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On Interpolation and Resampling of Discrete Data
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Abstract—This letter introduces a new representation of dis-
crete signals based on the mathematical notions of functionals
and continuous dual spaces. A new and more general sampling
theorem is also suggested. Next, the problems of interpolating and
resampling discrete signals are addressed; and a general solution
using functional interpolation—which is applicable to many
different settings—is proposed. Families of resampling filters
dubbed de Boor-Ron filters that use de Boor—Ron interpolation
are introduced, and their numerical realization is discussed. Some
applications of this research are suggested.

Index Terms—de Boor-Ron filters, image interpolation, mul-
tiresolution, multivariate interpolation, resampling, sampling
theorem, super-resolution, wavelets.

I. INTRODUCTION

HE need to resample regularly or irregularly distributed

discrete data arises in many different situations. For in-
stance, measurements of a meteorological observable (temper-
ature, pressure, humidity, etc.) are usually made at irregularly
distributed locations. For ease of computation and analysis, one
may wish to resample the data onto a regular grid. Other ex-
amples are the problems of demosaicing (de-mosaic-ing) and
resolution enhancement in video processing (see [1], [2], and
references therein), where to improve the color fidelity and spa-
tial resolution of images, multiple video frames can be super-
imposed using real-valued motion vectors to form an irregular
pixel grid of higher density. A high-resolution image can then
be formed by resampling from this irregular pixel grid. These
are only some of the many applications where one wants to
resample discrete data provided as irregularly distributed mea-
surements (samples). For such applications, it is important to
design interpolation and resampling schemes with attention to
the nature of the sampling process.

Resampling also provides a means of changing the density
of samples. It can produce approximations at either lower or
higher resolutions than that of the original data, thus leading to
multiresolution signal processing schemes (for two examples of
schemes based on resampling, see [3] and [4]).

In this letter, we introduce a new class of filters (which we
name after C. de Boor and A. Ron) that is suitable for resam-
pling discrete data obtained by (usually irregular) sampling of
a function defined over a domain in R%, d > 1. By basing our
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design on functional interpolation, we deal not only with irreg-
ularities in the locations of the sampling points but also with
differences in the nature and underlying physics of samples, in
a natural and effective manner.

The framework we introduce is based on a novel under-
standing of sampling, which uses the notions of functionals and
continuous dual spaces. Due to its suitability and usefulness in
a wide range of problems, we employ functional interpolation
using multivariate polynomials and in particular use de Boor
and Ron’s solution to the interpolation problem (cf. [5]-[8]).
However, the same approach can also be applied using other
classes of functions as interpolants.

In the following, after briefly reviewing some preliminary
mathematical definitions, we formally define sampling and dis-
crete signals in Section II. We then continue to introduce de
Boor-Ron resampling filters in Section III and next provide
some generic examples in Section IV. Implementation details
and a few remarks then conclude this letter.

II. SAMPLING AND DISCRETE SIGNALS

A. Notation and Mathematical Preliminaries

We briefly recall several notions from functional analysis.
The reader may refer to [9] and [10] for detailed treatments.

Let F denote a field (e.g., R or C). Also let X" be a topological
vector space over the field F, and let f, g € X. Then, we have
the following.

Definition 1: A functional Aon X isamap \ : X — F.Itis
linearif Mcf + g) = cA(f)+ A(g) forall f,g € X,c € F.\f
is commonly used in place of A(f) to denote the value assigned
to f by A. The vector space of all continuous linear functionals
on & is called the continuous dual of X' and is denoted here by
X*.

Example: When X consists of continuous scalar-valued
functions defined over a domain (2, the point-evaluation
functional at # € € is the continuous linear functional
do = f — f(0).

Example: For a finite measure m on 2 and a space X’ of
m-measurable functions, the integral suf := [, f dm defines a
continuous linear functional u, which corresponds to averaging
with respect to the measure m.

Definition 2: The closure of a set A C X, denoted by A, is
the smallest closed set that contains A. A is said to be dense in
B D> Aif B C A.

Example: The closure of the set of rationals, @, in R (with
its usual topology) is equal to R itself. Hence, @ is dense in R.

Definition 3: A set A C X* is weakly-x dense in X* if it
is dense in A'* with respect to the weak-* (pronounced weak-
star) topology, i.e., with respect to pointwise convergence. (For
further discussion, see [10] and [11].)
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B. Sampling

Let X be the (locally convex) space of functions of interest,
which are defined over a domain @ C R, d > 1. Given f € X
and a functional A € X, we refer to the quantity Af as the
sample of f at X. Thus, for example, when f belongs to the space
of rapidly decreasing smooth functions (the Schwartz space),
85 f := f(5) is the point-sample of f at 5. fj;o f(t)ed«t dt is
also a sample of f, namely, the frequency sample at frequency
w. In this case, the target field F is that of complex numbers.

C. Discrete Signals

A set of values in F associated with members of a linearly
independent set A C X'* can be viewed as a discrete signal, say,
a, that lives in F* (the set of maps from A to F) and can be
represented by the values a[A], A € A.

We are interested in discrete signals obtained by sampling
a function f € X, in which case we will have a[A\] := Af.
This formulation allows us to keep track of not only the sample
values (i.e., a[\]’s) but also of the sampling procedure that pro-
vides these samples. This extra information is captured in the
formulation of the set A of sampling functionals. (de Boor [8],
following G. Birkhoff, calls the map from f to its samples over
A a data-map).

By S(A), we denote the space of those discrete signals de-
fined on A that are obtained by sampling functions in X. a €
S(A) may be restricted to a nonempty & C A to represent a
signal in S(=), for which we use the same symbol a.

D. Perfect Reconstruction

When the function space X" in consideration is that of band-
limited signals, the Whittaker—Nyquist—-Shannon sampling the-
orem provides conditions for perfect recovery of a function from
its uniform point-evaluations. Similar conditions can be derived
for other classes of functions and also for settings involving
irregular sampling and sampling schemes that may not corre-
spond to point-evaluations. A generalization is provided by the
following theorem and its corollary. We do not replicate the
proof of the theorem due to space limitations. It may be found
in [11].

Theorem 1 (Generalized Sampling): A discrete signal a €
FA, with A C X* linearly independent, identifies at most one
function f in A" satisfying

Af = [

if and only if span A is weakly-* dense in X'*.
Corollary 1: With the same conditions as in theorem 1, a €
S(A) C FA identifies exactly one f € X satisfying (1).
Proof: Since S(A) consists of signals obtained by sampling
functions in X, there should already be at least one f satisfying
(1). Its uniqueness then follows from theorem 1. [ |

forall A€ A (D

III. RESAMPING FILTERS

Introduction of the promised resampling filters further re-
quires a formal formulation of the functional interpolation
problem.

A. Functional Interpolation

Given a space X and asignal a € S(A) with A C A, afunc-
tional interpolation problem is concerned with finding a func-
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tion ¢, in a subspace Q (the space of interpolating functions) of
X, such that

Ao = a[)] forall A € A. 2)

. 18 then known as an interpolant. Notice that this is a general-
ization of Lagrange interpolation, which addresses the interpo-
lation of point-evaluations using polynomials.

For a finite A, it is often of interest to characterize a (finite-di-
mensional) subspace Q4 of Q, such that for any arbitrary signal
a € S(A), there is exactly one interpolant in Q , in which case
it is said that Q, is correct for A.

Let Bo, := {di|i € I C Z} be abasis for Q, (with I finite).
A unique g, that solves (2) exists in Q —which we could write
asqq ==y, icr Ci g;—whenever the linear system defined by

> (M) = alA],

i€l

forall A € A

has a unique solution, i.e., is invertible. This linear system (as-
suming some order on A) can be rewritten in matrix form
()‘QZ) AEA (Ci)iel = (a[)‘])AeA :

iel
(Here, (-) xea denotes a matrix with rows and columns indexed
by A and LE, respectively. Similarly, (+);c; and (-)xea denote
column vectors with elements respectively indexed by 7 and \.)
In these terms, in order to find a subspace Qp that is cor-
rect for A, we can try to find a (linearly independent) subset
{Gi|i € I} of Q, such that the matrix (Ag; ) ea is invertible.

il
(One immediate consequence is that #A = #i.) We can then
write

(ci)ier = (Adi)3ea (alADsen 3)
and the interpolant will be
G =Y ciGi = (i) ier(¢i)ier- “
icl

This allows us to define Q, := span{¢;|i € I}.

B. Differences Between Unidimensional and
Multidimensional Cases

It is a preliminary result that for values given on any set of n
distinct points in R, we can always find a unique polynomial of
degree < n that interpolates those values. In other words, the
space II.,, of polynomials of degree less than n is correct for
any set of n position-value pairs with distinct positions. How-
ever, in the multivariate case, it is in general no longer possible
to find a space of continuous functions that is correct for all sets
of n conditions (for a proof, see [7]). Consequently, the poly-
nomial interpolation problem is considerably more involved in
the multivariate case. Yet, de Boor and Ron have provided an
elegant solution to the functional interpolation problem (see
Section III-A) using multivariate polynomials, which displays
many useful properties [5], [6].

C. de Boor and Ron’s Least Solution

de Boor and Ron’s least solution (cf. [5]-[8]) provides a par-
ticular correct subspace of II¢ for a given A, where II¢ is the
space of d-variate polynomials.
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Originally, de Boor and Ron formulated the least solution
using a duality pairing between II¢ and the space of d-variate
formal power series [5]. For a given A, they defined a special
subspace A| of 114 and proved that it is correct for A and that
the interpolant provided by this solution is of lesser or equal de-
gree, if compared to any other polynomial solution.

In subsequent papers (see [6] and [8]), they showed that
applying Gaussian elimination by segments to the generalized
Vandermonde matrix

(AX) rea

oEZi
(where Z‘fr is the set of nonnegative integer d-tuples, and X is
the d-variate monomial of degree v, i.e., [ ] <i<d x3*) makes it
possible to systematically find the space of solutions. Gaussian
elimination by segments is an extension of Gaussian elimination
that proceeds in a segment-by-segment (as opposed to the usual
column-by-column) fashion, where a segment is a collection of
adjacent columns (here formed by grouping together columns
corresponding to monomials of the same degree). The result
of Gaussian elimination by segments is a matrix in block row-
echelon form, from which an invertible matrix (A\g;) » e (and

the basis {§;|¢ € I'}) can be formed (cf. [8]).

Several interesting properties of the least solution (such as
monotonicity, degree-reduction, and translation invariance) are
detailed in [5].

D. de Boor—-Ron Resampling Filters

We are now finally in the position to introduce de Boor—Ron
resampling filters. Given a space S(A) of signals defined over a
set A of sampling functionals )\, the de Boor—Ron filter B, is a
map

Par:SA) — X

(where X'** is the second dual of the space X of signals; i.e., any
element of X** assigns a numerical value to any given sampling
functional v € X'*) that is defined, for an arbitrary signal a €
S(A), by

(Baa)ly] :=yma,  for vy € X~
where 7, is the de Boor—Ron interpolant to a[A], A € A, satis-
fying (2).

In simpler terms, P takes a signal as its argument, interpo-
lates it by a multivariate polynomial that lies in the de Boor—Ron
space A| defined in [5] (and also in Section III-C), and next
samples the interpolant at a given sampling functional -y. This
allows us to resample a signal a € S(A), that is defined on a set
A C X, at any given functional ~.

As we saw in (3), the interpolant depends linearly on the
signal a. Therefore, the de Boor—Ron filter 3 is also a linear
map that can be implemented using weighted averaging (hence
the name de Boor—Ron filter).

Specifically, let {§;|i € I} be a basis for the space Qp := A
defined by de Boor and Ron’s least solution. For a given signal
a € S(A), the interpolant 7, then satisfies (3), (4)

Ta = (G)ier(ci)ier = (@)ier(Mi)7en (a[A)aea

i€l
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and therefore, for v € X'*, we have

Yo = (Vai)ier(ci)ier = (V@i)ier(Ai) 3ea (@l ])aea-  (5)

el
Let

wz = (vdi)%I(Aq%-)?é?- (6)
i€
The filter B, is then fully specified for each y by the vector w,,
of weights

(Baa)ly] = w] - (alA])xea-

It may be worth mentioning that the rightmost term in (6) (i.e.,
(/\q})}éA) can be considered a change of basis and is equal to

the idéleléity matrix when the basis {¢; } is biorthogonal to A, that
is, when for each A € A, A§; is zero except for a single i, for
which it is equal to 1. In the case of Lagrange interpolation, this
condition translates to {§;} being an interpolating basis.

Also, it can be immediately seen that Neville filters, intro-
duced in [3], are special cases of de Boor—Ron filters, for set-
tings where A consists only of point-evaluation functionals, and
each vy also corresponds to a point-evaluation.

IV. APPLICATIONS

Classic texts on signal processing and sampling usually study
point-evaluations of a function over a regular grid and, in recon-
struction, most often consider the case of band-limited signals
and Shannon interpolation. Still, in practice, we are frequently
confronted with other situations. Our signals may be obtained,
e.g., not by evaluating a function at exact points on a regular grid
but instead by evaluating averages using shifted versions of an
integration kernel. The grid in consideration may also be irreg-
ular. Finally, a band-limited signal model may not be the most
suitable in practices such as image processing, where the ex-
istence of edges suggests a treatment using piece-wise smooth
functions instead. Following are a few examples demonstrating
how these points can be attended to.

A. Image Resampling and Prefiltering

A single-channel digital image can be modeled as a collection
of samples I[m,n], 0 < m < M,0 < n < N,ofa2D
intensity function f(x,y), obtained using shifted versions of a
kernel g(x,y)

Im,n] = /f(:v y)g(x — mhy,y — nhy)dzdy.  (7)

Here h;, h, are, respectively, z and y step-sizes.

A problem in image processing and analysis is to approximate
the function values over the same or a different grid. This can
be accomplished using de Boor—Ron filters.

Let us first define the linear functionals A, ,,

Aomnf = / F(, )9 — mha,y — nhy)dedy.

Now, to approximate f(u,v), for each point (u, v), we first de-
termine the samples to be used in the approximation. This is
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done by forming a subset A, , of Ay, ,,’s for each (u, v).! Also,
the signal a is defined by a[Ay, ] := I[m,n].

Let 6yvf = f(u,v) define the functional corresponding
to point-evaluation at (u, v). (Ba, , a)[6u,.] then approximates
f(u,v). This approximation will be exact when f € A, ..

This approach can be modified by replacing 0,, ., with

] = / F(, )@ — u,y — v)dady

(where ¢ is the scaling function for a given wavelet family) to
construct initialization filters for Mallat’s fast wavelet transform
algorithm [12].

B. Super-Resolution Image Reconstruction

In super-resolution image reconstruction [2], we are typically
given several discrete images Ix[m,n], 0 < k < K that are
sampled from slightly modified (e.g., translated, rotated, or
scaled) versions of an original intensity map f. In such a case,
we have

Ip[m,n] := /[f o Ti(z,y)] g(@ — mhy,y — nhy)dedy

where T}’s, 0 < k < K are one-to-one transformation maps.
We start by defining

Newn f 1= / [ o Te(, )] g — mha,y — nh,)dady

for0 < k< K,0<m < M,and 0 < n < N and again
use 6y o f := f(u,v), where (u,v) is drawn from a new higher
resolution grid. For each point (u,v), we also form a set A
consisting of A\ ,, »’s to be used in our interpolation. Then, the
de Boor—Ron filter B, , will be our super-resolution filter at
(u,v), which can be applied to the signal a[A m ] := Ii[m,n],
to get the estimate (B, , a)[0u,,] for f(u,v).

C. Data Fusion

Data fusion can also be addressed in a similar manner within
this framework. Suppose that we are provided with K sets of ob-
servations, {si[n] := A fl0 <n < Nk}0<k<K,ofafunction
/. The data may be fused to arrive at an approximate description
of f over an arbitrary set I" of sampling functionals ~y, by first
defining a set A, of Ay ,,’s for each -y, and then applying the de
Boor—Ron filter 5 | to the signal a[Ax,n] := si[n], to get the
sample (P, a)[1] at .

A similar approach can also be used to interpolate and re-
sample scattered measurements. This may be useful, e.g., in me-
teorological applications.

V. IMPLEMENTATION

Although the above examples may appear abstract, they can
be readily implemented using the Gaussian elimination method
mentioned in Section III-C, which finds the interpolant 7, for
any given set A of functionals and signal « € S(A). For in-
stance, T. Grandine has a C implementation of this Gaussian

IThe set A, , typically consists of sampling functionals that are close to
(w, v) in some sense. It may be formed such that it does not cross any edges. In
the simplest case, i.e., when A, , only includes the single closest neighbor to
(u, v), this approach will result in nearest-neighbor interpolation. A larger set
of samples may be used where the samples are more correlated, that is, where
f is smooth.
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elimination method, which is available from the net1ib soft-
ware repository [13]. A MATLAB implementation may also be
found on C. de Boor’s website [14]. Performing the resampling
is then merely a matter of finding the inner product of the vector
(¢i);¢p of coefficients associated with the interpolant, with the
vector (7g;);cy, for each v € X', as outlined in (5). Sample
C code that uses T. Grandine’s implementation is available and
may be requested from the authors.

VI. CONCLUSION

In this letter, a new formalism for studying sampling and dis-
crete signals, using the notion of functionals, was suggested.
This formalism provides a general and unified framework for
many signal processing tasks and makes it possible to address
resampling and interpolation problems using the machinery of
functional interpolation, which allows us to design and imple-
ment resampling filters that incorporate our knowledge of the
underlying sampling procedure. We suggested a family of such
filters that use a particular solution to the multivariate interpo-
lation problem, introduced by de Boor and Ron. Resampling
filters using other families of interpolants may be constructed
similarly. We also briefly described some applications of these
filters in image and signal processing and provided pointers to
some available implementations.

ACKNOWLEDGMENT

The authors would like to thank Dr. R. Israel of UBC for
pointing out (on the sci.math newsgroup) a topological re-
sult on which the theorem of Section II-D depends and would
also like to thank the anonymous reviewers for their reviews and
valuable comments.

REFERENCES

[1] X. Wu and L. Zhang, “Improvement of color video demosaicking in
temporal domain,” IEEE Trans. Image Process., vol. 15, no. 10, pp.
3138-3151, Oct. 2006.

[2] S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image re-
construction: a technical overview,” IEEE Signal Process. Mag., vol.
20, no. 3, pp. 21-36, May 2003.

[3] J. Kovacevi¢ and W. Sweldens, “Wavelet families of increasing order
in arbitrary dimensions,” IEEE Trans. Image Process., vol. 9, no. 3, pp.
480-496, Mar. 2000.

[4] P. D. Tafti, S. Shirani, and X. Wu, “Multi-dimensional average-inter-
polating refinement on arbitrary lattices,” in Proc. IEEE ICASSP, 2005.

[5] C.de Boor and A. Ron, “The least solution for the polynomial interpo-
lation problem,” Math. Z., vol. 210, pp. 347-378, 1992.

[6] , “Computational aspects of polynomial interpolation in several
variables,” Math. Comput., vol. 58, pp. 705727, 1992.

[7] C. de Boor, “On the error in multivariate polynomial interpolation,”
Appl. Numer. Math., vol. 10, pp. 297-305, 1992.

, “Gauss elimination by segments and multivariate polynomial
interpolation,” in Approximation and Computation: A Festschrift in
Honor of Walter Gautschi, R. Zahar, Ed. Cambridge, MA: Birkhduser
Verlag, 1994, pp. 87-96.

[9] S. Lang, Analysis II, ser. Addison-Wesley Series in Mathematics.
Reading, MA: Addison-Wesley, 1969.

[10] R. E. Megginson, An Introduction to Banach Space Theory, ser. Grad-
uate Texts in Mathematics. New York: Springer-Verlag, 1998, vol.
183.

[11] P. D. Tafti, “On multi-scale refinement of discrete data,” M.A.Sc.
thesis, McMaster Univ., Hamilton, ON, Canada, 2005.

[12] S. Mallat, A Wavelet Tour of Signal Processing, 2nd ed. New York:
Academic, 1999.

[13] T. A. Grandine, MVP, a Package Designed to Create, Evaluate,
and Manipulate Multivariate Polynomials. [Online]. Available:
http://www.netlib.org/a/mvp.tgz.

[14] C. de Boor, List of m-Files for Doing Least Interpolation. [Online].
Available: http://www.cs.wisc.edu/~deboor/multiint/m_files.html.

(8]



