predefined limit. Its size corresponds to the level above which
a linear system is considered to be singular. In the experiments, we used values
in the range of 2000 to 5000. A motion estimate is set to zero if the local average
of the time derivative <w(j), It2> is smaller than a predefined noise level. For
each pixel, we chose the final solution from that scale for which the normalized
residual error
_lAv—b|}

e= - (4.7
l @1,

is minimal. Since [[Av —b||7 =bTb—vTATb, the residual of the least-squares
solution can be computed efficiently by using the right hand side of the Normal
Equations ATAv = ATb and by additionally computing the inner product
b”b = (w9, I?). The matrix A needs not to be known explicitly.

To decrease the computational burden, we alternatively place the dilated
window functions w?) on a sub-sampled grid spaced at distances of 27 in each
spatial dimension. Since in this constellation, the B-spline windows satisfy the
partition of unity—i.e., they sum up to a constant—every pixel is equally cov-
ered. Motion vectors at intermediate grid points are obtained by using linear
interpolation.

Computing inner products with large windows is computationally expen-
sive; however—inspired by the framework of wavelets [52, 53]—we developed a
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Table 4.1: Two-scale filters hy . up to order p = 2 for 33.

Lt | -2 -1fofi]2]
hoo(D) || § s |8|8l%
hio | =3 | %[0 3|3
hia(l) || 3§ s |8|8l%
hao(1) 3 3 100303
hoa() | =5 | =303 |3
hao(l) || 3 s |s181l%

multi-channel, Mallat-like algorithm to compute the matrix coefficients (4.4) re-
cursively for successively larger window sizes. This multiresolution framework is
applicable in both the sub-sampled and the non-sub-sampled “a trous” regime.
In the sub-sampled case, the local moments at successive scales can be computed
iteratively as:

m{ i+ (20, o, to) (4.8)
p q
= Z Z (h(j) h(Jl * mk 3 7‘) (2580, 2:1/0, to)
k=0 1=0
p q
= ZZZhQ) h(J) )m,(g?r(on—m,Qyo—n,to).
k=0 1=0 m,n

The one-dimensional two-scale filters

W) =210~ Rp, (4.9)
are scaled versions of basic filters h,; and are applied separately in the -
and y-directions. The corresponding two-scale filters h,, ;, for the cubic B-spline
(n = 3) up to order p = 2 are given in Table 4.1. Practically, this means
that the moments are first computed within the smallest window (initializa-
tion) and that their counterparts at successive coarser scales are obtained by
multi-channel filtering and summation as in (4.8). For a detailed discussion of
multiresolution moment filters, including proofs and further applications, we
refer to Appendix A.
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4.2.3 Coarse-To-Fine Multi-Scale Strategy

Estimating large motions of moving patterns that contain high frequencies may
lead to aliasing artifacts. Due to the sampling theorem [54], the sampling fre-
quency of the moving signal has to be at least twice as large as the spatial cut-off
frequency vy (Nyquist limit). In other words, the displacement u/At is limited
by one-half of the minimum occurring wavelength A\g = 1/vp; i.e.,

Ao
At < =
ulSt < =,

where u denotes the velocity of the pattern and At is the temporal sampling
interval. If we assume that the signal is band-limited with the maximum spatial
frequency vg = 1/2 and if we normalize the temporal sampling interval to At =
1, then the maximum displacement that can be estimated unambiguously is one
pixel per frame.

To be able to estimate larger motions, we apply a coarse-to-fine strategy in
space. As sketched in Fig. 4.1, we compute an image pyramid for each frame in
the image sequence. In particular, we use a spline-based least-squares pyramid
[65] with dyadic scale progression. At each pyramid level 0 < k < K, the
original image 19 (z,y) = I(x,y), at level k = 0, is approximated by the spline
model . y

1M (z,y) = Zc(k)(m,n)ﬁn (27@ —m, - — n) . (4.10)
m,n
At each level, the number of spline coefficients ¢(*) is reduced by the factor 2 in

each dimension, resulting in a successively coarser image approximation. The
spline coefficients at level k are determined such that the approximation error

7=

Lo

becomes minimal. The required partial derivatives of I%) at each level k can
be computed analytically from the B-spline representations (4.10) [51].

Our coarse-to-fine multiresolution strategy for motion estimation works as
follows. Starting at the coarsest pyramid level £k = K, the motion vectors at each
grid position are determined by locally choosing the most appropriate window
size as described in Section 4.2.2. The motion vectors are then transferred
to the next finer resolution level £ — 1 as initial estimates. The velocities are
upscaled to the resolution level & = 0 by multiplying the vectors with 2*. Values
on intermediate grid positions are computed by using linear interpolation. If
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Figure 4.1: Coarse-to-fine multi-scale strategy in space. IV, and N, are the x—
and y-dimensions of the images at level k& = 0, respectively. Larger motions
are estimated at coarser scales while smaller motions are refined at finer scales.

At each grid position the most appropriate window size is chosen based on a «a
posteriori figure of merit.
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the upscaled coarser-scale motion vector does not exceed the level-dependent
length 25=1 (a priori test), it is re-estimated in the same fashion as described
above. An initial, coarser-scale estimate is replaced only, if the length of the
re-estimated vector does not exceed the level-dependent limit 28~ (a posteriori
test). Having completed the finest pyramid level, we fit a spatio-temporal B-
spline model to the discrete output to obtain a global, continuous representation
of the velocity field.

Note that the present strategy is a refinement of our initial approach pub-
lished in [48]. The experimental results presented in this chapter have been com-
puted using a single pyramid level (kK = 0). The sequences were pre-smoothed
instead to reduce the aliasing problem. The experiments in the subsequent chap-
ters were performed using the refined multi-scale strategy as described above.

4.3 ROI-Tracking and Motion Visualization

Since the motion is estimated for the complete sequence, the information of
interest needs to be extracted and displayed in a proper way to facilitate the
identification of wall motion abnormalities. Therefore, we compute radial ve-
locity information from the estimated velocity field and visualize it inside a
time-varying region of interest (ROI). For each frame, the ROI is defined by a
set of closed spline curves (typically, the inside and outside of the myocardium).
For a given time t, each spline curve is parameterized as r(7) = (2+(7), y:(7)) in
terms of the variable 7. In particular, we represent r;(7) as a linear combination
of B-spline basis functions [51]:

n(r)= Y ()" (74)_ (4.11)

The integer n denotes the degree of the B-spline and c;(l) denotes a sequence
of vector spline coefficients given by c¢:(I) = (c¢(1),d:(1)). The basis functions
are dilated and shifted by some integer m meaning that spline knots on the
curve are located at distance m. Since the curves are closed, the sequence of
spline coeflicients c; is periodic with some period length K. To track a curve in
time, we compute a series of sample points r¢(k), k = 0,...,mK — 1, at integer
distance on the curve. For these sample points, we compute the displacement
from the continuous spline representation of the velocity field. By adding the
displacements to the current position of the sample points, we obtain their
position

f‘t+1(k3) = rt(k) + (u(rt(k)’ t)? U(rt(k)7 t)) (4-12)
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Figure 4.2: ROI-tracking by least-squares B-spline fitting to the estimated mo-
tion field.

in the next frame ¢ + 1 as shown in Fig. 4.2. To obtain a robust tracking, we
approximate the mK displaced sample points by the spline model (4.11) that has
K degrees of freedom, i.e., the spline coefficients ¢;1(1), 1 =0, ..., K —1. These
spline coefficients are determined by minimizing the least-squares approximation

error
mK—1

=Y lreak) =t (B, (4.13)
k=0

The choice of the parameter m determines the trade-off between closeness to
the sample points and smoothness of the spline curve. An efficient filter-based
approach to compute the spline coefficients is described in [56, 57]. The set
of obtained spline curves then defines the ROI at time ¢ + 1. To initialize the
tracking process, the observer outlines the ROI by placing landmarks on the
first frame of the image sequence. The user-defined landmarks are then used
to obtain the initial spline curve. The corresponding spline coefficients ¢ (l) in
(4.11) are determined such that the curve exactly interpolates the landmarks
(m=1).

Having computed the ROI for each frame, we compute the centroids (centers
of gravity), the areas, and the principal axes of inertia of the ROIs. These pa-
rameters can be computed exactly from the spline representation of the contours
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[68]. The velocity field of each frame is projected onto the radial direction de-
fined with respect to the centroid of the ROT of a particular frame (end-diastolic
or end-systolic). Optionally, the velocity can also be projected onto the floating
centroid of the ROI. In this case, the global translational motion of the ventricle
is compensated by subtracting the velocity of the floating centroid from the es-
timated overall velocity. The choice of the optimal centroid (fixed vs. floating)
depends on the conditions under which the heart is imaged. Under conditions
where excessive translation of the heart occurs, such as might be the case after
cardiac surgery, a floating centroid approach would be more appropriate.

Inside the time-varying ROI, we color-code the radial velocity using a similar
color map as in tissue Doppler imaging (TDI). The color-coded velocity is then
superimposed on the underlying image sequence in a semi-transparent fashion.
The color display corresponds directly to myocardial inward/outward motion
and allows to identify regions of abnormal motion more easily. The motion
trajectory of the centroids, the principal axes of inertia and area-size of the ROIs
can also be displayed. The movement of the ROI-centroid allows to identify and
quantify an underlying rigid translation of the myocardium. The motion of the
principal axes of inertia allows to identify a global ventricular rotation (heart-
twisting).

To improve the contour tracking accuracy further, the proposed method may
be combined with active contour techniques. However, most of these techniques
are based on the detection of strong edges or ridges which do not necessarily
correspond to the expert-defined ROI. Furthermore, the transition between the
epicardial border and the surrounding tissue is usually very smooth and requires
a more adapted definition of cardiac borders. The combination with trainable
shape models may also improve the performance, but requires a large set of
normalized training examples that also includes a variety of cases with abnormal
motion. We did not consider these options here.

4.4 Numerical Results

For validation purposes, the algorithm was tested in three different ways. First,
it was applied to synthetic data and compared to other motion estimation meth-
ods. Second, we analyzed echocardiograms of a rotating phantom. Third, the
algorithm was applied to a set of clinical echocardiograms.
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4.4.1 Application to Synthetic Data

A quantitative analysis of the performance of the algorithm is done on synthetic
sequences for which the exact motion field is known.

Modeling of Echographic Texture

In order to simulate the appearance of clinical echo images, we use the linear im-
age formation model of [59] and [60]. The model assumes that the echographic
radio-frequency signal RF(x,y) can be described by a spatial convolution be-
tween the system point spread function (PSF), h(z,y), and the impulse response
of the tissue N(z,y):

RF(x,y) = /N(r7 s)h(x —r,y — s)drds. (4.14)
RQ

The tissue N(z,y) is modeled as a collection of point-scatterers with 2D nor-
mally distributed random echogenicity. The speed of sound throughout the
tissue is assumed to be constant. The PSF is assumed to be space invariant
with zero attenuation in the case of an adequately adjusted gain control. In
particular, we use the Gabor function
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hz,y) = ¢te < T+ 2>, (4.15)

where o, and o, correspond to the axial and lateral dimension of the PSF,
respectively. The parameter wy denotes the acoustic spatial frequency in axial
direction. In order to simulate the radial propagation of the ultrasound beam, we
divide the image plane into K radial segments along the directions ¥y = kn/K,
k=0,...,K — 1. The oriented filter A(z’,3’) in each segment is obtained from
the basic filter via the coordinate transformation

2’ = cos(Vg)z + sin(Ig)y (4.16)
y' = —sin(dy)x + cos(Vy)y. (4.17)

The resulting B-mode images are given by the modulus (envelope) of the com-
plex echographic radio-frequency signal. The B-mode image gray level his-
togram has a Rayleigh distribution which is also known as “fully formed”
speckle. In this experiment, we have used the parameter set o, = 2.0 pixels,
oy = 2.8 pixels, wy = 7/2, and K = 180.



4.4 Numerical Results 49

Modeling of Heart Motion

In this study, we simulate an apical short axis view of a heart. For simplicity,
we consider a circular heart model and simulated a periodic displacement field
that maintains the area of the myocardium constant. This is achieved by apply-
ing a radial displacement field with a magnitude decreasing with the distance
from the center. This displacement field is cosine modulated in time to simulate
expansion and contraction. This kind of motion reflects the wall-thinning and
thickening of a beating heart during diastole and systole. Additionally to the
myocardial excursion, the heart model is translated towards the upper right
direction to simulate an underlying rigid motion. The known motion field is
applied to the initial point scatterer image to obtain a sequence of warped im-
ages. The dynamic model was set such that the maximum velocity per frame is
2.0 pixels. In order to simulate additional changes of the scatterer echogenicity
that are not caused by motion, we added normally distributed zero-mean white
noise to each frame of the warped image sequence. This models, for example,
echogenicity changes that are caused by blood flow. This is a simplified, not
entirely realistic noise model, but allows us to test the robustness of the algo-
rithms. The final echo sequence is computed by applying the image formation
process described above to each frame of the perturbed point scatterer images.
As an example, one frame of a 32-frame test sequence is shown in Fig. 4.3a. In
this case, the signal-to-noise ratio of the point-scatterer images is 13.98 dB.

Motion Estimation Results

The applied motion field was estimated by the algorithm from the simulated
B-mode images. As an example, the corresponding estimated velocity field of
Fig. 4.3a is shown in Fig. 4.3b. The performance of the algorithm was tested
on sequences that were obtained from point scatterer images of different signal-
to-noise ratios. The method was compared with the Lucas-Kanade [19] and
the Horn-Schunk [16] optical-flow methods. For the Lucas-Kanade method, we
have used the same parameter set as proposed in [61]. For the Horn and Schunk
method, we performed at most 250 steps of the iterative algorithm and used a
range of regularization parameters 1 < o < 150. All sequences were prefiltered
in space with a Binomial filter of variance 02 = 1.0. The experiments were
performed on a 400-MHz Macintosh G4 computer. The computation time of
the proposed algorithm applied to the test sequences (32 (256 x 256)-frames)
was 44 seconds. To assess the performance of these algorithms, we used two
error measures. The first is the angular error between the estimated velocity v
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(b) Estimated velocity field during diastole

Figure 4.3: Synthetic ultrasound sequence and corresponding estimated velocity
field.
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Table 4.2: Error measures of different optical-flow methods

Method Average angular | Average amplitude
error 0 [°] error £ [%)]
Lucas-Kanade 9.55 £ 16.93 17.44+73.8
Horn-Schunk
a=15 7.77 + 13.86 20.3 +59.8
a=7175 3.90 + 7.03 16.81 £ 21.6
a =135 4.05 £ 5.92 29.6 £18.1
Spatio-Temporal-Affine 2.43 +6.10 5.9+ 15.2

and the exact velocity v which is given by

{v,v)

6 = arccos .
v, V12,

(4.18)

This error measure does not depend on the magnitude of the motion vectors,
but describes the directional error of the motion vectors. The second is the
relative error of the velocity magnitude which is calculated as

_ vl = 191,

||VH12

(4.19)

The mean errors § and Z and their corresponding standard deviations were
computed by averaging over all pixels in the image sequence.

To test the accuracy of the different methods, they were first applied to echo
sequences that were obtained from point scatterer images without additional
noise. The resulting errors are summarized in Table 4.2. The worst method is
the Lucas-Kanade method. This is due to the fact that the diverging character
of the motion field is not compatible with the local constancy-assumption and
that it uses only a single window size. The method of Horn and Schunk performs
better with respect to the angular error measure. Table 4.2 shows the lowest
possible angular error for the Horn and Schunk method that was obtained for
the regularization parameter a = 75. However, the regularization parameter
depends on the image sequence and the best choice is not known a priori.
Moreover, an increase of the regularization parameter leads to biased velocity
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estimates towards lower values which is reflected by the relatively high amplitude
error € = 29.6%+£18.1% for a = 135. Low values for o reduce the bias, but lead
to an increased directional error. The spatio-temporal-affine method performs
best since it is well adapted to the underlying motion pattern.

The robustness of the algorithms in the presence of additional scatterer noise
is illustrated in Fig. 4.4. The algorithms were applied to echo sequences that
were obtained from point scatterer images of signal-to-noise ratios varying from
26.02 to 13.98 dB. Fig. 4.4a shows the average angular errors of the three meth-
ods. For each noise level, we have chosen the regularization parameter of the
Horn and Schunk method such that the error was minimal. The corresponding
amplitude errors are illustrated in Fig. 4.4b. The Lucas-Kanade method is the
most sensitive one, whereas the Horn and Schunk method performs reasonably
well if the regularization parameter is chosen properly. The spatio-temporal-
affine algorithm performs best with respect to both error measures because the
multiresolution strategy and the use of a temporal window provide increased
robustness against noise. However, it can be shown in general that the least-
squares method, as used in (4.5), yields estimates that may be biased towards
smaller values if the data matrix contains noise [62]. This can also be observed
from the experiments by computing the relative bias

1Vlli, = V1l

(4.20)
vl

Ep =

The mean bias &, averaged over the whole image sequence, was calculated for
each noise level. The underestimation grows with increasing noise level and
ranged from 1.7% to 11.4%. To demonstrate the influence of the bias to the
amplitude error (4.19), we re-calculated it after correcting the velocity estimates
by the average bias such that

v. (4.21)

The resulting amplitude error is also plotted in Fig 4.4b; it is smaller than in
the non-corrected case confirming our observation. A more systematic way to
correct for the bias is given by the total least-squares (TLS) technique [62, 63].
However, this technique requires the knowledge of the noise covariance of a
system matrix that is composed by the original data matrix and the right hand
side vector. Its estimation is challenging if the sample sizes are small and if an
accurate noise model is not known. Our experiments with the TLS-method are
described in Chapter 5.
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Figure 4.4: Average angular and amplitude errors of different methods for dif-
ferent signal-to-noise ratios of the point scatterer images.
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The experiments demonstrate the robustness of the proposed algorithm in
the case of a simple ultrasound imaging model. More realistic simulations should
perhaps consider a non-linear model for the image formation and a tissue model
that reflects the heart anatomy, such as fiber directions, non-uniformity of speed
of sound, more closely. However, these properties are difficult to simulate which
calls for alternative validation methods such as phantom experiments.

Radial Motion Visualization

For radial motion visualization, the estimated velocity was projected onto the
direction to the floating centroid of the ROI to compensate for the underlying
translational motion. The color-coded radial velocities for the example sequence
are shown in Fig. 4.5a and 4.5b for systole and diastole, respectively. The uni-
form contraction during systole is clearly expressed by the red/yellow colors.
On the other hand, the expansion during diastole is correctly displayed by the
blue/green colors. The color display is more intuitive than the velocity field rep-
resentation and is not distorted by the underlying global translation. The ROI
also clearly tracks the myocardium and the circular form of the ROI-contours is
maintained due to the least-squares fitting to the estimated noisy motion field.

4.4.2 Phantom Experiments

The algorithm’s ability to estimate motion from real echocardiograms was tested
in a phantom experiment. A cylinder-shaped, tissue-mimicking phantom was
placed inside a tube of water and rotated with constant angular velocity around
its longitudinal axis. The gelatine phantom had a diameter of 7.5 cm and was
made out of a 2% agar-agar solution containing randomly dispersed scatterers
whose size ranged from 50 to 250 um. Echocardiograms of a 2D-cross section
orthogonal to the axis of rotation were acquired and analyzed by the algorithm.
Fig. 4.6a shows one frame of a rotating phantom echocardiogram and Fig. 4.6b
shows its corresponding estimated velocity field. Since the applied motion is
purely rotational, the velocity magnitude increases linearly with the radius. To
test this relationship for the estimated velocity field, we computed local means
and standard deviations of the velocity field along annuli of different radii. We
then fitted a linear regression line to these mean velocities as shown in Fig. 4.7.
The coefficient of determination is 0.993 which confirms the linear relationship.
The slope of the regression line corresponds to the estimated angular velocity.
The estimated value was 0.0727 rps, whereas the true angular velocity applied to
the phantom was 0.0796 rps. This corresponds to an underestimation of 8.7%.
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:

LB

(b) Radial velocity during diastole

Figure 4.5: Synthetic ultrasound sequence and superimposed color-coded radial
velocity.
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(b) Superimposed estimated velocity field

Figure 4.6: One frame of the rotating phantom sequence and its corresponding
estimated velocity field.
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Figure 4.7: The means and standard deviations of the estimated velocity field

for fixed radii are plotted together with its linear regression line.

This experiment can also serve as a calibration tool to determine the factor for
the bias correction of the motion estimates as proposed in (4.21).

4.4.3 Application to Clinical Data

For a first in vivo validation, we applied the method to a set of clinical echocar-
diograms that were obtained from an animal study. We analyzed ultrasound
sequences of six dogs with infarctions that were artificially induced by the occlu-
sion of the left anterior descending artery (LAD). As introduced in Section 3.3.3
on page 29, we use the standardized division of the left ventricle into 16 seg-
ments according to the American Heart Association. Regions that depend on
the left anterior descending artery blood supply are indicated in Fig. 3.6.
Echocardiograms were acquired in an open-chest state before and after the
infarction. Since the infarction was caused manually, the exact localization
and extend is known and a direct comparison between normal and pathological
cases is possible. For one case, two frames of a long axis view (LAX) before the
infarction are shown in Fig. 4.8a and 4.8c for systole and diastole, respectively.
The corresponding motion estimation results are superimposed in the form of a
needle diagram. The typical ventricular contraction and expansion of a normal
beating heart during systole and diastole is clearly captured by the estimated
motion fields. Fig. 4.9 shows the status after the infarction. Fig. 4.9a and 4.9c
correspond to a frame during systole and diastole, respectively. In both figures,
the dyskinesia (paradoxical motion) in the apical to mid anteroseptal segments
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(b) Color-coded radial velocity during sys-
tole

(c) Estimated velocity field during diastole (d) Color-coded radial velocity during dias-
tole

Figure 4.8: Echocardiograms with superimposed motion information during
systole and diastole before infarction. The estimated velocity fields are shown
in (a) and (c) and the corresponding color-coded radial velocity in (b) and (d).
The velocity fields and the colors reflect the normal contraction and expansion
during systole and diastole, respectively.
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y

(a) Estimated velocity field during systole

e o 4 SN
(c) Estimated velocity field during diastole (d) Color-coded radial velocity during dias-
tole

Figure 4.9: Echocardiograms with superimposed motion information during
systole and diastole after infarction. The estimated velocity fields are shown
in (a) and (c). Wall motion abnormalities (dyskinesia) are highlighted by red
arrows. The corresponding color-coded radial velocity is shown in (b) and (d).

(upper right region) is correctly captured by the motion field; during systole the
affected segments move outwards due to the inner blood pressure, whereas they
move inwards during diastole.

The color-coded display of the radial velocity confirms the observations ob-
tained from the motion fields, but can be interpreted in a more straightforward
way. The color-coded radial velocity of the example case before the infarction
is shown in Fig. 4.8. Fig. 4.8b and 4.8d show the corresponding frames during
systole and diastole, respectively. In all cases, the velocity was projected onto
a fixed reference point that is given by the ROI-centroid at end-diastole. The
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regular contraction of the whole myocardium during systole is indicated by the
red/yellow colors, whereas the blue/green colors reflect the normal expansion
during diastole. The color-coded radial velocity after the infarction is shown
in Fig. 4.9. In Fig. 4.9b, the outward motion of the apical to mid anterosep-
tal segments (upper right region) during systole is correctly visualized by the
blue/green colors. The infarction also causes an outward movement of the basal
posterior (lower left) segment. Fig. 4.9d shows the pathological motion during
diastole. Here, the red/yellow colors indicate that the apical to mid anterosep-
tal segments (upper right region) move inwards instead of outwards as in the
normal case. Accordingly, the basal posterior (lower left) segment also moves
inwards.

Segmental Wall Motion Analysis

For all six cases, we compared peak radial velocities of myocardial segments
during systole before and after the infarction. In particular, we analyzed seg-
ments that were classified as dyskinetic by the expert. Since during systole the
ventricle is contracting (negative radial velocity), a normal beating heart does
not exhibit significant positive radial velocities. However, dyskinetic segments
expand during systole and show significant positive values. In this experiment,
eight segments out of total 36 were classified as dyskinetic by the expert. The
average of the measured positive peak radial velocities in these dyskinetic seg-
ments is 1.99 + 0.92 cm/s. In contrast, the average peak velocity in these
segments before the infarction was 0.18 & 0.15 cm/s. A paired t-test shows a
significant difference between the two states (p < 0.001). Although differences
are clearly significant for the dyskinetic case, the distinction between normal,
akinetic (no motion) and hypokinetic (very little motion) cases is not so well
defined. Statistical evidence in these cases could not be established since the ex-
periment only included six hearts that also show a variation in velocities before
the infarction. To perform a meaningful statistical study with a higher number
of infarct-categories, a larger number of cases needs to be analyzed.

ROI-Tracking Validation

The motion estimation algorithm in combination with the automatic contour
tracking was also validated by comparing it to the manual contour tracking by
an expert. Since the epicardial border is in general not clearly defined and is only
partially imaged in our test sequences, the validation is performed by tracking
the endocardial border of the left ventricle. In all 12 test sequences, an expert,
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who was blind to the computer analysis, outlined the contours of the endocardial
border at the end-diastolic and end-systolic frames, respectively. Each contour
was defined by a set of landmarks that were interpolated by a cubic B-spline
curve. In this experiment, the curves were not closed, but the two landmarks
at the mitral valve attachment were connected by a straight line to define an
endocardial area. The manually defined B-spline contour at end-diastole was
then tracked by the algorithm to end-systole. We calibrated the system and used
a constant bias correction factor in all experiments. Fig. 4.10a and Fig. 4.10c
show one example of the manually determined contours (green line) at end-
diastole and end-systole, respectively. The automatically tracked contour is
shown in Fig. 4.10b and Fig. 4.10c for mid-systole and end-systole, respectively
(white line). The areas that are enclosed by the manually determined contours
at end-diastole and end-systole are denoted by the characteristic functions Qgp
and Qpgg, respectively. The area defined by the automatically tracked contour
at end-systole is denoted as 2pg. By calculating the area-size of a characteristic
function as

. = / Q)| dady, (4.22)
R2

we define the manually determined area ejection fraction as EF = (||Qgp||L, —
1Qeslz,)/ 12Dl L, - Accordingly, we denote the computer-based area ejection
fraction by EF = (I1QepllL, — ||§ES\\L1)/||QED||L1. The area ejection fraction
can be interpreted as the two-dimensional analog of the volumetric ejection
fraction [64] and relates the endocardial area before and after the contraction
phase (systole). To compare the automatically tracked contours with the expert
standard, we compute two error measures. The first is the relative ejection
fraction error Egp = |[EF—EF|/|EF)|. Let ||Qgs —Qgs| L, denote the area-size
of the characteristic function that describes the region where the end-systolic
manual and computer-based masks do not coincide. Then the second error
measure F4 = ||Qgs — Qrs|z,/||Qes||L, corresponds to the relative size of the
area, where the manual and computer-defined masks do not overlap. In this
experiment, the average area error was determined as F4 = 10.20 & 2.04 %
and the area ejection fraction error was Erp = 11.42 & 7.26 %. To determine
the variability of the expert contour tracking, the contours at end-systole were
outlined a second time by the observer. The same error measures as in the
manual/computer comparison were calculated. The intra-observer error for the
end-systolic area was determined as F4 = 10.56 = 3.45 % and the intra-observer
area ejection fraction error was Erp = 13.6249.86 %. These results show that
the motion estimation algorithm yields realistic results and that the contours
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(a) Manually defined contour at end-diastole (b) Automatically tracked contour at mid-
systole

(c) Manually defined contour (green line) and (d) Endocardial area at end-systole for which
automatically tracked contour (white line) at the manual and computer-based masks do not
end-systole coincide

Figure 4.10: Comparison between manual and automatic contour tracking. The
initial manually defined contour at end-diastole is automatically tracked to end
systole and compared with the manual result.
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are sufficiently well tracked to provide a time-varying ROI for further post-
processing and motion visualization.

4.5 Conclusions

We proposed a new method to estimate heart motion from echocardiograms
that uses a local motion model that is particularly well adapted to typical
heart dynamics. The method is fast and robust due to a wavelet-like mul-
tiresolution implementation. For visualization purposes, we developed a robust
method to track a ROI in time. Inside the time-varying ROI, we superimpose a
color-coded radial velocity component onto the echocardiogram that allows to
directly identify and quantify myocardial contractility. The algorithm outper-
forms other methods on simulated data; its applicability to real echocardiograms
was demonstrated by a phantom experiment. A first validation of the proposed
method on clinical echocardiograms yielded realistic motion fields. We also ver-
ified that the estimated regional wall motion was in good agreement with the
expert echocardiographic reading.
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The brain can be easy to buy, but the heart never
comes to market.

— James R. Lowell

Chapter 5

Total-Least-Squares-Based
Motion Estimation

Abstract — In this chapter, we consider the total-least-squares approach
as an alternative to ordinary least-squares to solve the local linear systems
for the motion parameters. We review the general definition of the total-
least-squares problem and its solution methods. We also investigate its
relation to ordinary least-squares and consider a mixture method between
the two approaches—the so-called scaled total-least-squares method. We
compare the feasibility of the two methods and their trade-off version on
synthetic and phantom ultrasound data.

5.1 Introduction

While the least-squares method of Chapter 4 yields realistic motion estimates,
one may object that this kind of method can lead to biased estimates when the
matrix entries are subject to noise. In this chapter, we investigate the feasibility
of an alternative approach that is based on total-least-squares (TLS), a general
methodology for solving overdetermined linear systems, where both the matrix
and the right hand side vector are subject to noise.

From statistics, it is known that the least-squares estimator as used in (4.5)
on page 40 is generally biased towards lower values if the system matrix contains

65
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noise [62]. This is best demonstrated for the Lucas-Kanade approach [19] that
uses a locally constant model for the velocity in space. In this case, the Normal
Equations (4.5) reduce to the (2 x 2) system AT Ax = ATb, where

ATA — ( (w,17)  (w, Lo1y) ) . ATb=— < éw’ll'[ti > , (5.1)

<w,Ime> <w,Iy2> w, Iyl

and x = (u,v)T denotes the velocity components in z— and y-direction, re-
spectively. If we assume that the spatial and temporal derivatives I, I, and I,
contain additive, independently and identically distributed noise with zero-mean
and variance o2, the expected noise-corrupted system matrix becomes

T or <w,12>—|—02 <w,] I>
AYA +0°15 = < <w,xlmly> <w’15>”’f02 . (5.2)

The expectation of the right hand side vector remains A”b. Without loss
of generality, we can assume that the off-diagonal elements of (5.2) are zero
because this can always be achieved by a suitable rotation of the coordinate
system. Since the noise-free solution x = (71, z2)7 satisfies ATAx = ATb, the
noise-corrupted solution X can be expressed in terms of x as

(w.2)
<w,I§>+o’2
(w.13)

<w,I§>+a2

1
%= (ATA +0%,) ' ATb = (5.3)

€2

Equation (5.3) demonstrates that the solution in the noisy case is biased towards
lower values. Furthermore, the bias also depends on the signal-to-noise ratio of
the spatial derivatives.

This chapter is organized as follows. We will first review the general def-
inition of the total-least-squares problem in Section 5.2. Its solution and its
relation to ordinary least-squares are investigated in Sections 5.2.1 and 5.2.2,
respectively. In Section 5.2.3, we consider a mixture method between ordinary
and total-least-squares, known as scaled total-least-squares. This method allows
to continuously switch between the two methods by varying a single trade-off
parameter. We test the applicability of these approaches on synthetic and phan-
tom ultrasound data in Section 5.3.
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5.2 The Total-Least-Squares Problem

The total-least-squares method (TLS), also known as errors-in-variables method
in statistics, has been proposed to take into account the uncertainties in the data
matrix A. In the following, we give a brief summary of the total-least-squares
approach; an extended analysis can be found in [62, 63, 65].

In the classical least-squares formulation, it is assumed that the data errors
are confined to the right hand side vector b. However, this assumption is not
true in our case since the data matrix A is composed of the spatial derivatives
that are plagued with uncertainties due to the noise in the images. Let Ax ~ b
be an overdetermined, full rank linear system of equations in the unknowns
x € R, where A € R™*" b € R™, m > n, and b £ Image(A). The ordinary
least-squares formulation can be interpreted as finding a solution x and a vector
b such that:

n%inHlA)f b, (5.4)

subject to
Ax =b. (5.5)

By using standard algebraic manipulations, we find that the minimum of the
least-squares problem is equal to the solution of the so-called Normal Equations;
ie.,

x = (ATA) " A”b. (5.6)
The idea behind total-least-squares is to consider perturbations of both b and

A. More precisely, the total-least-squares problem consists in finding a solution
X, a matrix A and a vector b such that:

min [|(Alb) - (Afb)] (5.7)

subject to
Ax = b. (5.8)
Here, || - ||r denotes the Frobenius norm and the matrix (A|b) € R™*(»+1)

denotes the column-wise extended matrix A by b. If the rows of the error matrix
E = (A|b)—(A|b) are independently and identically distributed with zero mean



68 Total-Least-Squares-Based Motion Estimation

vector and common covariance matrix C = 021n+1 with some variance o2, it
can be shown that the total-least-squares solution corresponds to the maximum
likelihood estimator of x [62].

As in the least-squares approach, the influence of each equation in the system
Ax =~ b to the solution can be adjusted by multiplying the system by a left
hand side weighting matrix W € R™*™_ which is typically a diagonal matrix,
where each entry expresses our confidence in the corresponding row of the linear
system. In the following, we assume that A and b already correspond to the
weighted versions.

5.2.1 Solution of the Total-Least-Squares Problem

By rewriting Ax =~ b in the form

@A) (X, ) ~o (59)

it can be seen that the total-least-squares problem corresponds to finding a
perturbation matrix E = (A|b) — (A|b) of minimal Frobenius norm such that
(A|b) + E is rank deficient. Let the singular value decomposition of (A|b) be
given by

UT(Ab)V = X = diag(oy,...,0n41) (5.10)

with orthogonal matrices U € R™*™, V e R(*+Dx(+1) and singular values
012> ...20;>...20n41. Then, it can be shown that

onp1= min _ [(A[b) = (Ab)] . (5.11)
rank((A\b)):n

Moreover, if o, > 041 and V1 41 # 0, then

1
X=—F" (V17n+1, Ce ,Vn7n+1)
Vn+1,n+1

g (5.12)

exists and is the unique solution of Ax =~ b. Thus, the total-least-squares
solution is given by the first n components of the right singular vector that
belongs to the minimal singular value o,41 of (A|b). The singular vector is
normalized by its negative last component to satisfy formulation (5.9).
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5.2.2 Relation between Least-Squares and Total-Least-
Squares

By simple algebraic manipulations, it can be shown that the right hand side
singular vectors and squared singular values o2 of (A|b) correspond to the
eigenvectors and eigenvalues of (A|b)T(A|b), respectively. Since, (x,—1)T is
a singular vector with singular value o,11 of (A|b), it satisfies the following

eigenvalue relation:

A am) (X)) -

ATA ATp X 9 X
b’A bTb 1 ) "% 1 )¢

From the upper part of the block-structured system (5.13), it follows immedi-
ately that

(5.13)

x=(ATA - 02, T,41)  ATb. (5.14)

Equation (5.14) indicates that the total-least-squares formulation takes into
account the additional bias term that is due to noise as exemplified in (5.3).
Under suitable conditions, it can be shown that the smallest squared singu-
lar value o2 11 18 a consistent estimator of the true noise variance o? [62], i.e.,
limy,, 0o 02, 1/m = o2. Since the total-least-squares formulation consists in
subtracting a multiple of the identity matrix, it can be interpreted as a de-
regularization method, in contrast to the so-called regularized least-squares es-
timators, which add a positive definite term to the system matrix. Therefore,
the total-least-squares formulation is usually even less well conditioned than the
least-squared method.

Equation (5.13) reveals also an alternative way to determine the total-least-
squares solution. Since for motion estimation, we directly compute the Normal
Equations in terms of AT A and ATb, the terms A and b are not known explic-
itly. Therefore, we use the least-squares terms to assemble the block-structured
system matrix (A|b)T(A|b) as shown in (5.13). The only term that needs to
be computed additionally is the scalar product b”b. Computing the eigenval-
ues and eigenvectors of this system matrix yields the desired total-least-squares
solution. Since this (n+1)x (n+1) matrix is usually much smaller than the orig-
inal measurement matrix (A|b) € R™*(+1) its eigenvalues and eigenvectors
can be computed efficiently.

The geometrical interpretation of the total-least-squares approach for motion
estimation can be most easily demonstrated with the Lucas-Kanade approach.
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If we consider the image sequence as a three-dimensional volume, the direction
of motion can be interpreted as the unit vector u = (uy, uz,u3)? that points into
the direction of minimal intensity variation; i.e., the vector that is orthogonal
to the spatio-temporal gradient VI = (I, I,, I;)T. Considering a local spatio-
temporal neighborhood around some position (zg,yo,to) and some weighting
function w, the unit vector u can be determined by minimizing the following
weighted least-squares criterion [66]:

u
R3

2
min/w(x—a:o,y—yo,t—to) (VIT~u) dx dy dt (5.15)

subject to
[afl2 = 1.

By rewriting (VIT -u)? = u? VIVITu and introducing the Lagrange multiplier
A € R, the constrained optimization (5.15) is equivalently expressed as:

mi}{luTGu—F)\(l — [Jul2), (5.16)

where

<w,I§> <w,IzIy> w,IzIt>

G = <w,IIIy> <w,]5> w,IyIt> ) (5.17)
<w,IZIt> <w,IyIt> <w,[t2>

This leads to the eigenvalue problem
Gu = \u. (5.18)

The minimum is obtained if u corresponds to the eigenvector to the minimal
eigenvalue A of G. As can be seen from (5.1) and (5.13), the matrix G is
nothing but the system matrix (A|b)”(A|b) of the total-least-squares formu-
lation of the Lucas-Kanade optical-flow approach. Interestingly enough, this
total-least-squares system is equivalent to the structure tensor approach for
multidimensional orientation estimation [67].

5.2.3 Scaled Total-Least-Squares

The main weakness of the total-least-squares method is that it may overcorrect
the matrix A by replacing it by some matrix A that is too far from it. This
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can be prevented by imposing some a priori bound on the size of the allow-
able correction [68, 69]. Unfortunately, this can only be achieved by means of
iterative algorithms that require a much higher computational load than the
least-squares and total-least-squares approaches. In addition, they only con-
verge under certain conditions that are not always satisfied. Another way to
control the potential overcorrection is by using a mixture formulation of ordi-
nary and total-least-squares. This can be implemented with the so-called scaled
total-least-squares method [70] which seeks a matrix A and vectors b and x such
that for a given real number 7 €10, 1] the following functional is optimized:

min [|(A]yb) — (Alyb)|, (5.19)
Ab

subject to
Ax =b. (5.20)

For v = 1, this method is obviously equivalent to standard total-least-squares.
In fact, the scaled version can be implemented by using the standard algorithm
and simply replacing b by the rescaled vector vb. Moreover, by using (5.14), we
can show that the scaled total-least-squares method converges to the ordinary
least-squares solution for v — 0. For further details, we refer to [70]. Thus, for
a suitable choice of v €]0,1], we can achieve a compromise between the ordi-
nary and total-least-squares approaches, or in other words, a trade-off between
decreasing the bias while increasing the variance of the estimator.

5.2.4 Equilibration of the Total-Least-Squares System

In the considered case of motion estimation, the entries of the measurement
matrix A and right hand side vector b are likely to be correlated and their
variance may not be identical. A consistent estimate of the model parameters
can be obtained by pre-whitening the augmented system matrix (A|b) such
that the expectation E(ETE) becomes diagonal with equal error variances [71].
This can be achieved by applying a suitably chosen, non-singular right hand
side equilibration matrix R € R(*tD*(+1) that satisfies

ERTETER) = 0%, (5.21)

for some noise variance o2. Since E(RTETE R) = RTE(ETE)R, the equi-
libration matrix R is given by the root of the inverse covariance matrix, i.e.,
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RRT=F (ETE) ! The equilibrated total-least-squares solution of the linear
system Ax = b is then obtained by first determining the total-least-squares
solution of

((AJb)R)y ~ 0 (5.22)

as described in Section 5.2.1. Here, y = R7(x,—1)7 € R"*! denotes the
intermediate solution of the equilibrated system; the final solution is given by
x=—1/2p11-(21,...,20)7, where z = Ry € R*+1,

5.3 Numerical Results

The applicability of the total-least-squares approach and its scaled variation was
tested in combination with the spatio-temporal-affine motion model introduced
in Section 4.2.1. The equilibration matrix needed to whiten the system matrix,
assembled from the Normal Equations (4.5) on page 40, is derived as follows:
if we assume that the spatial and temporal derivatives I, I, and I; contain
additive, zero-mean, identically, and independently noise of common variance
o2, we find that

E(E'E) = UQdiangwllh w1 llz®wlly, l[y*wll, 2w,
(5.23)
2wl [y?wl, [Pw])1, Ilell),

where w denotes the discretized window function. The off-diagonal entries are
zero due to the independency assumption of the noise. The corresponding equi-
libration matrix R is given by the inverse component-wise square root of the
diagonal matrix E(ETE), ie.,

1. ~1/2 ~1/2 ~1/2 —1/2 —1/2
R = ~diag |[wll; %, w7, ol 72 Pl 2, e,
o (5.24)

—1/2 —-1/2 —1/2 —1/2
a2l 2, 2wl 2, el 2, ol %),

We computed the corresponding equilibration matrix for each dilated version
w@) of the window used. For the coarse-to-fine multi-scale refinement scheme
described in Section 4.2.3, we used a three-level pyramid decomposition during
our experiments.
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Application to Synthetic Ultrasound Data

To compare the performance of the different approaches, we applied them first
to the synthetic ultrasound sequences described in Section 4.4.1. In particu-
lar, we assessed the robustness of the methods by using echo sequences that
were obtained from point scatterer images of signal-to-noise ratios varying from
26.02 to 6.01 dB. The maximum applied velocity in these sequences was 2.0
pixel/frame.

The difference between the estimated velocity v and the exact velocity v is
measured as

e= [Vl = Ivll, - (5.25)

The average bias € was defined as the mean of the velocity differences € com-
puted over all pixels in the image sequence with non-zero motion. The standard
deviation o, of € was computed analogously.

Fig. 5.1 shows the results obtained for the ordinary least-squares method
(v = 0), the total-least-squares method (v = 1), and the scaled total-least-
squares method (v = 0.5). The total-least-squares method only produced ve-
locity estimates in an acceptable range for a fraction of the image data. As
mentioned in Section 4.2.3, motion vectors are rejected if their size exceeds a
scale-dependent limit. As plotted in Fig. 5.1c, the motion field density of the
total-least-squares method decreases for increasing noise level. The ordinary
least-squares and scaled total-least-squares method yielded realistic results ev-
erywhere. Fig. 5.1a demonstrates that the ordinary least-squares method shows
an increasing bias towards smaller velocity magnitudes as the noise level in-
creases. On the other hand, the total-least-squares method tends to overcor-
rect this bias, leading to an overestimate of the velocities. The combination of
both methods produces the smallest bias. As expected, the total-least-squares
method shows the largest variance of the motion estimates, plotted in Fig. 5.1b.
Again, the scaled total-least-squares method performs best.

Application to Phantom Ultrasound Data

The same experiment was also performed on the rotating phantom ultrasound
data described in Section 4.4.2. The maximum velocity magnitude of the se-
quence used here was 6.6 pixel/frame. Analogously to the experiments on syn-
thetic data, the least-squares method produced a bias of — 0.59 pixels/frame
towards lower velocities. The total-least-squares method overestimated the ve-
locities on average by 0.94 pixel/frame. The scaled total-least-squares method
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approach reduces with increasing noise level in the ultrasound data (c).
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(v = 0.5) yielded the smallest bias of 0.11 pixel/frame. It also showed the
smallest standard deviation of the velocity differences.

5.4 Conclusions

We have tested the feasibility of the total-least-squares method as an alternative
approach to fit the local motion parameters. Given the amount of noise present
in the ultrasound data, this method tends to be too sensitive to be applied
routinely. The experimental results suggest that the scaled total-least-squares
method is a good compromise between the two approaches. The performance,
however, depends on the trade-off parameter which needs to be carefully chosen.
To render the application of total-least-squares more robust, one has to employ
appropriate confidence or coherence measures that allow to detect cases of non-
applicability. Since the ordinary least-squares method yields robust results on a
wide range of ultrasound data, we use this method throughout our experiments
if not mentioned otherwise.
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Two things are bad for the heart—running up
stairs and running down people.

— Bernard M. Baruch

Chapter 6

Bimodal Motion Analysis
from B-mode and Tissue
Doppler Ultrasound

Abstract — We present a new method for estimating heart motion from
two-dimensional echocardiographic sequences by exploiting two ultra-
sound modalities: B-mode and tissue Doppler. The algorithm estimates
a two-dimensional velocity field locally by using a spatial affine velocity
model inside a sliding window. Within each window, we minimize a local
cost function that is composed of two quadratic terms: an optical-flow
constraint that involves the B-mode data and a constraint that enforces
the agreement of the velocity field with the directional tissue Doppler
measurements. The relative influence of the two different modalities to
the resulting solution is controlled by an adjustable weighting parame-
ter. Robustness is achieved by a coarse-to-fine multi-scale approach. The
method was tested on synthetic ultrasound data and validated by a rotat-
ing phantom experiment. First applications to clinical echocardiograms
give promising results.
This chapter is adapted from our paper [72].

7
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6.1 Introduction

Echocardiography is an established clinical tool for the assessment of regional
ventricular function in patients with cardiac disease. B-mode and tissue Doppler
modalities, in particular, are widely used to analyze myocardial motion in or-
der to evaluate the degree of ischemia and infarction. B-mode echocardiograms
provide a two-dimensional gray scale display of the moving heart but no quanti-
tative motion information. Therefore, the assessment of myocardial motion from
B-mode echocardiograms is routinely accomplished by visual interpretation and
manual evaluation. This leads to subjective and, at best, semi-quantitative
diagnoses, which suffer from a significant intra- and inter-observer variability.

Tissue Doppler imaging (TDI) is an emerging ultrasound modality that has
been introduced recently as a modification of Doppler-based blood flow mea-
surement [73, 74, 75, 76, 77]. It analyzes high-amplitude, low-frequency Doppler
shifts of reflected echoes to quantify tissue motion. Among others, TDI has been
used to detect wall motion abnormalities in stress echocardiography [49]. Low
Doppler velocities have proven to be a strong indicator for ischemia [78, 79].
However, TDI measures only the velocity component along the ultrasonic beam
direction. The fact that ventricular motion is multi-dimensional and usually not
restricted to the scan line makes its interpretation difficult—especially since the
images are scanned in a radial fashion.

To obtain true two-dimensional, quantitative motion information, differ-
ent methods have been proposed to estimate ventricular motion from B-mode
echocardiograms [17, 21, 48]. In this chapter, we propose a new motion analysis
approach that is based on both modalities, B-mode and tissue Doppler. The
idea is to estimate a velocity field from B-mode echocardiograms such that its
projections along the scan lines are in good agreement with the tissue Doppler
measurements.

The chapter is organized as follows. In Section 6.2, we briefly review the
principles of tissue Doppler imaging. After reviewing the optical-flow princi-
ple to analyze motion from B-mode echocardiograms in Section 6.3, we present
the proposed bimodal algorithm in Section 6.4. Numerical results from syn-
thetic data, phantom experiments and clinical echocardiograms are given in
Section 6.5.
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6.2 Principles of Tissue Doppler Imaging

Velocity measurements using pulsed-wave ultrasound have become an important
diagnostic tool in echocardiography [79, 49]. In two-dimensional tissue Doppler
imaging (TDI), the beam is scanned radially over the region to be imaged. As
illustrated in Fig. 6.1, the system measures the tissue velocity component

vp = ||Vl cos(B)

at positions along each beam, where 3 denotes the angle between the true ve-
locity vector v and the beam direction a. Thus, the measured motion depends
highly on 8. In particular, the modality is totally blind to displacements or-
thogonal to the scan line.

Conventional Doppler ultrasonography is based on the principle that vp is
proportional to the small frequency shift fp in the ultrasound carrier frequency
fo between transmitted and received echoes, i.e.,

c
Up = 2f0 va
where ¢ denotes the speed of sound. Because of the additional frequency down-
shift due to attenuation and the requirement of small bandwidth pulses (long
duration), other methods, such as measuring deviations in time delays between
successively received pulses [45], have been proposed to determine vp.

Current ultrasound systems allow the simultaneous acquisition of B-mode
and tissue Doppler signals in real-time. The Doppler velocities are usually color-
coded and superimposed onto the B-mode echocardiogram as shown in Fig. 6.5b
on page 86. However, the interpretation of these radial projections of complex
motion patterns, such as translation, rotation and shear, is difficult and requires
a sufficient level of experience [49].

6.3 Motion Analysis from B-mode Echocardio-
grams

Since tissue Doppler imaging is limited to the ultrasonic beam direction, several
methods have been proposed to estimate true two-dimensional motion from
dynamic B-mode echocardiograms; optical-flow methods, in particular, have
led to promising results [21]. Gradient-based optical-flow estimation relies on
the assumption that the intensity of a particular point in a moving pattern does
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Figure 6.1: The tissue Doppler velocity vp corresponds to the projection of the
true velocity v along the beam direction «.

not change with time. Let I(z,y,t) denote the intensity of pixels at location r =
(z,y) and time ¢ in an image sequence. Then the constant intensity assumption
can be expressed as [16]

L(r,t)u(r,t) + L,(r,t) v(r,t) + L;(r,t) = 0, (6.1)

where I, I, and I; denote the spatial and temporal derivatives of the image
intensity. The velocities u and v are, respectively, the z- and y-components
of the optical-flow that we wish to estimate. Since (6.1) is a single equation
in two unknowns u and v, it cannot be solved uniquely without introducing
additional constraints. The Lucas-Kanade method [21], for instance, assumes
the velocity to be constant within small spatial neighborhoods. It has been
applied to echocardiograms by Chunke et al. [20].

6.4 Bimodal Motion Analysis

Since both modalities, B-mode and tissue Doppler, provide valuable motion
information, we propose a novel algorithm that integrates these two kinds of
information to estimate a true two-dimensional velocity field. Inspired by the
Lucas-Kanade method, we propose a sliding-window algorithm. Since typical
heart motions are given by rotation, expansion, contraction, and shear, we use a
local affine model for the velocity in space. Let ro = (z0,0)” denote the center
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of a small image region for a frame at time ¢. Omitting the temporal parameter
for notational convenience, the spatial affine model is defined as

v(r) = vo + ( 1;95 Yy > (r—10), (6.2)

where r = (z,y)T and v(r) = (u(r),v(r))T. The vector vy corresponds to
the velocity at the center point rg; u,, uy, v5, and v, are the first order spatial
derivatives of u and v, respectively. These derivatives are assumed to be constant
within the local neighborhood.

We estimate the local model parameters by minimizing the weighted least-
squares criterion

Z w(rn - rO) ((Ix(rn) U(rn) + Iy(rn) U(rn) + It(rn))2

+ A(cos(an) u(ry,) + sin(ay) v(r,) — vD(rn))z)7 (6.3)

where the sum is taken over all pixels r,, inside an observation window w centered
at position rg. The first term of the cost function is equal to the optical-
flow constraint applied to the B-mode data. The second term corresponds to
the difference between the measured tissue Doppler velocities and the velocity
field projection along the scan lines. The scan line direction at position r,
is given by the unit vector (cos(ay,),sin(ay)). The relative influence of the
B-mode data versus the tissue Doppler measurements to the resulting velocity
estimate is controlled by the non-negative trade-off parameter A. The symmetric
window function w gives more weight to constraints at the center of the local
spatial region than to those at the periphery. A well suited window function is
w(z,y) = B"(x)B"(y), where 3™ is the symmetrical B-spline of degree n € N
[51]. B-splines rapidly converge to Gaussians when their degree increases which
ensures isotropy of the window in multiple dimensions.

By inserting (6.2) into (6.3) and differentiating the latter one with respect
to each of the six unknown model parameters x = (u07v07uw,uy,vz,vy)T, we
obtain the symmetric linear system (6.5) on page 82 that has to be solved at each
window position. The coefficients of these Normal Equations ATAx = ATb at
a given window position rg have the form of the local moments

mp,q(x(% yO) = Z(xn - xO)p(yn - yO)q w(xn — 20, Yn — y()) Fa,b(irnv yn)7 (64)
n

where 0 < p+ ¢ < 2. Since the optical-flow constraint (i.e., I;u + I,v + I; = 0)

and the tissue Doppler constraint (i.e., cos(a)u+sin(a)v —vp = 0) have indeed
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ATA =
<w7Fw,m> éw,Fm,yg <$w,Fx,x> éyvam,mi émwyFw,y> <yw,Fx,y§
. w, Fy y <m w,Fx’y> yw, Fy y xw,Fy7y> yw, Fy y
: <1'2 w7Fa'),:I,‘> <ny"-U:Fx,x <$27-U:Fx,y> <1'ywan,y>
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Vo w, Fy,t
_ Uy Ty, _ T w, Fac,t
X = Uy s A"b= yw, Pyt (6.5)
Vg Tw, Fy ¢
vy yw, Fyt

the same structure, we first add up corresponding terms to functions denoted
by F,p. In particular, to unify notation, we denote the unit vector along the
scan line direction a at position r as (p,(r),py(r)) = (cos(a(r)),sin(a(r))) and
define p:(r) = —vp(r). Note that the subscripts of p do not denote partial
derivatives here. Using this notation, the functions F, ; are defined as

Fop(r) = Ia(r) I(r) + Apa(r) po(r),

where a and b correspond to one of the variables z,y or ¢, respectively. From
these functions, we compute the coefficients (6.4) by applying the corresponding
moment filters.

6.4.1 Coarse-To-Fine Multi-Scale Strategy

To be able to estimate large motions and to increase the robustness to noise,
we analogously apply the coarse-to-fine multi-scale strategy described in Sec-
tion 4.2.3 on page 43. We compute a least-squares pyramid for each frame of
the B-mode image sequence I(x,y,t). The partial derivatives Igﬁ’f), I,,(,k) and It(k),
at level k, are obtained from the corresponding B-spline representations of I(¥).
The tissue Doppler velocities p = —wvp are treated in the same way as the
B-mode data I by computing the corresponding least-squares pyramids pgk) for
each frame. At each pyramid level k, the Doppler velocities are divided by 2 to
account for the downsampling. The Doppler-projection operators p, = cos(«)
and p, = sin(c), on the other hand, are directly computed at each resolution
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level from the corresponding grid. Since they do not depend on time, they need
to be computed only once for each level.

The size of the local window functions is chosen adaptively to the underlying
motion field as described in Section 4.2.2 on page 39.

6.5 Numerical Results

For validation purposes, the algorithm was tested on synthetic data, on ultra-
sound sequences of a rotating phantom, and on clinical echocardiograms. All
echocardiograms were acquired with a HP Sonos 5500 ultrasound system.

6.5.1 Application to Synthetic Data

The algorithm was first tested on synthetic ultrasound sequences for which the
exact motion field and corresponding tissue Doppler velocities are known. The
data was generated by warping a single reference frame of point scatterers.
To simulate noise, we added scatterers of random echogenicity to each frame.
The final B-mode images were obtained by applying a simple, linear ultrasound
imaging model to the perturbed point scatterer images. The example sequence
used here simulates a full cardiac cycle of a left ventricular short axis view (SAX)
with an underlying translation to the upper right. Fig. 6.2a shows one diastolic
frame of the sequence together with the superimposed estimated velocity field.
The color-coded simulated tissue Doppler velocities are shown in Fig. 6.2b.

To assess the performance of the algorithm, we use the angular error measure

6 = arccos % .
[vl2 [[¥]]2

between the estimated velocity v and the exact velocity v. The mean angular
error 6 is computed by averaging @ over the whole image sequence. Fig. 6.4a
illustrates the average error for different values of the trade-off parameter A that
controls the relative influence of B-mode versus tissue Doppler data in (6.3).
First, the mean error decreases significantly with increasing weight of the tissue
Doppler term. The relative error improvement between A = 0 (only B-mode
data is used) and A = 500 is 19.82%. For larger values of A, the error increases
again and the local linear systems become more and more ill-conditioned.
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(a) B-mode echocardiogram with ~ (b) Color-coded simulated tissue
superimposed estimated velocity =~ Doppler velocities
field

Figure 6.2: Frame of synthetic echocardiogram during diastole (a) and simulated
Doppler signal (b).

6.5.2 Phantom Experiments

The algorithm’s ability to analyze motion from real ultrasound data was tested
by a phantom experiment. A cylinder-shaped, tissue-mimicking phantom was
placed inside a tube of water and rotated with constant angular velocity around
its longitudinal axis. Fig. 6.3a shows one frame of the B-mode sequence together
with the superimposed estimated velocity field. Fig. 6.3b shows the measured
tissue Doppler velocities. The central vertical line of zero Doppler velocities
clearly demonstrates that motion orthogonal to the beam direction cannot be
measured by TDI, whereas the proposed algorithm is independent from the
beam direction. The average angular error 6 in dependency of X is plotted in
Fig. 6.4b. The optimal error improvement of 18.15% is obtained for A = 350. As
in the case of synthetic data, the error increases if either of the two modalities
becomes dominant.

6.5.3 Application to Clinical Data

For a first in vivo validation, we applied the method to a set of clinical echocar-
diograms. Fig. 6.5a shows one frame of a B-mode sequence during systole. The
corresponding estimated velocity field is superimposed. In contrast to TDI, that
measures mainly the longitudinal contraction towards the apex (Fig. 6.5b), the
estimated motion field also captures the significant inward motion of the cardiac
walls. This corresponds well to the expert echocardiographic reading.



6.5 Numerical Results 85

(a) B-mode echocardiogram with ~ (b)  B-mode echocardiogram
superimposed estimated velocity =~ with superimposed color-coded
field Doppler velocities

Figure 6.3: Frame of rotating phantom echocardiogram with superimposed ve-
locity information.
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Figure 6.4: Average angular error f for different values of A\ computed for syn-
thetic and phantom ultrasound data.
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(a) B-mode echocardiogram (b) B-mode echocardiogram
with superimposed estimated  with superimposed color-coded
velocity field Doppler velocities

Figure 6.5: Frame of clinical echocardiogram with superimposed velocity infor-
mation during systole.

6.6 Conclusions

We have proposed a new method to estimate heart motion from echocardiograms
that combines information from B-mode and tissue Doppler modalities. Valida-
tion experiments on synthetic and phantom data demonstrate that the inclusion
of tissue Doppler measurements significantly improves the motion field accuracy.
First applications to clinical echocardiograms also give realistic results. Unfor-
tunately, application in clinical routine is still limited since the simultaneous
acquisition of B-mode and tissue Doppler with current ultrasound systems is
only feasible at a lower spatial and temporal resolution than operating in a sin-
gle mode. However, the newest generation of ultrasound systems will greatly
reduce this limitation, opening the perspective for an extensive validation of the
algorithm in clinical practice.



When your heart speaks, take good notes.

— Judith Campbell

Chapter 7

Strain Rate Analysis

Abstract — In addition to ventricular inward motion, systolic myocardial
contraction is characterized by a significant wall thickening and circum-
ferential /longitudinal shortening. In this chapter, we present a method
to analyze regional myocardial deformation in terms of strain rate. In
particular, we compute the magnitudes and principal directions of re-
gional deformation from the estimated parameters of the local affine mo-
tion model. For visualization, the principal deformation directions and
magnitudes are superimposed onto the echocardiograms in the form of
small ellipses. The display provides a means to identify non-contracting
regions of the myocardium more easily. The method is tested on syn-
thetic ultrasound data and its potential diagnostic value is demonstrated
on clinical echocardiograms.

7.1 Introduction

Local myocardial velocity is an important feature to asses myocardial function.
However, it does not allow to differentiate actively contracting tissue from in-
farcted one that merely moves along with neighboring healthy segments. During
normal physiological contraction, the pumping capacity of the ventricle is usu-
ally raised by an additional wall-thickening and a longitudinal contraction of
the basal segments towards the apex. Due to the wall thickening, the velocity
of the endocardium (inner border) is higher than that of the epicardium (outer

87
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Figure 7.1: Deformation of a one-dimensional object of length L. The end points
xo and x1 move with velocities u(zo,t) and u(z1,t), respectively.

border), but the difference is not necessarily related to the underlying wall mo-
tion. Thus, the spatial velocity gradient—also known as strain rate [80]—can
be of great diagnostic value to differentiate active form passive tissue.

At present, local strain parameters are obtained from ultrasound M-mode
recordings and, recently, from tissue Doppler imaging (TDI). However, these
methods are essentially one-dimensional as they are restricted to the ultrasonic
beam direction. An attractive feature of the proposed local affine motion model
(4.2) is that it gives also access to regional two-dimensional strain rate infor-
mation. The spatial affine parameters of the local motion model form a local
strain-rate tensor from which we compute the principal directions and magni-
tudes of contraction and expansion.

This chapter is organized as follows: in Section 7.2, we review the principles
of strain and strain rate as they are used in current ultrasound systems. Then
we propose the two-dimensional strain rate analysis method in Section 7.3. Ex-
perimental results on synthetic and clinical ultrasound data are presented in
Section 7.4.

7.2 Definition of Strain and Strain Rate

Strain defines the amount of deformation of an object caused by an applied force.
There are two ways to calculate strain, depending on the reference system used.
As sketched for the one-dimensional case in Fig. 7.1, the so-called Lagrangian
strain ey, (¢1) at time instance ¢; is defined as the relative elongation with respect
to the initial length L(to), i.e.,

L(t1) — L(to)

L(to) (7.1)

GL(tl) =
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The natural or Fulerian strain ey is defined as

GN(tl) = /t1 dEN(t), (72)

to

where
L(t+dt) — L(t)

dGN(t) = L(t)

(7.3)
is an infinitesimally amount of deformation occurring during the infinitesimally
time interval dt. In contrast to Lagrangian strain, the reference length is not
constant over time but is given by the instantaneous length L(¢). By rewriting
den(t) = L(t)/L(t) dt it follows that Lagrangian and natural strain are related
as ep(t;) = eN(t) 1,

The instantaneous rate of deformation—the so-called natural strain rate—is
defined as

den(t)  L(t)

TR TOL (7.4)

Using the definition L(t) = x1(t) —z0(t) and the fact that L(t) = @ (t) —2o(t) =
u(x1(t),t) — u(zo(t),t), it follows that

den (t) _ w(zy(t),t) — u(xo(t),t)
dt ZL’l(t) — ’Io(t)

(7.5)

For lim,, _.,,, this converges to the spatial derivative g—g‘ = “w‘ro(t) of the

xo(t
instantaneous velocity u(z,t). Thus, strain rate can be inter;)ieted as the speed
at which tissue deformation (i.e., strain) occurs; it is measured in (cm/s)/cm =
1/s units. Strain and strain rate relate to each other as displacement does to
velocity.

Current approaches to calculate myocardial strain rate are based on tissue
Doppler imaging [81, 82], where the axial strain rate component is computed as
the spatial derivative of the Doppler velocities as illustrated in Fig. 7.2. Alterna-
tively, one-dimensional strain parameters can also be obtained from ultrasound
M-mode recordings [83, 84]. In [84], the local displacement is first estimated
from the radio frequency signal by using a cross-correlation method. Strain
is then derived as the spatial derivative of the displacement and strain rate is
obtained by computing the temporal derivative of the strain data. A review of
strain rate principles and existing measurement techniques can be found in [80].



90 Strain Rate Analysis

W Transducer

v(ro)

v(ry + Ar)

Figure 7.2: Computation of the axial strain rate (v(rg + Ar) — v(rg))/Ar from
tissue Doppler velocities v(r).

Since existing methods are limited to a few selected regions of interest and
highly depend on the insonification direction, it is highly desirable to extend
the strain rate analysis to two dimensions.

7.3 Two-Dimensional Strain Rate Analysis

In the case of our motion analysis method, two-dimensional strain rate is inher-
ently contained in the underlying local motion model. We recall that the spatial
affine model (6.2)

oo )=o)+ oo )i

is defined within a two-dimensional spatial window at a single time t3. The
vector (ug,vo)T corresponds to the velocity at the window center (zg,y0)”, and
the spatial velocity derivatives ug, uy, vz, and v, are nothing but the strain rate
parameters which are assumed to be constant within the local neighborhood.

To exploit the coherence of motion in time, we also added a temporal model
component. The spatio-temporal-affine velocity model (4.2)

r — X

u(z,y,t) ug Up Uy Ut
= + Y — Yo
v(x,y,t) Vo Uy Uy U [t
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() () emw () (B2

uses a three-dimensional window function in space-time. It assumes the de-
formation to be stationary in time but accounts for a temporal change of the
translational motion component. In principle, the local motion parameters of
this model are more robust since they are estimated within a larger neighbor-
hood containing several frames.

The Jacobian matrix of spatial velocity derivatives,

_ [ Uz Uy
(), -

is also known from mechanical engineering as strain rate tensor. It can be de-
composed into two terms which are symmetric and antisymmetric, respectively

[85]:

J=R+D, (7.7)
where
1 0 Vg
R=-J-JO)=( ., . 2 7.8
A== (Wl ) (78)
and
1 Vg Uy
D:u+ﬂ3=(¢ﬁ 2 ). (7.9)
2 = Uy

The matrix R corresponds to a rigid, rotational velocity field that leaves the local
tissue area unchanged. The angular velocity is given by w = (v; — uy)/2 which
corresponds to one-half of the curl of the velocity field. The second term, D,
accounts for the deformation of the heart tissue, both contraction/expansion and
shear. The components on the principal diagonal describe a dilation along the
coordinate axes, whereas the off-diagonal components correspond to a shearing.
Since D is symmetric, it has real eigenvalues A1, Ao and orthonormal eigenvectors
u; and uo; it can be decomposed as

_ A1 0 T
D-U < 0 ) U7, (7.10)

where

U—mmm—<ww _m¢) (7.11)

sing  cos¢
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is the rotation matrix specified by the eigenvectors, and where ¢ denotes the
rotation angle of the coordinate system. Thus, the deformation matrix D can
be interpreted as a pure contraction/expansion along the directions of the eigen-
vectors. Negative eigenvalues \; describe contraction, while positive eigenvalues
correspond to dilation of the heart tissue. The divergence, given by the trace
of D (or equivalently by the sum of its eigenvalues), describes the local area
change of the tissue.

7.3.1 Incompressibility Assumption

Like most soft tissues, the myocardium is assumed to be nearly incompressible
[86, 50]. Volume changes due to blood flow are considered to be negligible.
Although this assumption is only true in three dimensions, it may be applicable
in two dimensions if the deformation orthogonal to the image plane is small. In
particular, this condition is satisfied when the ventricle is imaged orthogonal to
the fiber directions because the tissue elasticity along fiber directions is much
lower than across fibers. As known from continuum theory, the divergence of
a velocity field of an incompressible medium must be zero [85]. In the two-
dimensional case, this reads

Ju Ov

— +—=0. 7.12

oxr Oy ( )
Since we use a local affine model for the velocity, whose spatial derivatives u,,
Uy, Vg, and v, are assumed to be constant, the divergence-free constraint reduces
to

Uy = —0y. (7.13)

This simply means that one of the model parameters, u, or vy, can be eliminated
from the local linear systems (4.5) or (6.5). A direct consequence of the incom-
pressibility assumption is also that the sum of eigenvalues of the deformation
matrix D is zero, i.e., A\ = —Ao.

Besides the fact that this adapted model matches the underlying biome-
chanical model more closely, it will also increase the robustness to noise of the
algorithm because there are fewer parameters to estimate.

7.3.2 Strain Rate Visualization

For visualization, the principal deformation directions and magnitudes are su-
perimposed in the form of small ellipses onto the echocardiograms inside the
time varying ROI as shown in Fig. 7.3. The semi-axes directions correspond to
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Figure 7.3: Strain rate visualization by means of ellipses. The semi-axes of a
circle with radius ry are scaled according to the corresponding eigenvalues of
the deformation matrix D.

the eigenvectors of D and their lengths are given by

oy )
(1 + )\Max> rg, t=1,2,

respectively. The normalization parameter Appax is the maximum absolute value
of all eigenvalues computed within the ROI. The parameter ry corresponds
to the radius of the non-deformed circle and controls the overall size of the
ellipses. Negative eigenvalues (tissue contraction) lead to an axis-shortening,
whereas positive eigenvalues (tissue dilation) correspond to an elongation of the
corresponding semi-axis.

7.4 Numerical Results

7.4.1 Application to Synthetic Data

To test the feasibility of the estimation of strain rate information from image
sequences, we first applied our algorithm to the synthetic ultrasound data intro-
duced in Section 4.4.1. These sequences simulate a uniformly contracting and
expanding annulus that also undergoes a global rigid translation in the diago-
nal direction. The applied wall thickening and thinning was chosen such that it
satisfies the incompressibility constraint. The maximum strain rate applied was
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(a) Diastole: Estimated velocity  (b) Diastole: Estimated strain
field rate

(c) Systole: Estimated velocity  (d) Systole: Estimated strain rate
field

Figure 7.4: Estimated velocities and strain rates from synthetic ultrasound data
during diastole (a), (b) and systole (¢), (d). Strain rate is independent from
underlying rigid translation. (Note that the ellipses are plotted on a fixed,
uniform grid, leading to an asymmetric appearance of the radially symmetric
strain.)

0.025 per frame. If a frame rate of 50 Hz is assumed, this value corresponds to
the strain rate 1.25 s~1, which is in the range of typical values measured in nor-
mal patients [87]. The estimated motion fields and strain rates for one sequence
are shown in Fig. 7.4. Fig. 7.4a and 7.4c display the velocity field during diastole
and systole, respectively. Since the motion field captures the superposition of
translational motion, radial outward/inward motion and deformation, its inter-
pretation remains difficult; for instance, one may get the wrong impression that
the heart model contracts less in the lower left part. In contrast, the estimated
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strain rate is independent from the underlying rigid translation and represents
well the uniform deformation of the annulus. The myocardial thinning dur-
ing expansion is clearly indicated by the circumferentially elongated ellipses in
Fig. 7.4b; likewise, the myocardial thickening during contraction is represented
by the radially dilated ellipses in Fig. 7.4d. The fact that the applied deforma-
tion close to the inner boundary is larger than at the outer boundary is also
indicated by the different ratios of long to short semi-axis lengths.

The above results were computed using the spatio-temporal-affine motion
model without incompressibility assumption. To test the accuracy and robust-
ness of the local motion models, i.e., spatio-temporal-affine and spatial affine,
and their divergence-free adaptations, we applied them to echo sequences that
were obtained from point scatterer images of signal-to-noise ratios varying from
26.02 to 13.98 dB. We used the same multiresolution strategy in all cases to
be comparable. To quantify the performance, we use two different error mea-
sures. The relative amplitude error between the correct eigenvalues A; and their
estimates A\{, which is computed as

I , (7.14)

I,
where the norm is computed over all pixels in the sequence with non-zero motion.
The second is the angular root-mean-square error of the principal direction of
deformation calculated as

E, (7.15)

1~
= ﬁnd’— ¢,

where ¢ and (;AS denote the correct and estimated angle, respectively. The norm
is again computed over all N pixels with non-zero motion.

The experimental results obtained are plotted in Fig. 7.5. Fig. 7.5a shows
the relative amplitude error E of the different methods. The spatio-temporal-
affine method is clearly more robust against noise than the spatial affine version
since it is based on multiple frames in time. Consequently, the performance
improvement of the spatio-temporal-affine method due to the additional incom-
pressibility constraint is much less significant than for the spatial affine one.
The average angular error of the principal deformation direction in Fig. 7.5b
shows a similar behavior. In this experiment, the performance gain due to the
additional divergence-free constraint is relatively low for both motion models.
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(a) Estimated strain rate during diastole (b) Estimated strain rate during systole

Figure 7.6: Estimated strain rates from ultrasound data acquired during an
animal study. The hyperactive wall thinning during diastole (a) and thickening
during systole (b) in the basal anteroseptal segment (lower right) is clearly
indicated.

7.4.2 Application to Clinical Data

The applicability of two-dimensional strain rate analysis to real ultrasound was
first tested on clinical echocardiograms obtained from an animal study as used
in Section 4.4.3. Here, we used the spatio-temporal-affine motion model without
incompressibility constraint. Fig. 7.6 illustrates the estimated strain rates of one
case after an artificially induced infarction in the apical anterior septal segment
(upper right). Figures 7.6a and 7.6b correspond to one frame during diastole
and systole, respectively. According to the expert echocardiographic reading,
the mid to basal anterior septal segments (middle right) exhibit a hyperactive
wall thinning and thickening to compensate for the apical dyskinesia. This be-
havior is well indicated by the ellipses which are elongated in the corresponding
directions.

The ability to estimate myocardial deformation in clinical echocardiograms
acquired during routine clinical examinations is demonstrated in the short axis
view shown in Figure 7.7. The circumferential alignment of the ellipses in
Fig. 7.7a documents the typical wall thinning and circumferential lengthening
during diastole. In contrast, the ellipses are elongated and aligned radially in
Fig. 7.7b, indicating myocardial wall thickening and circumferential shortening
during systole.
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(a) Estimated strain rate during diastole (b) Estimated strain rate during systole

Figure 7.7: Estimated strain rates from apical short axis view. Myocardial
radial wall thinning and circumferential lengthening during diastole is indicated
by the deformation map (a). The reversed deformation during systole is shown
in (b).

7.5 Conclusions

The experiments demonstrate that the proposed strain rate analysis method
has the potential to measure myocardial deformation and to identify regions
of abnormal contractility. In contrast to existing one-dimensional strain rate
imaging, which operates along pre-defined directions, the proposed algorithm is
able to determine both the magnitudes and principal directions of the deforma-
tion automatically. First applications on clinical echocardiograms give promis-
ing results. However, cardiac deformations can in general not be modeled as a
two-dimensional system. Consequently, the method will not be accurate for gen-
eral three-dimensional cardiac deformations that are imaged in a cross-sectional
manner. Although the proposed method can be extended to three dimensions
in a straightforward way, its application to real echocardiograms is limited since
current ultrasound systems are not yet able to provide volumetric data at a
sufficiently high frame rate.



Nobody has ever measured, even poets, how much
the heart can hold.

— Zelda Fitzgerald

Chapter 8

Clinical Validation

Abstract — In this chapter, we validate the proposed motion analysis al-
gorithm with tissue Doppler and demonstrate its diagnostic potential on a
large set of clinical echocardiograms. Correlation between measured my-
ocardial inward motion and conventional subjective contractility assess-
ment is shown by analysis of variance and a subsequent post hoc multiple
comparison test. The ability to automatically derive diagnoses based on
measured motion data is demonstrated using an artificial neural network
classifier. Clinical usefulness of the proposed algorithm is also highlighted
on some exemplary case studies.

8.1 Introduction

In the validation examples presented so far, the proposed motion analysis
approach—which we also refer to as Multiscale Motion Mapping in the clinical
context—was tested in setups for which true motion was known; i.e., synthetic
ultrasound data and moving physical phantoms. A first clinical exploration was
done on a series of prototypical echocardiograms and in an animal study. How-
ever, quantitative motion assessment is only an intermediate step towards the
ultimate goal of obtaining more objective and reproducible diagnoses. To assess
the diagnostic value of the proposed algorithm, validation on a wide range of
clinical data is indispensable. Therefore, we evaluated the feasibility of the de-

99
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veloped method in routine echo on a consecutive series of 114 echocardiograms
acquired for clinical indications. Conventional reading was done by three ex-
perts who assigned subjective ratings ranging from “hyper-” to “dyskinetic” to
individual myocardial segments and gave each echocardiogram an overall label
as “normal” or “abnormal”. Objective analysis by Multiscale Motion Mapping
was performed by two observers who were blind to the subjective analysis.

In a first step, we validated velocity measurements by Multiscale Motion
Mapping with tissue Doppler velocities on a subset of echocardiograms for which
B-mode and Doppler data were acquired simultaneously. Linear regression and
Bland-Altman analysis [88] were used to demonstrate agreement between both
methods.

The diagnostic value of the measured velocity data was validated in a sec-
ond step. First, we evaluated the correlation between the extent of wall mo-
tion abnormalities, as rated by the experts, and radial velocity magnitudes in
individual segments. Correlation between measured inward motion and sub-
jective rating was validated by one-way analysis of variance (ANOVA) and a
subsequent post hoc multiple comparison test. Then, velocity measurements in
different myocardial segments and their corresponding subjective ratings were
combined and used to train an artificial neural network by using the first half
of the available data. The ability to automatically classify patients globally as
normal or abnormal based on the measured velocities was evaluated using the
second half of the data.

8.2 Experimental Setup and Statistical Valida-
tion

We collected prospectively a consecutive series of clinical echocardiograms from
125 patients (mean age 64 4 14 years) referred for echocardiography for clinical
investigation. Since a complete set of standardized two-dimensional echocardio-
graphic views (cf. Section 3.3 on page 27) was not available in all patients, we
analyzed the two- and four-chamber long axis views in our experiments. These
two orthogonal views are most frequently acquired in clinical practice. Image
quality was deemed sufficient for quantification in 114 patients (91%). Thereof,
38 patients (33%) were rated as normal by the experts.

Multiscale motion analysis was applied independently by two blinded users
and produced completely reproducible motion maps. For the multi-scale refine-
ment scheme, described in Section 4.2.3, we used a five-level pyramid decompo-
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Figure 8.1: Radial velocities with respect to a center-point are extracted at six
locations defined by a clinical observer. The center-point corresponds to the
midpoint of the longitudinal centerline defined by means of three user-defined
anatomical landmarks (apex and two mitral valve attachments).

sition (k =0,...,4). To extract clinically relevant motion information, the two
observers specified subjectively six locations in each of the two views analyzed.
The locations were chosen corresponding to the standardized myocardial seg-
mentation introduced in Section 3.3.3 on page 29. A schematic representation
is shown in Fig. 8.1. Velocities were extracted for the mid-systole frame that
was determined by means of the ECG-signal. By analogy with Section 4.3, the
velocity vectors at the selected positions were projected onto the radial direc-
tion defined with respect to the center-point of the ventricle cross-section. The
center-point was defined as the midpoint of a longitudinal centerline connecting
base and apex. The centerline was determined by means of three anatomical
landmarks, the two basal mitral valve attachments and the apex. We chose
to analyze the radial velocity component because it captures the typical in-
ward/outward motion pattern of the ventricle; the use of the magnitude of the
two-dimensional velocity vectors is less appropriate because it does not allow to
distinguish between the motion orientation. Other velocity components such as
motion parallel or perpendicular to the centerline also provide potential diag-
nostic information but were not analyzed in this study.

Observer dependency of velocity extraction was analyzed by computing the
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mean and standard deviation of the difference between the two sets of measure-
ments. The interobserver variability was 0.896 cm/s (5.1% of measured range),
with a mean velocity difference of -0.077 cm/s indicating a non-significant bias
(p = 0.04). The correlation coefficient between the two observers was 0.83
(p < 0.001). The intraobserver variability of repeated velocity extraction on
a subset of 28 echocardiograms by the first observer was 0.568 cm/s (3.2% of
measured range) with a mean velocity difference of -0.063 cm/s (p=NS). The
corresponding correlation coefficient was 0.93 (p < 0.001). Note that this vari-
ability is entirely due to the manual placement of landmarks and not to the
global motion field which is fully reproducible. The measurements show a good
agreement and reproducibility of the manual velocity extraction. A completely
automatic extraction could entirely remove the observer dependency and in-
crease the consistency of subsequent classification algorithms but is not consid-
ered here.

In parallel, three experienced echocardiographers who were blind to the
quantitative motion analysis rated individual segments in each echocardio-
graphic loop for visible motion in a semi-quantitative manner. We used a
scale from 3 to —1, indicating dyskinesia (3), akinesia (2), hypokinesia (1),
normokinesia (0), or hyperkinesia ( —1) as defined in Section 2.4 on page 17. In
addition, the experts assigned the overall, binary label normal or abnormal to
each patient.

8.2.1 Comparison with Tissue Doppler

Agreement between Multiscale Motion Mapping and tissue Doppler velocities
was assessed in a subset of 11 echocardiograms for which B-mode and tissue
Doppler signals were acquired simultaneously. In each loop, six segmental ve-
locities were extracted from one systolic and one diastolic frame, respectively.
For comparison, only the motion vector component parallel to the ultrasound
beam directions was used because tissue Doppler is unable to measure the mo-
tion component perpendicular to the beam. As shown in Fig. 8.2a, there was
a good correlation between Multiscale Motion Mapping and Doppler, with a
correlation coefficient of 0.94 (95% confidence interval: [0.92, 0.96]).

Bland-Altman analysis [88] of the method comparison is illustrated in
Fig. 8.2b. The Bland-Altman graph consists of plotting the pairwise veloc-
ity means versus their differences. The mean of the velocity differences was
0.223 cm/s (95% confidence interval: [-0.039, 0.486]), corresponding to no sta-
tistically significant bias. The standard deviation of the velocity differences was
1.527 cm/s (7.2% of measured range)).
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Table 8.1: Critical p-values of F-test for the null hypothesis that all velocity
samples in a given myocardial segment are drawn from the same population.

Longitudinal || Two-chamber view | Four-chamber view
position Inferior Anterior Septal Lateral
Apical 0.017 0.224 0.007 0.009
Mid < 0.001 0.017 < 0.001 < 0.001
Basal 0.002 0.166 < 0.001 < 0.001

Both graphs document good agreement between the two approaches. They
indicate that deviation of Multiscale Motion Mapping from tissue Doppler grows
with increasing velocity magnitudes. This is most probably due the the lack of
a sufficiently high frame rate in current ultrasound systems. The problem will
diminish with the advent of new ultrasound systems that provide frame rates
between 75 to 100 Hz compared to about 25 to 50 Hz of current systems.

8.2.2 Segmental Multiple Comparison Tests

For clinical validation, we first analyzed the twelve myocardial segments individ-
ually to investigate whether the measured velocities correlate with the subjective
expert rating. For each segment, we performed a one-way analysis of variance
(ANOVA) [89] to compare the velocity means of the different classes; i.e., hyper-,
normo-, hypo-, a-, and dyskinetic. We used the Fisher (F) statistic to test the
null hypothesis that there are no differences between the velocity means for dif-
ferent classes, suggesting that the variance of the within-class samples should
be identical to that of the between-class samples. If F' > 0, it is likely that
differences between class means exist. The critical p-values for the individual
segments are summarized in Table 8.1. In this study, a p-value of 0.05 was re-
garded as significant. The results show that velocity means of different disease
classes are significantly different in ten segments. The test was non-significant
in the apical and basal anterior segments (two-chamber view).

The Fisher statistic alone, however, cannot indicate which of the means is
responsible for rejecting the null hypothesis that class means are equal. To
investigate our results in more detail, we applied a post-hoc multiple compar-
ison test; in particular, we used the Scheffé test [90] which tests all possible
pairs of classes for differences between means. The Scheffé test is known to be
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Regression analysis of tissue Doppler velocities vs. MMM-velocities
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Figure 8.2: Regression (a) and Bland-Altman analysis (b) of tissue Doppler and
Mutltiscale Motion Mapping-based velocity measurements.



8.2 Experimental Setup and Statistical Validation 105

conservative, which helps to reduce spurious detections.

The Scheffé test results for the basal, mid and apical segments of the sep-
tal wall (four-chamber view) are shown in Fig. 8.3 for illustrative purposes.
Subjective classifications were taken from the first expert in this case. Fig. 8.3a
shows the velocity means of the different classes along with so-called uncertainty
intervals [90, p. 96 et sqq.]. Two velocity means can be declared significantly
different from each other if and only if their uncertainty intervals do not overlap.
Negative and positive velocities represent inward and outward motion, respec-
tively. The graph indicates that significant differences between velocity means
could not be measured in the apical segment. In this case, only a slight trend is
visible. This is probably due to the fact that the apical part of the myocardium
moves very little, which makes visual assessment and classification into multiple
categories difficult. In addition, image quality in the near field of the ultrasound
beam is usually worse than in the far field. This results into a relatively high
noise level which degrades the accuracy of velocity measurements in this area.
However, the situation is much different in the mid and basal segments. As
shown in Fig. 8.3b, velocity means of normal, hypokinetic and akinetic mid-
segments are mutually significantly different in this region. Here, no segments
were classified as hyper- or dyskinetic. In accordance with visual reading, mean
radial velocities of normal mid septal segments are higher than in the apical
part. The highest velocities are observed in the basal segments (Fig. 8.3c). The
velocity mean of normal basal segments exhibits a significant difference from
abnormal ones. A sub-division of abnormal motion into hypo- or akinesia is not
significant here.

Post hoc tests in the inferior, anterior and lateral ventricular walls showed
similar results. In summary, velocity means between normal and abnormal
segments were significantly different in all mid and basal segments. Only in
the basal anterior region (two-chamber view), normal segments could not be
distinguished from abnormal ones (p = 0.166). Velocity means of different
sub-classes of abnormal motion (hypokinetic, akinetic, dyskinetic) were only
significant in a few cases. Significant velocity differences between normal and
abnormal motion in the apical regions could not be established; nevertheless, a
trend was always visible.

Altogether, the test results suggest that radial velocity could serve as a
useful feature to discriminate and classify myocardial segments based on the
velocity measurements. The performance of a neural network-based classifier is
investigated in the following section.



106

Clinical Validation

Apical Septal Segment
T T

normal

hypokinetic

Segmental Expert Rating

akinetic

dyskinetic

normal

hypokinetic

Segmental Expert Rating

akinetic

.
-1 -0.5 0 0.5 1
Radial velocity [cm/s]

(a) Apical septal

Mid Septal Segment
T T

-3

. .
-25 -2 -15 -1 -05 0 05 1
Radial velocity [cm/s]

(b) Mid septal

Figure 8.3: Post hoc Scheffé test: Means of radial velocities grouped according
to visual expert rating are plotted along with their corresponding uncertainty
intervals. Non-overlapping intervals indicate that differences between group
means are statistically significant. Negative and positive velocities represent
inward and outward motion, respectively.
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Figure 8.3: Post hoc Scheffé test: Means of radial velocities grouped according
to visual expert rating are plotted along with their corresponding uncertainty
intervals. Non-overlapping intervals indicate that differences between group
means are statistically significant. Negative and positive velocities represent
inward and outward motion, respectively.
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Figure 8.4: Neural network setup for automatic patient classification. The
twelve extracted radial velocity measurements are fed into the input layer. The
output layer corresponds to subjective segmental motion ratings and an overall
classification of a patient as normal or abnormal.

8.2.3 Artificial Neural Network Classification

The extracted velocity measurements and corresponding subjective ratings were
used to train an artificial neural network [91], as indicated in Fig. 8.4. The twelve
radial velocity measures for each patient (six from the two- and four-chamber
view, respectively) were used as input data. The output layer corresponded to
the subjective expert ratings of segmental motion and the overall label classify-
ing a patient as “normal” or “abnormal”. Two networks were trained separately
for each observer who extracted radial velocity measurements to study the in-
fluence of manual velocity extraction on the classification. In both cases, the
available data was split into two sets: the first half of the patients was used to
train the network while the second half was used for testing. For training, we
used the majority vote of the three experts in the output layer. For the net-
work design, we used a three-layer structure, sigmoid transfer functions and the
error-backpropagation algorithm for learning. Network outputs were rounded
to the nearest integer to determine the corresponding class.

The quality and usefulness of the neural network-based classification was
assessed using several characteristics that are commonly used in medical diag-
nostic tests; in particular, we used the following parameters:

Sensitivity: The sensitivity TP/(T P+ FN) € [0,1] of a test is the probability
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that it will produce a true positive (T'P) result on a pathological popu-
lation as compared to a reference or “gold standard”. F'IN denotes false
negative ratings.

Specificity: The specificity TN/(TN + FP) € [0,1] is the probability that
a test will produce a true negative (T'N) result when applied to normal
(non-pathological) patients. F'P denotes false positive ratings.

Positive Predictive Value: The positive predictive value TP/(TP + FP) €
[0,1] is the probability that a person is pathological when a positive test
result is observed.

Negative Predictive Value: The negative predictive value TN/(TN +
FN) € [0,1] is the probability that a person is normal when a negative
test result is observed.

Diagnostic accuracy: The diagnostic accuracy (TP+TN)/(TP+TN+FP+
FN) € [0,1] is the probability that a test will produce a true result. It is
an important measure of the overall performance of a test.

Kappa Coefficient: The kappa coefficient —1 < k = (P,—P,)/(1—P,) < 1in-
dicates the mutual agreement among raters who make category judgments
[92]. It expresses the ratio between the observed concordance frequency
P, and the maximum possible agreement. Both frequencies are corrected
by the frequency P. denoting agreement by chance. The value k = —1
corresponds to complete disagreement, x = 0 indicates that agreement is
just due to chance, and k = 1 denotes perfect agreement between rat-
ings. More specifically, the guidelines for interpreting kappa are as follows
[93]: k < 0.4: poor, 0.4 < k < 0.6: fair, 0.6 < k < 0.74: good, and
0.74 < k < 1: excellent agreement.

In order to assess the performance of the semi-automatic classification, we
evaluated its ability to classify patients globally as normal or abnormal. In our
experiments, the diagnostic accuracy between objective classification and the
majority vote of the experts was 84% for both observers who extracted velocity
measurements. In both cases, the sensitivity was larger than the specificity. The
results for all above-mentioned test characteristics are summarized in Table 8.2.

For conventional, subjective classification, kappa values for interobserver
agreement between two different experts were 0.55, 0.59 and 0.71, respectively.
This corresponds to a fair-to-good agreement. The multi-rater kappa coefficient
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Table 8.2: Test statistics for semi-automatic classification vs. majority consen-
sus of expert ratings that a patient is globally normal or abnormal.

Test Characteristic H User 1 vs. Experts | User 2 vs. Experts

Sensitivity 0.91 0.88
Specificity 0.60 0.70
Positive predictive value 0.88 0.91
Negative predictive value 0.67 0.64
Diagnostic accuracy 0.84 0.84
Kappa coefficient 0.53 0.56

of concordance between all three experts was 0.62. The kappa coefficients be-
tween neural network-based classification and subjective majority rating by the
experts were 0.53 and 0.56, respectively. This is in the same range as the level
of mutual expert agreement. The interobserver agreement for the two sets of
semi-automatic classifications was good-to-excellent (x = 0.74), meaning that
the semi-automatic algorithm is more reproducible than pure subjective rating.

The validation results demonstrate that the proposed quantitative motion
analysis has in fact some potential to provide more objective and reproducible
diagnoses. In this study, classification was only derived from a few radial velocity
measurements in a single frame during systole. The diagnostic accuracy could
probably be further increased by extending the analysis over several frames in
time and by also including more cross-sectional views than just two. Grouping
together myocardial segments that are perfused by the same coronary artery
(LAD, LCX or RCA, cf. Section 2.2.4 on page 14) could also increase classifica-
tion consistency. In addition, strain rate measurements provide complementary
information about cardiac contractility which may improve subsequent classifi-
cation algorithms significantly.

8.3 Exemplary Case Studies
After statistical validation of the proposed quantitative motion assessment on a

large set of echocardiograms, we illustrate its clinical value on a few exemplary
cases to highlight its potential and challenges.
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8.3.1 Comprehensive Objective Analysis of Paradoxical
Motion

To exemplify the practical application of Multiscale Motion Mapping, an exam-
ple of a routine echocardiogram, for which local echo experts disagreed as to
the presence or absence of motion abnormalities, is given in Fig. 8.5. Fig. 8.5a
and Fig. 8.5b show the native gray scale loop together with selected motion vec-
tors in the septum and the lateral wall during diastole and systole, respectively.
They indicate clearly that there is paradoxical motion of the basal interven-
tricular septum. Additional insight can be gained through separate analysis
of transverse (towards the centerline) and longitudinal (along the centerline)
ventricular motion. The motion components at mid-systole indicate that there
is reduced longitudinal velocity of the basal segments (p < 0.01 vs. normal).
Transverse velocity of the lateral segments was in the normal range, whereas
the basal septum moves outwards. As indicated in Fig. 8.5c¢ and Fig. 8.5d,
two-dimensional strain rates show normal behavior during diastole and systole,
respectively. Measured peak systolic thickening/thinning strain rates in the
basal septum were 1.28 s~! and -1.03 s~! with maximum thickening directed
towards the mid-ventricle.

These findings of objective, quantitative analysis—namely, paradoxical mo-
tion but normal thickening of the septum—agree nicely with careful subjective
analysis of the echocardiogram. Such comprehensive, objective evaluation of
heart motion is not possible with existing echocardiographic techniques such as
Doppler.

8.3.2 New Insights into Cardiac Motion

Rotational motion of the left ventricular apex is a phenomenon that is frequently
observed visually by physicians in echocardiograms. The rotational or torsional
motion has been poorly understood and has lacked clinical relevance. It has
been postulated that apical twisting characterizes normal systolic function in
humans, but it has been difficult to measure it noninvasively. Studies of animal
models have demonstrated that a decrease in the amplitude of apex rotation
correlates strongly with the presence of ischemia [94].

The ability of Multiscale Motion Mapping to assess apical myocardial twist-
ing is illustrated in Fig. 8.6. The motion vectors in Fig. 8.6a document the
clockwise apical twisting during early diastole. The complexity of the actual
motion pattern becomes readily apparent in the fish-swarm like appearance of
the arrows, illustrating the difficulties of motion assessment with conventional
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(a) Motion during diastole

(c) Strain rate during diastole (d) Strain rate during systole

Figure 8.5: Paradoxical motion in an apical four-chamber view. The interven-
tricular septal wall moves inwards during diastole (a) and partially outwards
during systole (b). Myocardial diastolic thinning (c¢) and systolic thickening (d)
remain normal.
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(a) Apical twisting during diastole (b) Apical twisting during systole

Figure 8.6: Highlighting of myocardial twisting motion in an apical short axis
view. Clockwise apical twisting during early diastole is documented by the
motion arrows in (a). The reverse twisting motion during systole is indicated

in (b).

Doppler-based methods that are limited to detecting a one-dimensional mo-
tion component only. The counter-clockwise rotation of the ventricular apex
during systole is captured by the motion field shown in Fig. 8.6b. Since the
rotational motion component with respect to the ventricular center can be eas-
ily extracted from the motion field, further quantitative studies may reveal its
diagnostic value to detect and quantify myocardial ischemia or infarction.

8.4 Conclusions

The diagnostic potential of the proposed motion analysis algorithm was inves-
tigated. Clinical applicability was tested on a consecutive series of echocar-
diograms, where good feasibility, fair correlation with expert rating, and good
intra- and interobserver concordance were documented. Exploratory case stud-
ies documented the usefulness of Multiscale Motion Mapping in a set of complex
motion analyses including abnormal septal motion and analysis of myocardial
twisting. Automated classification could probably be further improved by using
multiple frames, a higher number of cross-sectional views, by taking into ac-
count segmental correlation due to coronary perfusion, and by including strain
rate measurements into the algorithm. The study also revealed the high intra-
and interobserver variability of conventional motion assessment—calling even
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stronger for more objective and reproducible approaches.



The only lasting beauty is the beauty of the heart.

— Jelaluddin Rumi

Chapter 9

Conclusion

We presented a novel approach to a quantitative and objective assessment of
cardiac motion and deformation from ultrasound. It provides a step towards a
more consistent evaluation of cardiac function by overcoming the subjectivity of
conventional echocardiographic reading. The main contributions of this thesis
are summarized in the following.

9.1 Main Contributions

e We proposed a sliding-window-type algorithm that estimates myocardial
motion from B-mode echocardiograms. The applied affine motion model is
particularly well suited for describing typical ventricular motions such as
contraction/expansion and shear. To increase the robustness to noise, we
added a local linear model for the velocity in time, which allows us to base
the parameter estimates on a larger sample size. From the affine model
parameters, we compute local myocardial deformation in terms of strain
rate. In contrast to conventional Doppler-based strain rate imaging, which
is restricted to the scan lines, we are able to compute both the principal
directions as well as the amounts of deformation.

e To be able to estimate large motions and to further increase the robustness
to noise, we apply a multi-scale strategy in space. The motion vectors are
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computed in a coarse-to-fine fashion from image pyramids that represent
image copies at multiple resolutions.

We introduced the concept of multiresolution moment filters, a multi-
channel filtering algorithm to compute local weighted geometric moments
efficiently within windows of dyadic sizes. We demonstrated that B-
splines are well suited window functions; besides their nearly isotropic
Gaussian shape, they satisfy a two-scale equation—a key feature for ef-
ficient multiresolution processing. The algorithm enables us to choose
the most appropriate window size adaptively to the underlying motion at
a low computational cost. Besides their application in motion analysis,
we demonstrated their versatility and usefulness by applying them to two
other image analysis problems: image denoising and feature extraction. In
these cases, the power of sliding-window-type algorithms in combination
with the principles of weighting and multiresolution became evident.

Since Doppler-based motion measurements provide valuable, partial mo-
tion information, we extended our motion estimation algorithm to exploit
data from two modalities: B-mode and tissue Doppler. The incorporation
of Doppler further increased the accuracy and robustness of the approach.

We showed that we can extract clinically relevant information from the
estimated motion data and proposed an intuitive display of the results to
assist the physician in finding a more objective diagnosis. We chose to dis-
play the radial motion component with respect to the ventricular center in
color-coded form to directly visualize myocardial inward and outward mo-
tion. This display is more straightforward than conventional color Doppler
imaging, which displays the velocity components towards the transducer.
In addition, we proposed to superimpose regional myocardial deformation
information in the form of deforming ellipses that indicate the principal
directions and the amount of deformation in a dynamic fashion. For both
displays, we developed a robust algorithm to track a user-defined region
of interest in time.

To enable the routine application of the algorithm in clinical practice, we
developed a user-friendly graphical user interface. The on-site installa-
tion of the software facilitates the execution of further clinical validation
studies.

The proposed algorithm was tested in several fashions. We verified the cor-
rectness of the algorithm on synthetic ultrasound data. We demonstrated
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the ability of our algorithm to extract motion from real ultrasound data
by performing phantom experiments and exemplary clinical case studies.
We also documented the diagnostic value of the estimated motion data by
a large-scale clinical validation study. The largest study on 114 patients
required the order of eight months of work to incorporate the software into
the Basel clinical system, to organize and to handle the data, to analyze
the data, and finally to perform statistical comparisons between the ex-
tracted motion and the conventional motion assessment by several experts,
which had also to be coordinated. The measured velocities showed good
correlation with conventional diagnostic reading. A first neural network-
based classification experiment revealed the potential to derive objective
and reproducible diagnoses from the motion data in an automated fashion.

9.2 Future Research Directions

Although the proposed algorithm yields promising experimental results, there
is potential to further improve its accuracy and applicability. Some possible
research directions are listed below.

e To account for gray value changes due to out-of-plane motion and signal
dropouts, the optical-flow constraint may be modified accordingly. For
instance, the right hand side could be replaced by a non-zero term that
captures brightness changes that are not due to motion. However, a phys-
ical model is hard to determine because cardiac motion is very complex
and varies strongly in different parts of the myocardium.

e The validity of the local motion model and the brightness conservation
along the motion trajectories depend heavily on the frame rate of the
ultrasound systems. An increase in acquisition speed—which has already
remarkably improved in the newest generation of machines—would further
raise the feasibility of the proposed approach.

e As mentioned in Chapter 6, the bimodal acquisition of B-mode and tissue
Doppler is still hampered by a significant loss in image resolution. There-
fore, the performance of the proposed bimodal motion analysis approach
is still limited compared to the analysis of B-mode data alone. An im-
provement of the bimodal acquisition technique may considerably increase
the impact of the valuable Doppler measurements to obtain more accurate
and robust motion estimates.
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e Instead of analyzing the scan converted and post-processed B-mode data,

one may opt to directly analyze the radio-frequency data. The optical-
flow-based cost function may be replaced by specifically tailored motion
constraints formulated on the RF-data. If the raw data and the various
post-processing steps were known, the least-squares estimator used in this
work could be adapted/replaced to take the underlying noise model into
account. However, all this requires a close collaboration with hardware
vendors to have access to the raw image data that is usually only available
in a proprietary format.

Clearly, the first clinical validation needs to be followed by more thorough
clinical studies in a wide variety of clinical problems. Clinical trials in
the field of routine echo, heart failure quantification and stress echo are
presently taking place using our software in Basel.

The advent of real-time, three-dimensional ultrasound systems opens the
door for a more comprehensive, 3D-assessment of motion. Although the
proposed motion analysis algorithm is only presented here in two dimen-
sions, it can readily be extended to three dimensions. A volumetric anal-
ysis would capture complex heart motions much better and remove prob-
lems such as out-of-plane motion in the current two-dimensional assess-
ment. The proposed divergence-free constraint of the local velocity model,
which takes into account the physical incompressibility of the myocardium,
will also be more consistent in this case.

The three-dimensional extension of the proposed sliding-window-type al-
gorithm would still correspond to solving small linear systems, which can
be done efficiently using direct methods and bears a huge potential for
parallel implementation. This divide and conquer principle is a great ad-
vantage over global motion analysis approaches, such as the Horn-Schunk
method, that need to solve huge sparse linear systems whose size grows
dramatically with increasing dimensions. This usually requires sophisti-
cated iterative methods and an efficient memory handling.

A fully automated method for analyzing echocardiograms is challenging,
but may be achieved by an integration of the proposed method with ad-
equately tuned active contour and trainable shape models. The resulting
algorithm could be a weighted combination of the different approaches
where the relative weights are based on appropriate confidence measures.



Nothing is less in our power than the heart, and
far from commanding we are forced to obey it.

— Jean J. Rousseau

Appendix A

Multiresolution Moment
Filters

Abstract — We introduce local weighted geometric moments that are
computed from an image within a sliding window at multiple scales. When
the window function satisfies a two-scale relation, we prove that lower or-
der moments can be computed efficiently at dyadic scales by using a mul-
tiresolution wavelet-like algorithm. We show that B-splines are well suited
window functions because, in addition to being refinable, they are pos-
itive, symmetric, separable, and very nearly isotropic (Gaussian shape).
We present three applications of these multi-scale local moments. The
first is a feature extraction method for detecting and characterizing elon-
gated structures in images. The second is a noise reduction method which
can be viewed as a multi-scale extension of Savitzky-Golay filtering. The
third is a multi-scale optical-flow algorithm that uses a local affine model
for the motion field, extending the Lucas-Kanade optical-flow method.
The results obtained in all cases are promising.
This chapter is based on our paper [95].
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A.1 Introduction

Global geometric moments and their invariants are widely used in many areas
of image analysis, including pattern recognition [96], image reconstruction [97],
and shape identification [98]. In addition to geometric moments, which are also
known as regular or ordinary moments, a number of other moments has been
proposed. The notion of complex moments was introduced in [99] for deriving
moment invariants. Teague [100] suggested the use of orthogonal moments and
introduced complex valued Zernike moments that are defined on a unit disk. A
second class of orthogonal moments is given by Legendre moments which make
use of Legendre polynomials. The usefulness of Legendre and Zernike moments
has been demonstrated, in particular, for image reconstruction [97, 101] and
pattern classification [102]. The pseudo-Zernike formulation proposed in [103]
further improved these characteristics. A detailed discussion of moment-based
image analysis can be found in the monograph [104].

Some authors have applied geometric moments in a local fashion for image
and texture segmentation [105], [106] and direction-based interpolation [107].
The idea there was to compute moments locally over some square region of in-
terest which is moved over the image; the window functions may be overlapping
or not, depending on the application. An efficient method to compute local
moments inside sliding, squared windows with constant weights was recently
proposed in [108].

In this paper, we are extending the notion of local geometric moments by in-
troducing two refinements: weighting and multiresolution. The idea of weighting
is motivated by the observation that the square window that has been used so far
is rather anisotropic. Indeed, if the goal is to design a “rotation-invariant” algo-
rithm, it makes good sense to apply an isotropic window with a radial weighting
that decreases away from the center. Multiresolution is a feature that is highly
desirable for designing image processing algorithms that have some degree of
adaptability. The down-side, of course, is that these multi-scale refinements can
be computationally very expensive, especially when the size of the window is
large. The framework of wavelets [53] is a computational efficient approach to
multiresolution and has proven to be successful in many applications such as
image denoising [109], [110], feature enhancement [111] and shape analysis [112].
In this paper, we use wavelet-related concepts and propose a fast multiresolu-
tion wavelet-like algorithm to compute multi-scale local geometric moments of
different orders with a dyadic scale progression. In particular, we will consider
B-spline window functions, which become wider and more and more Gaussian-
like—also meaning isotropic—as the degree of the spline increases.
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We believe that these multi-scale local geometric moments could be useful
tools for devising new algorithms based on what we call a “sliding window” for-
mulation of a problem. The basic assumption for such an approach is that the
spatially-varying feature (or parameter) that one is estimating is approximately
constant within the window. The unknown parameter is then estimated from
the available information in the window (which often requires the evaluation of
moments). Finally, the output value is attributed to the spatial location corre-
sponding to the center of the window. This is a simple, yet powerful paradigm
that can be made most effective by working at the appropriate scale (multires-
olution strategy). We will illustrate these ideas in Section A.3 by presenting
three such local-moment-based algorithms:

e a new method for local shape analysis and feature extraction,
e a multi-scale noise reduction method based on Savitzky-Golay filters [113],

e a multiresolution extension of the Lucas-Kanade optical-flow algorithm
[19], which uses a more refined local-affine model for the motion.

These methods are fast thanks to the wavelet-like implementation. The exper-
imental results obtained in all cases are encouraging.

A.2 Theory

In this section, we will define weighted local geometric moments and their as-
sociated multiresolution moment filters. We also show how these moments can
be computed efficiently in a multiresolution framework.

A.2.1 Weighted Local Geometric Moments

Global geometric moments of order p € Ny and location zp € R of a
continuously-defined function f are defined as [96]

M, (z0) = /(x —x0)? f(x)du. (A1)
R

For localization, we introduce a positive and symmetric window function w with
compact support 2. We then define weighted local geometric moments of order
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p, scale 7 € Z and location x( as

m8 (o) = / (o= a0 (25 ) (4.2)

27

Note that the window function is dilated by a factor 27 and is centered at x.
For a given window function w, we call

wp(z) = 2P w(z) (A.3)

the moment filter mask of order p. Then, the local weighted geometric moments
can be rewritten in the form of a convolution as

m (wg) = 297 R/ wp<‘”;jx°> f(z) dx (A.4)

— oip <w,§j>T " f) (z0), (A.5)
where the multiresolution moment filters wz()j )T(ac) = wy(—x/27) are time re-
versed and dilated versions of the basic moment filter mask (A.3). The nor-
malization factor 277 in (A.5) is included to simplify the formulation of the
multiresolution algorithm presented next.

A.2.2 Two-Scale Equation

Computing local moments at coarser scales becomes more and more time con-
suming due to the increasing size of the window function. However, multireso-
lution pyramids of local moments can be computed efficiently, provided that the
window function satisfies a two-scale equation, a concept that is closely related
to the framework of wavelets [53].

Theorem A.1 (Two-Scale Equation) Let w be a function that satisfies the
two-scale equation
( ) Z h(l)w(z — 1), (A.6)

for some given filter h. Then, w, sat1sﬁes the multi-channel two-scale equation
P

20w (g) B kz: (ke wy) ()
Z Dwg(z — 1),

l

Il
=)

(A7)

I
]| M@
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with filters hy, ,, k =0,...,p, given by

hy (1) = (i) Pk R(1). (A.8)

Proof We deduce from (A.3) and (A.6) that

Using the fact that

P
= ((z—1)+ l)p = Z (i)lp_k(a: — )"
and applying the definition

(z — DFw(xz —1) = wi(z — 1),
we directly obtain (A.7). O

A.2.3 Efficient Multi-Scale Implementation

Theorem A.1 can be used to derive fast algorithms for computing local moments
m](,j) for scales j = jo,...,j1 and orders p = 0, ..., P. To initialize the procedure,
the inner products on the finest scale j, are computed by using (A.5). Due to
Theorem A.1, the coefficients on the subsequent coarser scales can be determined
recursively.

Corollary A.2 Let mu)( ), 0 < p < P, be local moments at scale j and
positions n € Z. Then, the moments at the next coarser scale (j + 1) can be

computed as
P

(J+1) Zzh(J) (J) n+2]l) (A.9)

k=0

with filter masks h(] ,)€ given by

W) =210~ Rp, . (A.10)

)
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Proof By definition (A.5) we have that

. . r—n
) =207 [, () po)ds
R

) le—n
_ 9(i+1)p -
=2 /wp <2 57 >f(x)dx.
R

Using the two-scale equation (A.7) it follows that

mfng)(n)
. 1 & T—n
— 9U+ )p/ﬁzzhp’k(l)wk < o l) f(z)dz
R k=0 1
— QjPZth’k(l)/wk (W) f(z)dw.
k=0 1 R

Applying definition (A.5) yields

. . 1 . ,
m D (n) = 2737 b () gy (n+ 271)
l

By defining h;],)c (1) = 227>=F)p,, 1 (1), we obtain (A.9). O
Equation (A.10) means that the two-scale filters h,, ;, have to be multiplied

by 2(P=%) at each scale j prior to convolution. The filters hz(f,)C need not to
be stored separately since they are obtained by simply updatirfg the basic fil-
ters hy i at each scale. Equation (A.9) is a multi-channel extension of the “a
trous” algorithm, which is frequently used for computing overcomplete wavelet
transforms [114].

The method is easily modified for computing local moments in a sub-
sampled, wavelet-like pyramid. The recursion equation (A.9) then simplifies
to a Mallat-like algorithm (cf. [114]):

p
w0 = 3 (k" o) 2n) (A1)
k=0
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Figure A.1: Recursive computation of moments of order 0 to 2 using multi-
channel two-scale filters.

where h;{,lT(l) = h;{,l(—l) denotes the time reversed filter mask hgi. The
corresponding block diagram for computing moments of order 0 to 2 in a sub-
sampled fashion is shown in Fig. A.1.

To avoid boundary artifacts, the signals that are considered by the algorithm
need to be extended properly at the boundary. We assume that the input signal
f is extended by using a mirror boundary convention. If this signal is filtered
with a symmetric filter (e.g., even moments), the output will exhibit the same
symmetry. Conversely, if the signal is filtered with an anti-symmetric filter (e.g.,
odd moments), the output will be anti-symmetric at the boundary. Therefore,
in order to implement the recursive two-scale algorithms (A.9) and (A.11), one
has to alternate between the right type of boundary extension of the moments to
produce an output that is consistent with the input assumptions. This is ensured
by extending even and odd order moments by mirror and anti-mirror boundary
conditions, respectively. From (A.8) it can be seen that the two-scale filters h,, x
are symmetric or anti-symmetric, if p— k is even or o(d)d, respectively. Thus, the
J
k

convolution with the properly extended moments m,;’’ will result in the correct

boundary extension of the moments m](gj +)

given in Table A.1.

. A summary of all possible cases is

The usage of the two-scale algorithm clearly pays off when computing lower
order moments at coarser scales. The direct computation of the moments by
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Table A.1: Boundary extension of moments.

Order p Bound. extension Order k£ | Bound. extension || p—k | Filter symmetry
of m;j-H) of m;E,H_U of mgcj) of mgcj) of hp i
even mirror even mirror even symmetric
even mirror odd anti-mirror odd anti-symmetric
odd anti-mirror even mirror odd anti-symmetric
odd anti-mirror odd anti-mirror even symmetric

(A.5) requires O(27) multiplications and O(27*!) additions per output point at
scale j. On the other hand, the computational complexity of the recursive two-
scale algorithm is independent of the scale j and behaves like O(1). A detailed
analysis of the computational cost is given in the Appendix A.5.1.

A.2.4 Multiple Dimensions

The notion of multi-scale weighted moments can be extended to multiple dimen-
sions in a straightforward way by using tensor products. In the two-dimensional
(2D) case, we define moment filter masks of order (p + ¢) as

Wpq(2,Y) = wp(x)we(y). (A.12)

The moments at scale j are then given by the separable convolution
mil)(z0,y0) = 2FD (wf) T 5 £) (20, 30), (A.13)
where wl(,{gT(x, y) = wy(—2/27)w,(—y/27) are the associated 2D multiresolution

moment filters. For an efficient computation of mz(,{ ()1, equations (A.9) and (A.11)
are applied successively in each dimension. In the sub-sampled discrete case,
this reads

P q

. N T

mg(jl)(n,m): E E (hg,)f h((zj’l) * m,(gl))(Qn,Qm), (A.14)
k=0 =0

where the two-scale filters h(J )T and h(] are applied separately in z- and y-
directions, respectively. For 1nstance the block diagram for the second order
moment m(]Jr ) is illustrated in Fig. A.2.
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Figure A.2: Recursive computation of mgj fr 2

filters.

using multi-channel two-scale

In the two-dimensional case, the direct moment computation (A.13) requires
O(27F1) multiplications and O(2772) additions per output point at scale j,
whereas the cost of the recursive two-scale algorithm behaves as O(1). For
a detailed analysis of the computational complexity in two dimensions, we refer
to Appendix A.5.1.

A.2.5 B-spline Window Function

The ideal window function should be positive, with weights decreasing away
from the center, refinable, separable, and isotropic in multiple dimensions. The
only choice would be a Gaussian, but it does not satisfy a two-scale equation.
However, B-splines 5™ satisfy a two-scale equation and rapidly converge to Gaus-
sians when their degree n € N increases [51]. In fact, for a given number of filter
tabs, B-splines are the smoothest scaling functions in the Sobolev sense [115];
this guaranties that they converge fastest to Gaussians in the Sobolev norm.
This ensures nearly isotropy of the window in multiple dimensions. The cubic
B-spline (n = 3), 32, and its two first moment filters 5; and 33 are plotted in
Fig. A.3. The corresponding two-scale filters hy, ;, up to order p = 2 are given
in Table A.2.

The Fourier transform of a B-spline 3", which is the (n+ 1)-fold convolution
of a rectangular pulse, is given by

B (w) = (Sirsz/”)nﬂ . (A.15)
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03
Figure A.3: Cubic B-spline 3° and its first two moment filters 3} and 3.

Table A.2: Two-scale filters h, x up to order p = 2 for 33.

|t [ 2] -1]of1]2]
hoo(D) || § s |8|8l%
hio) || =3 —2]0]2 114
hia(l) || 3 s | 8|83
hao(l) || 3 3 |0]3]3
hoa() || =5 310133
hao(l) || 3 s |s]8l%

By definition, the Fourier transforms of the corresponding moment filters are
given by

~ dP ~
By (w) = ipmﬂ”(w). (A.16)

B-splines of degree n are by construction in C"~1, i.e., they are (n — 1) times
continuously differentiable; the same also holds true for the moment filters. This
implies that their Fourier transforms decay at least like O(1/|w|™) for large w.
Consequently, the Fourier transforms of the moment filters decay faster when
the spline degree increases. Fig. A.4 shows the normalized spectra of the B-
spline 3°(x/2) and its moment filters £ (z/2) for degree n = 5 and moment
orders p = 0,1,2 at scale j = 1. It is clear from this graph that the filters are
essentially bandpass, which can be used as a justification for the downsampling
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Figure A.4: Normalized spectra of moment filters 3°(z/2), 37 (z/2) and 35(x/2).

of moments at coarser scales.

A.3 Applications

The fast algorithm presented above is applicable to a variety of image analy-
sis problems, such as image segmentation, pattern detection, and optical-flow
estimation, for which local solutions over sliding windows have been proposed.
These approaches can be extended by applying a multiresolution strategy which
provides adaptability while also reducing computational cost. Here, we will il-
lustrate the concept by presenting new local-moment-based algorithms for three
specific tasks: (1) local shape analysis and feature extraction, (2) filtering for
noise reduction, and (3) the estimation of motion fields using a local affine
model.

A.3.1 Local Shape Analysis and Feature Extraction

Effective analysis of shapes is required by many computer vision applications;
in particular, in biomedical image analysis. One of the major issues is to de-
termine location, orientation and size features of filamentous or spherical bright
structures in an image. Examples are segmentation and characterization of bio-
logical cell images, the analysis of vessel distributions in medical images and the
detection of DNA filaments in electron micrograph images. The evaluation of
low order moments represents a systematic and efficient method of shape anal-
ysis. Since moments are integral-based features, they are robust against noise.
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Furthermore, low order moments have a direct geometrical interpretation.

Geometric Interpretation of Moments

The moments m,, , have well-defined geometric interpretations. The coordinates
of the local centroid are given by

xr = m170/m070 and gy = m0,1/m070. (A17)

The distance between the window center and the local centroid allows to detect
whether the sliding window is located on the center of a bright structure or
not. The so-called central moments [96] can be expressed in terms of ordinary
moments mp , and the coordinates of the centroid. For the second order we
have

_ —2 _ )
H2,0 = M2,0 — Moo0T", HMo.2 = "MMg2 — T0,0Y, (A.lS)

,Ufl,l = m171 — movofg. (Alg)

These three central moments of second order are the components of the inertia

matrix
J = ( H2,0  Hi1,1 ) (A.20)
H11 Ho,2

The local orientation of the analyzed object is given by the eigenvector corre-
sponding to the minimal eigenvalue of J. In fact, the local object is mapped
onto an ellipsoid centered at (Z,y). The ellipsoid axes are directed along the
eigenvectors of J and the corresponding axes semi-lengths are the magnitudes
of the respective eigenvalues A\; and As. The orientation angle with respect to
the z-axis is given by

1 2
¢ = — arctan ('ull) . (A.21)
2 2.0 — 40,2

A measure for the eccentricity of the local ellipsoid is given by

2 2 2
— — +4
. ()\1 )\2) (/1'2,0 MO,Q) M1 ( -22)

AL+ A2 (Mz,o + M0,2)2

and takes values between 0 and 1. It indicates whether the local object is
elongated or not. The eccentricity measure is independent from the local image
energy and is therefore well-suited for inter-scale comparisons.
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Multi-Scale Detection Strategy

Brighter elongated structures or filaments can be extracted by evaluating the
various moment features and putting thresholds on eigenvalues or eccentricity
measures. Since the elongated structures of interest can have different sizes, we
propose to detect them at multiple scales jo < j < j1, where jo and j; are the
finest and coarsest scale at which relevant structures are expected. A simple
strategy, which was applied in our experiments, is described in the following: At
each image pixel (ng,n,) we compute the local moments ml(,{()l for (p+¢q) < 2.
From these we derive the local orientations and eccentricities £/). To decide
whether or not a local object is part of a filamentous structure, we compute the
figure of merit

A0 = ) =@ +5%)/ 2V e?) (A.23)

The second factor in (A.23) assigns more weight to cases where the local centroid
(Z,7) is close to the center of the local window. The parameter o controls the
range of the centroid around the window origin to be accepted. The multi-
scale approach also helps us to detect cases where the local structure is located
symmetrically at the periphery of the window function. To avoid these cases,
the figure of merit vU) is set to zero, if m((fa V< mé{%. This means that the
local mean of the gray values at the next finer scale has to be greater than the
local mean at the current scale.

The figure of merit (A.23) will be maximal at a scale that approximately
matches the size of the elongated shape to detect. Therefore, we integrate the
figures of merit at different scales to obtain a final estimate for the goodness of
local fit by

_ (4)
7= joréljagjl T (A.24)

Application: Detection of DNA Filaments

The structure of DNA molecules can be visualized by cryo-electron-microscopy
(CEM) [116]. Because of the physical process involved, the resulting images
have very low contrast to avoid destruction of the specimen (cf. Fig. A.6).
Biologists are highly interested in an automatic detection of the thin strands of
DNA, but the task is challenging because of the poor signal-to-noise ratio (near
0 dB).

The proposed moment-based algorithm was tested on synthetic and real
images. Fig. A.5a and A.5b show a synthetic circular DNA strand with two
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different levels of additive Gaussian noise, respectively. In this experiment, we
used a B-spline window of degree 3 at scales j = 2, 3.

The algorithm is compared with the so-called structure tensor method [67],
a standard method to estimate local orientations of image patterns. Instead of
the inertia tensor (A.20), this method uses the structure tensor

| (w3 (wLI,)
5= ( (w, L)  (w,I7) )’ (A.25)

where w(z,y) denotes a window function and I, I, denote the partial deriva-
tives of the image intensity I(x,y). The computation of the local orientation
and eccentricity measure is analog to (A.21) and (A.22), respectively. Asin [67],
we interpret the estimated eccentricity as a figure of merit and use a Gaussian
window function. For the standard deviation of the Gaussian window, we used
o = 1.7 which corresponds to the effective width of the B-spline window at the
finest scale j = 2 of the moment-based algorithm.

The estimated eccentricities of the structure tensor approach are shown in
Fig. A.5c and A.5d for the two different noise levels, respectively. Fig. A.5e and
A.5f show the corresponding figures of merit of the proposed moment-based
algorithm. For the lower noise level both methods detect the circular structure
well. However, the figure of merit of the moment-based algorithm is much
thinner around the true structure since the eccentricity measure is weighted by
the distance of the window center to the centroid of the local image content
as described in (A.23). This feature is not available in the structure tensor
approach. In the case of the higher noise level, the moment based algorithm
still detects the elongated object fairly well (Fig. A.5f). In contrast, the structure
tensor approach degrades significantly (Fig. A.5d). This is probably due to the
fact that this method uses derivatives which are sensitive to noise, whereas the
proposed approach is integral-based.

The moment-based detection algorithm was also applied to real images as
shown in Fig. A.6a. Since the intensity in CEM-images may vary globally, the
original images were first normalized in a pre-processing step. We used moments
of order zero (local average) at scale j = 2 for local background subtraction.
Then we computed for each pixel the figure of merit v as described above.
In particular, we used a B-spline window of degree 3 at scales 7 = 2,3. The
figures of merit were then thresholded to suppress values that correspond to
non-significant structures. The final figures of merit are visualized in Fig. A.6b
in form of a needle diagram. The length of the needles is proportional to the size
of the figure of merit at each pixel. The direction of the needles corresponds to
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(a) Synthetic elongated struc- (b) Synthetic elongated struc-
ture with additive Gaussian noise ture with additive Gaussian noise
(SNR = 28.14 dB) (SNR = 8.15 dB)

(c) Figure of merit of structure (d) Figure of merit of structure
tensor-based algorithm applied to  tensor-based algorithm applied to

(a) (b)

Figure A.5: Comparison of moment-based and inertia tensor-based detection of
elongated structures for different noise levels.
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(f) Figure of merit of moment-

(e) Figure of merit of moment-
based algorithm applied to (b)

based algorithm applied to (a)

Figure A.5: Comparison of moment-based and inertia tensor-based detection of
elongated structures for different noise levels.

(a) Original CEM-image (b) Estimated local orientation

Figure A.6: A CEM-image and detected DNA strands.
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the local orientation of the object. We see that the two DNA strands contained
in the image together with their local orientation were clearly detected. Failures
due to the high noise content in the image are very sparse.

A.3.2 Multi-Scale, Weighted Savitzky-Golay Smoothing
Filters

Savitzky-Golay filtering [113] can be thought of as a generalized moving aver-
age filter. The idea of Savitzky-Golay filtering is to find filter coefficients that
preserve higher order polynomials. These filter coefficients are derived by a
least-squares fitting of a polynomial of given degree within a sliding window.
The smoothed points are computed by replacing each data point with the value
of the fitted polynomial at the window center. For this reason, a Savitzky-
Golay filter is also called a digital smoothing polynomial filter or a least-squares
smoothing filter. A crucial point is the choice of the size of the window function.
A small window preserves narrow features of the underlying signal, but filters
less; larger windows smooth more, but lead to blurring of image details.
Originally, this approach was proposed for one-dimensional signals and used
a box-shaped window function of fixed length [113]. Here, we propose a multi-
dimensional extension based on a weighted least squares criterion. We also
propose a new multi-scale filtering strategy whereby the final smoothed image
is obtained by combining results from different scales using a hypothesis test.

Weighted Savitzky-Golay Filtering
Let us consider a two-dimensional polynomial of degree d
Pd(l‘, y) = Z Qp,q zPy, (A.26)
0<p+g¢<d

which is specified by the N, = (d+1)(d+2)/2 polynomial coefficients a, 4. Let
w denote a window function with discrete support Q2 of cardinality Ng which
is located at (mq,ng). To fit the polynomial locally to an image I(m,n), we
minimize the weighted least-squares functional

r2— Z w(m,n) (Pd(m, n) — I(m + mo,n + n0)>2. (A.27)
(m,n)€eN

By differentiating (A.27) with respect to each of the unknown polynomial coeffi-
cients a, 4, we obtain the corresponding normal equations ATWA a= ATWb,
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where

{ATWA}plyql;pM2 = Z mP P2 T2 4 (m n), (A.28)

(m,n)eN
T _
{ATWb} = > mPiatw(m,n)- (A.29)
(m,n)eN
I(m+ mg,n + ng),

and

{a}p%qz = ap27qz’ (A3O)

with 0 < p; +¢1 < dand 0 < py+ g2 < d. The index-tuples (p1,q1) and (p2, g2)
denote the row and column indices of the matrix and vectors, respectively. The
Nq x Nq diagonal matrix W is composed by the weights w(m, n). Since ATWA
does not depend on the image data, the matrix and its inverse can be computed
once and forever in advance. The right hand side vector AT W b is nothing but
a discrete version of the local moments (A.13) of order zero to d. The smoothed
image point at the window center is equal to the polynomial coefficient ag g,
which is given by the inner product of the corresponding row {(ATWA)’1 }070

of the matrix inverse and the right hand side AT W b.

Multi-Scale Strategy

In order to find a trade-off between the conflicting requirements of noise reduc-
tion and conservation of image details, we propose a multi-scale framework of
the introduced weighted Savitzky-Golay filtering. We assume that the image is
locally given by the model: polynomial signal + noise, i.e.,

I=Py+e, (A.31)

where ¢ ~ N(0,02%) corresponds to Gaussian white noise of zero mean and
common variance o2. Thus, the residual (A.27) gives the expected squared
deviation of the image data from the given polynomial P; due to noise. As shown
in the appendix, the normalized residual corresponds to a linear combination of
Ngq — N, independent x?-distributed random variables, i.e.,

o Z A(n) X2, (A.32)
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where the coefficients A(n) are given by the No — N, non-zero eigenvalues of
the matrix

W — WA (ATWA) ' ATW. (A.33)

For a proof and the computation of the probability density function of (A.32)
we refer to Appendix A.5.2. Note that, for uniform weights, the resulting dis-
tribution (A.32) corresponds to a x%,,_, distribution with No — N, degrees
of freedom. Asymptotically, 72 /02 is normally distributed with mean

r2 No—N,
E (02> = A(n) (A.34)
n=1
and variance
.2 No—N,
var <02) =2 > An)?* (A.35)
n=1

When working on real images, (A.32) enables us to detect image regions for
which the chosen polynomial degree or window size are not adequate. More
specifically, we apply a two-sided hypothesis test on 72 /02 with a given signifi-
cance level a. In order to avoid cases where the degree of the polynomial is too
high for the given image structure and tends to fit the noise, we reject results
for which the residual is below the confidence interval. This usually happens
when using small windows in flat image regions. On the other hand, we also
reject results for which the residual is above the confidence interval. In this
case, image details like edges cannot be fitted closely by the polynomial. The
aim is to use locally a window as large as possible to achieve maximum noise
reduction. Consequently, we compute smoothed image versions using windows
at scales j = jo,...,j1. Recall that the images of moments (A.29) can be com-
puted efficiently for different scales by using (A.9). The final smoothed image
is obtained by choosing, for each pixel, the output value from the coarsest scale
for which the normalized residual remains inside the confidence interval.

Numerical Results

In order to demonstrate the performance of weighting and multi-scale filtering,
we have applied the algorithm to an image containing additive Gaussian white
noise. Fig. A.7a shows the original image and Fig. A.7b shows the image after
adding Gaussian white noise of standard deviation o = 20.0, resulting in a



138 Multiresolution Moment Filters

(a) Original image (b) Noisy image (SNR = 20.40
dB)

1

Figure A.7: Original and noisy image.

signal-to-noise ratio of 20.40 dB. Results were computed for a B-spline window
of degree 3 and a fitting polynomial of degree 2.

Fig. A.8 illustrates the effect of using B-spline weighting. The left column
displays the filtered outputs of B-spline-weighted Savitzky-Golay filtering at
scales j = 1,...,3. Window sizes were 7, 15 and 31 pixels at each scale, re-
spectively. The right column corresponds to the case of using a squared window
with constant weights one. Here, the support was chosen to be the effective
duration of the B-spline windows, resulting in window sizes of 3, 5 and 9 pix-
els, respectively.  Fig. A.9a shows the final output image of the multi-scale,
B-spline-weighted method. Smoothed image versions at scales j = 1,...,3 were
combined to the final output image using a double-sided hypothesis test on the
normalized residuals (A.32) with a significance level o« = 0.01. The signal-to-
noise ratio of the final image is 27.30 dB, which is significantly larger than the
signal-to-noise ratios at the single scales (26.25 dB, 24.55 dB, 21.63 dB for scales
j=1,...,3). Also visually, the final output image seems to be superior to the
single scale outputs. Image details like edges are well preserved, whereas flat
image regions are fairly smoothed. The result is compared with two standard
denoising algorithms. The first is a wavelet soft-thresholding method. The noisy
image was decomposed in a 3-level wavelet transform pyramid using orthogonal
Battle-Lemarié wavelets [117]. We used the same order of spline (n = 3) for
the methods to be comparable. We also optimized the method by selecting the
threshold T' = 26, yielding the maximum signal-to-noise ratio (SNR = 24.89
dB). From Fig. A.9c it can be seen that the wavelet-based smoothed image is
clearly more blurred and suffers from typical ringing artifacts. The second com-
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i

(a) B-spline-weighted at scale j =  (b) Non-weighted at scale j = 1
1 (SNR = 26.25 dB) (SNR = 22.67 dB)

i

(c) B-spline-weighted at scale j =  (d) Non-weighted at scale j = 2
2 (SNR = 24.55 dB) (SNR = 25.49 dB)

Figure A.8: Images (a) to (d) demonstrate the effect of B-spline weighting at
scales j =1, 2.



140 Multiresolution Moment Filters

(e) B-spline-weighted at scale j =  (f) Non-weighted at scale j = 3
3 (SNR = 21.63 dB) (SNR = 23.88 dB)

Figure A.8: Images (e) and (f) demonstrate the effect of B-spline weighting at
scale j = 3.

parison method is the adaptive Wiener filter [118]. This filter corresponds to
a pixel-wise adaptive Wiener method based on statistics derived from a local
neighborhood of each pixel. The maximum signal-to-noise ratio of 25.96 dB
was obtained for a filter size of (5 x 5) pixels. As can be seen from Fig. A.9d,
the Wiener filter preserves image details well, but smoothes less in flat image
regions.

In the present approach, different scales are combined in an exclusive fashion
which leads to some artifacts near edge regions. Although the proposed multi-
scale denoising algorithm performs best in terms of signal-to-noise-ratio, it may
be possible to improve the visual perception of the output further by using a
more progressive weighted combination.

A.3.3 Optical-Flow Estimation

The estimation of motion from an image sequence is a classical problem in
computer vision. Among others, the optical-flow technique has been proven to
be a successful approach to this problem [61].

Let I(z,y,t) denote the intensity of pixels at location r = (z,y) and time
t in an image sequence. Gradient-based optical flow estimation relies on the
assumption that the intensity of a particular point in a moving pattern does
not change with time. The constant intensity assumption can be expressed as
[16]

I(r,t)u(r,t) + I, (r,t) v(r,t) + L(r,t) = 0.
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(a) Final multi-scale, B-spline- (b) Final multi-scale, non-
weighted Savitzky-Golay output  weighted Savitzky-Golay output
(SNR = 27.30 dB) (SNR = 26.42 dB)

i

(¢) Wavelet thresholded image  (d) Wiener filtered image (SNR =
(SNR = 24.89 dB) 25.96 dB)

Figure A.9: Comparison of different smoothing methods.
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I, I, and I; denote the spatial and temporal derivatives of the image intensity.
The velocities u and v are, respectively, the z- and y-components of the optical-
flow we wish to estimate.

Local Affine Motion

A very popular optical-flow algorithm is the Lucas-Kanade method [19], which
estimates the motion locally, assuming the motion to be constant within a win-
dow of support 2. In order to account for more complex motions, such as
rotation, divergence, and shear, we extend this approach to a local affine model
for the motion. If (¢, yo) denotes the center of the local window, this model is
defined as

u(xay) =up + Uz(z - 'JJO) + uy(y - yO)a

v(z,y) = vo + vp(x — o) + vy (Y — o). (A.36)

The parameters ug and vy correspond to the motion at the window center and
Ug, Uy, Vg, and v, are the first order spatial derivatives of u and v, respectively.
The local motion components can be estimated by minimizing the weighted
least-squares criterion

2
/w(az—xo,y—yo)<Iwu—|—va+It) dz dy. (A.37)
R?

The symmetric window function w gives more weight to constraints at the center
of the local region than to those at the periphery. By differentiating (A.37) with
respect to each of the six unknown parameters, we obtain the so-called normal
equations ATWAv = ATW b in terms of local moments of orders zero to two
of the spatial and temporal derivatives of I as defined in (A.38) on page 143.

Coarse-To-Fine Multi-Scale Strategy

It is obviously difficult to estimate large motions at fine scales. A way around
this problem is to apply a coarse-to-fine strategy. At each scale jo < j < ji,
we compute the local moments on a grid which is sub-sampled by 27 in each
dimension. These sub-sampled, multi-scale local moments can be computed
efficiently by using (A.11).

The motion vectors are cascaded through each resolution level as initial
estimates and are then replaced if they do not already exceed a scale-dependent
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ATWA =

(w, I <w7]m£y> (zw, 12 (yw, I2 <mw,lm£y> <yw,]m£y>
<w,[xlg> <w,Iy <:17'l20,1$12y> <yw,[x12y> <217w,1y <yw,1y>
xw,%i éwazIyg <z w,II2> <x§yw,lg> <x w,Ig;Iy> <x2yw,lzly>
yw, I2 yw, InIy <:gyw,fz> W2 w,I2) <»%‘y2w71z21y> (v vaZ£y>
<a:w,IzIy> <a:w,I> <CC w,[zly> <:c§/w,1z1y> <x w,Iy2 <x;;w,[§/>
<yw,]zly> <yw,1y> <2yw,llly> <y w,IzIy> <:pyw,1y <y w,Iy>

U w, Iz 1t)

o w,IyIt>

- Ug T _ zw, I It

v = uy s A"Wb = yw. LIy (A.38)
Vg zw, Iyl
vy yw, Iyl

size. For each local estimate, we compute the confidence measure

W2 (Av —b)]|,,

1—-sinf=1- le/Qle
2

€ [0,1]. (A.39)

The argument # corresponds to the angle between the vectors W'/2b and
W1'/2Av and characterizes how close W'/2b is to the image of W/2A. A
local estimate is replaced only if its confidence measure is larger than the corre-
sponding one at the next coarser scale. Otherwise, the coarser scale estimator
is kept. Furthermore, a solution of a local linear system is regarded as not
admissible if the linear system is either ill-conditioned or if the length of the
estimated central motion vector exceeds some scale-dependent limit. Finally, a
motion estimate is set to zero if the local mean of the time derivative at the
given location is below a pre-defined noise level.

The final motion estimates at the finest scale jo are then interpolated by
B-splines to obtain a continuous representation of the motion field.

Numerical Results

The performance of the algorithm was tested on synthetic and real image se-
quences. In particular, we used the well known synthetic sequence “Yosemite”.
Since the exact motion field is known, the error of the estimated motion field
was computed using the angular error measure as defined in [61]. As real data
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Figure A.10: One frame of the Yosemite sequence and its corresponding esti-
mated motion field.

we used the “Rubik Cube” sequence!. One frame of each sequence and its corre-
sponding estimated motion field are shown in Fig. A.10 and A.11. All sequences
were prefiltered with a Binomial filter of variance 02 = 1.5 and a B-spline win-
dow of degree 5 at scales j = 2,...,4 was used for moment computation.

The angular error of the “Yosemite” sequence is 6.33°+9.98° with a flow field
density of 100%. The error of the corresponding adaptation of the Lucas-Kanade
approach (same window, same multiresolution strategy, locally constant motion
model) is 7.43° £ 12.72°. Barron & al. [61] report an average angular error
of an optimized Horn and Schunk method [16] (spatio-temporal prefiltering,
4-point central differences for differentiation) of 11.26° + 16.41° with a flow
field density of 100%. Their implementation of an improved version of the
original Lucas-Kanade method (spatio-temporal prefiltering, rejecting unreliable
estimates) only produced a reasonable error for a very sparse velocity field with
a density of 35.1%.

The rotational movement in the “Rubik Cube” sequence is also clearly recovered.
The obtained results also compare favorably with all other methods evaluated
in the survey of Barron & al.

TAll  sequences were downloaded from Barron & al.’s FTP site at
ftp://csd.uwo.ca/pub/vision.
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Figure A.11: One frame of the Rubik Cube sequence and its corresponding
estimated motion field.

A.4 Conclusions

We have introduced B-spline-weighted, local geometric moments within windows
of dyadic sizes. The weighting ensures isotropy in multiple dimensions and the
scalability allows adaptability to local image contents. Computational efficiency
was achieved by developing a Mallat-like algorithm to compute these moments
at multiple scales.

Local moments provide a powerful set of features that can be used in many
sliding-window-type algorithms. In particular, we demonstrated their usefulness
on three different image analysis problems: feature extraction, noise reduction,
and optical-flow estimation. We proposed basic, moment-based algorithms with
promising experimental results. Some aspects of these generic algorithms can
be further improved by tuning them to special applications. Besides the appli-
cations mentioned, these moments could also be useful for applications such as
pattern classification and image segmentation.

A.5 Appendix

A.5.1 Computational Complexity

In the following, we analyze the computational complexity of the recursive two-
scale algorithm in the one and two-dimensional case.
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Figure A.12: 1D computational complexity per output point for direct moment
computation and usage of two-scale algorithm.

Computational Complexity in 1D

We assume that the length of the discretized window function w is 2N + 1 and
has a corresponding two-scale filter of length 2N 4 3. Since the window function
is symmetric, the direct calculation of (A.5) requires 2/ (N + 1) multiplications
and 29T1(N + 1) — 2 additions per output point at scale j, independently of the
order p. On the other hand, since the two-scale filters are either symmetric or
anti-symmetric, the two-scale algorithms (A.9) and (A.11) require (p+1)(N+2)
multiplications and 2(p + 1)(N + 1) + p additions for moment order p and are
independent of the scale. The computational complexities for scales j = 1,...,5,
moment orders p = 0,1,2 and N = 1 are plotted in Fig. A.12. Obviously, the
use of the two-scale algorithm starts paying off at scales 7 = 1, 2,3 for moment
orders p = 0, 1,2, respectively. Since in practice usually low order moments are
used, the proposed computation scheme is much more efficient at coarser scales.

Computational Complexity in 2D

For the two-scale algorithm (A.14), the number of multiplications and additions
per output point at scale j are 2(p+1)(¢+1)(N+2) and 4(p+1)(¢+1)(N+1)+
(p+1)(g+1)—1, respectively; in contrast, the direct computation (A.13) requires
2/F1(N + 1) multiplications and 2/+2(N + 1) — 4 additions. The computational
complexities for scales j = 1,...,5, moment orders 0 < p+¢g < 2 and N =1 are
plotted in Fig. A.13. The two-scale algorithm clearly pays off at coarser scales.
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(a) Number of multiplications (b) Number of additions

Figure A.13: 2D computational complexity per output point for direct moment
computation and usage of two-scale algorithm.

A.5.2 Computation of the Probability Density Function
of a Weighted Least-Squares Residual

Let Ax = b be an overdetermined linear system of size n X p, n > p, and
maximum rank p. We assume that the noisy observation b is given by b = b+¢,
where € ~ N(0,0°I) is jointly normally distributed and b = Ax.

The weighted least-squares estimator x is obtained by minimizing

r? = (AX—B)TW(AX—B>,

where W is a diagonal (n x n)-matrix of weights. Using the fact that x =
(ATWA)_1 ATWb and that b = Ax + €, we obtain

r? =elCe, (A.40)

where C = W — WA ATVVA)_1 ATW. Since C is symmetric, it can be
decomposed as C = U*' AU, where U is an orthogonal matrix and A is a
real diagonal matrix containing the eigenvalues of C. Therefore, (A.40) can be
expressed as

2 = (Ue)" A (Ue)
n"An,
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where 7 = Ue is also a N(0,o%I)-distributed random variable due to the or-
thogonality of U. Since C is by construction of rank (n — p), we have that

where A(k) denote the non-zero diagonal elements of A.

Now, the n(k)/o ~ N(0,1) are independently normally distributed so that their
squares follow a y2-distribution. Consequently, the probability density function
(pdf) of 72 /o2 is given by the convolution of x?-pdf’s dilated and scaled by the
factors A(k). Since the characteristic function (Fourier transform of the pdf) of
a x3-distribution is given by

1
fe(w) = (1= 2i0)i72’

the characteristic function of 2 /02 is given by

frz/a = H

For n sufficiently large, the pdf converges to a Gaussian as a consequence of the
central limit theorem.

(1 — 2iX( ) )
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