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Abstract—In this contribution, we study the notion of affine in-
variance (specifically, invariance to the shifting, scaling, and ro-
tation of the coordinate system) as a starting point for the devel-
opment of mathematical tools and approaches useful in the char-
acterization and analysis of multivariate fractional Brownian mo-
tion (fBm) fields. In particular, using a rigorous and powerful dis-
tribution theoretic formulation, we extend previous results of Blu
and Unser (2006) to the multivariate case, showing that polyhar-
monic splines and fBm processes can be seen as the (determin-
istic vs stochastic) solutions to an identical fractional partial differ-
ential equation that involves a fractional Laplacian operator. We
then show that wavelets derived from polyharmonic splines have
a behavior similar to the fractional Laplacian, which also turns
out to be the whitening operator for fBm fields. This fact allows
us to study the probabilistic properties of the wavelet transform
coefficients of fBm-like processes, leading for instance to ways of
estimating the Hurst exponent of a multiparameter process from
its wavelet transform coefficients. We provide theoretical and ex-
perimental verification of these results. To complement the toolbox
available for multiresolution processing of stochastic fractals, we
also introduce an extended family of multidimensional multireso-
lution spaces for a large class of (separable and nonseparable) lat-
tices of arbitrary dimensionality.

Index Terms—Affine invariance, fractional Brownian motion
(fBm), fractional partial differential equations, Hurst exponent,
lattices, multidimensional wavelets, operator wavelets, polyhar-
monic splines, whitening.

I. INTRODUCTION

T HE notion of invariance plays a significant role in math-
ematical modeling. The development of fractals, for in-

stance, is entirely based on the idea of self-similarity (i.e., scale-
invariance up to a scalar factor) [1], [2]. This self-similarity
can be deterministic—in which case we are led to determin-
istic fractals such as the famous Koch snowflake, or the elab-
orate Mandelbrot set—but it can also be understood in a statis-
tical sense—leading to stochastic fractals, the prime examples
of which are fractional Brownian motion (fBm) processes [3]
(see also Chainais et al. [4] for a generalization based on the
notion of scaling).

Fractional Brownian motion models generalize Lévy’s
Brownian motion [5] of Gaussian type. These processes have
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long been associated with the phenomenon of long-range de-
pendence and -like power spectra that frequently appear
in areas as diverse as hydrology, financial mathematics, net-
work traffic analysis, terrain modeling, and image processing
[1], [6]–[8]. In the case of the latter, the relevance of fBm
processes in modeling images has been claimed on the basis of
observations of scale-invariance and the associated power-law
spectra in natural images [9]–[11].

A multivariate fBm field is a nonstationary Gaussian
process1 identified by a single parameter —the
Hurst parameter, after Harold Edwin Hurst (1880–1978), for his
seminal contribution to the study of such processes in the con-
text of hydrology [2], [12]—that characterizes its covariance up
to a scalar normalization factor

Estimation of the Hurst parameter is important in practical ap-
plications, and is, e.g., used in image processing to classify dif-
ferent types of texture based on their second order statistics [13],
[14].

Multiresolution analysis [15], [16] was identified early on
in its development as a decidedly effective tool for the study
of self-similarity [17]–[26]. Its utility in the estimation of pa-
rameters of self-similar processes (especially in the 1-D setting
and for estimating the Hurst parameter) is, therefore, well docu-
mented [20], [27]–[29]. The essential observation in this regard
is that the logarithm of the wavelet energy of an fBm process
varies linearly with scale, with a slope that depends on the Hurst
parameter .

Intuitively, the above observation appears deceptively
simple. After all, this would seem to be a straightforward
consequence of the -like power spectrum of fBm and
the logarithmic spectral partitioning afforded by the wavelet
transform. A rigorous derivation of this result is, however,
subtler, as fBm—being nonstationary—does not, in fact, have
a power spectrum in the classical sense.

On account of this, one of our main motivations in writing this
paper has been to propose a rigorous interpretation of the spec-
tral characterization of multivariate isotropic fBm, in the sense
of a whitening/innovation model (Section V). This distributional
framework, which is deduced from basic invariance principles
(Section III), provides a powerful formalism for defining and
analysing fBm and similar processes. Our results here gener-
alize those of Blu and Unser [30] who studied the single-variable
case. Operator models for self-similar fields were also studied

1In this paper, we do not distinguish between random processes and random
fields, using both terms interchangeably to refer to multivariate random func-
tions.
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by Benassi et al. [31], [32], who focused on the link between
operators and multivariate random fields and their relation to
wavelets. The 1-D analysis of Wyss [33] is also relevant.

The said formulation also links the study of fBm processes
to spline theory via providing a convenient and unifying inter-
pretation of fBm processes and polyharmonic splines as sto-
chastic vs deterministic solutions to the same (fractional) par-
tial differential equation [34]. This, in the light of the funda-
mental relation between splines and wavelets (Section IV), al-
lows us to derive interesting and general results concerning the
wavelet analysis of fractional Brownian motion (Section V). We
for instance show the quasi-whitening effect of a polyharmonic
wavelet transform on fBm processes.

To complement the mathematical toolset for the analysis of
multivariate fBm, we have included a comprehensive account
of a general construction scheme for multidimensional polyhar-
monic spline multiresolution spaces, proving all essential prop-
erties for forming a multiresolution analysis. The generality of
our construction (which extends the works of Rabut and Bac-
chelli et al. [35], [36] and Van De Ville et al. [37]) makes it
suitable for multiresolution approximation in any number of di-
mensions and on virtually all sampling lattices of interest that
display some form of isotropy.

The organization of the remainder of the paper, in brief, is as
follows. In Section II, we review some mathematical prelimi-
naries. We formalize the idea of isotropic affine invariance in
Section III and use it to identify a family of fractional partial
differential operators that appear in the characterization of both
polyharmonic splines and fBm processes. The theory of multidi-
mensional polyharmonic spline multiresolution is developed in
Section IV. Next, in Section V, we provide a characterization of
fBm based on an innovation model. We then exploit the link be-
tween splines and fBm processes in Section VI, to derive some
characteristic results concerning polyharmonic wavelet analysis
of fBm. Based on these results, estimation of the Hurst param-
eter is also discussed and a few experimental results are pro-
vided in Section VI-B. Some final remarks conclude the paper.

II. MATHEMATICAL PRELIMINARIES AND NOTATION

The theory of generalized random processes utilized in this
paper is exposited in the works of Gel’fand et al. [38], [39]. For
reference, some of the main definitions are summarized in this
section. This section shall also serve to fix our basic notation and
to recall some facts and definitions from the theory of lattices.

A. Some Notational Conventions

We use the MATLAB notation for row and column vectors
and also follow the multi-index convention, according to which,
given a vector and a multi-index

( always denotes the dimensionality of the
domain)

and

Other notation is defined where first used.

B. Generalized Functions

A regular function of a variable is characterized by
the value it assigns to its argument (i.e., for ). In
contrast, a generalized function or distribution is specified in
terms of inner-products2 with test functions belonging
to some inner-product space . Intuitively, these inner-products
can be interpreted as linear observations or measurements of .
The advantage is that in this framework we can conceive of en-
tities that need no longer be defined point-wise. The space of all
generalized functions defined by their (bounded) inner-products
with elements of is identified with , the continuous dual of

.
Given an operator with adjoint , both defined on our

space of test functions, we may extend the domain of to the
corresponding space of generalized functions ( ) using the fol-
lowing defining identity

Thus, e.g., for the shift operator we shall have

for all

The Fourier transform defines a one-to-one mapping between
a suitably chosen space of test functions and the space of
their Fourier transforms. With Parseval’s identity in mind, the
Fourier transform of a generalized function can be
defined as the generalized function that satisfies the
identity

for all

If we choose to be the Schwartz space of -variate rapidly
decaying smooth functions (denoted here by or simply
by ), and (and, therefore, and ) coincide. A familiar
example of a generalized function defined over is Dirac’s delta

The Fourier transform of is the constant 1, since
.

C. Generalized Random Processes and Random Fields

To generalize the notion of a random process a similar ap-
proach may be used, where one replaces point values by inner
products. Accordingly, in the stochastic analysis of Gel’fand and
Vilenkin [39], a generalized random process is defined as a
random generalized function, which is to say that it corresponds
to a family of random variables

characterized by the consistent specification of a joint proba-
bility measure for all finite sets of test functions . This should

2What we shall here refer to as an inner-product is in more accurate (but
perhaps less familiar) terms a duality pairing.
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be compared with the definition of classical random processes,
where point-wise random variables replace the s.

Characteristic Functional: A (real-valued) generalized
random process can also be described by its characteristic
functional

(where denotes the expectation functional). The characteristic
functional is continuous and positive-definite, and is equal to 1
for . It provides a complete description of the random
process . This is due to the fact that

is a continuous and positive-definite function of s and, hence,
by Bochner’s theorem, corresponds to the Fourier transform of a
probability measure—specifically, the joint probability measure
of [39, ch. III, §2.6].

(In comparison, in the classical theory
provides the Fourier transform of the joint probability measure
of . Informally, this would correspond to
choosing as the “test” function).

Correlation Form: The correlation form of the (real)
random process is defined as

The following relationship exists between the generalized corre-
lation form and the (generalized) correlation function

of a generalized random process

(1)

In addition, for a Gaussian random process, the characteristic
functional and the correlation form are related by the equation

This shows that, as expected, a Gaussian process is fully char-
acterized by its correlation form.

D. Lattices

A lattice in is the set of all integer linear combinations
of linearly independent vectors ; that is

with [40], [41]. In general, there exist several
generator matrices that lead to the same lattice. Yet, they
all have the same absolute determinant (known as the sam-
pling density). For simplicity, we shall assume the normalization

.
A multidimensional lattice may be partitioned into so-called

cosets that are translates of one another. This is a generalization
of the concept of dividing the set of integers into even and odd
numbers, or, more generally, into equivalence classes modulo

. In the case of lattices in , such a partitioning is achieved

by means of a subsampling matrix , which plays the role of
the integer in the 1-D case. is an integer matrix with
all eigenvalues strictly greater than 1 in the absolute. It is used
to define a subsampling relation for lattices

(2)

From there

Similar to the partitioning of the integers modulo , we find
a two-scale relationship for the decomposition of into
cosets, which are translated versions of the lower resolution lat-
tice

(3)

Here, the multiinteger vectors —taken to be of minimum
length and dubbed principal coset representatives—are speci-
fied uniquely modulo .

For a given lattice hierarchy , , the dual (or recip-
rocal) lattice hierarchy is defined by the relation

for all

It follows that this hierarchy can be constructed using the matrix
pair of and . Accordingly, we also define

.
We define the lattice convolution operator or lattice filter cor-

responding to a sequence , , as the operator

Its Fourier expression is

Conversely, those and only those operators with Fourier expres-
sions that can be written in the above form represent lattice con-
volutions. These Fourier expressions are in effect those that are

-periodic (i.e., -periodic for any ).
We also have a lattice version of the Poisson formula

(4)

Remark 1: The families of multiscale lattices that we shall
consider in this work are restricted in two ways.

LAT–1. First, for our multiresolution construction we are
interested in self-similar multiscale lattices. This means
that the lattice coarsening matrix —and, consequently,
its dual —should correspond to similarity transforms.
LAT–2. Second, we require the existence of a integer
matrix ( ), such that the lattice

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 17, 2009 at 13:05 from IEEE Xplore.  Restrictions apply. 



692 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 4, APRIL 2009

vectors generate , and constitute a tight
frame for . The latter is equivalent to requiring that

(5)

for some scalar . We furthermore assume to be
simple, i.e., not to contain any pair of linearly dependent
vectors.

We note that for any lattice, there exist infinitely many sub-
sampling schemes that satisfy the first requirement. In addition,
the second requirement is satisfied by virtually all lattices that
are typically used in multidimensional multiresolution signal
processing (such as the Cartesian, quincunx, and hexagonal lat-
tices in , and the Cartesian, FCC, and BCC lattices in ).
For instance, for the Cartesian and quincunx lattices in (both
with ), the matrices

and

provide two examples of such systems. A similar system for the
hexagonal lattice (with ) uses the matrix

III. OPERATORS AND INVARIANCES

The fundamental observation that underlies this work is that
we can characterize specific classes of splines and stochastic
processes as solutions to a fractional partial differential equation
of the form

where is a fractional partial differential operator with certain
properties, and the driving term is either a sum of Dirac deltas (in
the deterministic formulation, leading to -splines) or a white
Gaussian noise process (in the stochastic formulation, leading
to random processes whitened by ).

In this section we shall use invariance principles to define a
particular family of such fractional partial differential operators
that produce polyharmonic splines (Section IV) as deterministic
solutions and also characterize isotropic multidimensional frac-
tional Brownian motion (Section V) in the stochastic setting.

The link between the deterministic and stochastic formu-
lations is later explored in Section VI, where we investigate
the properties of polyharmonic wavelet analysis of fractional
Brownian motion.

A. Scale- and Rotation-Invariant Operators

The invariances we shall consider are those under the scaling,
shifts, and rotations of the coordinate system [1], with the first
leading to self-similar fractal structures, and the latter two re-
lieving us from the—uncomfortable and often arbitrary—choice
of an origin and a set of preferred directions.

Specifically, we shall study a family of convolution opera-
tors with continuous Fourier expressions, which, in addition to

shift-invariance (intrinsic to convolution), have the following in-
variance properties.

INV–1. Scale-invariance: The operators of interest com-
mute with scaling operators (up to a constant that may vary
continuously with scale) in order to allow multiscale con-
structions. In mathematical notation, we want

where , , represents the scaling
operator and is a strictly positive continuous function.
INV–2. Rotation-invariance: The operators are in addi-
tion invariant under rotations of the coordinate system and,
therefore, lead to isotropic models. In other words, the op-
erators commute with rotations about the origin

The following is a known result in the context of rotation-
and scale-invariant quadratic functionals (in this case,

) [42]–[44].
Theorem 1: The (per assumption continuous) Fourier expres-

sion of a real operator fulfilling requirements INV–1 and
INV–2 has the following form for some

(6)

The normalized version of such an operator (with ),
which we denote by , can be considered the th real (frac-
tional) iterate of the Laplacian (albeit discarding a factor of

). The following are easy to check

(7)

The fractional Laplacian has a nontrivial null-space and, as a
result, infinitely many inverses differing in terms from the null-
space.

Remark 2: The null-space includes, for instance, certain
functions with (generalized) Fourier transforms concentrated at
the origin (i.e., at ). Since any such generalized Fourier
symbol can be written as a finite sum of derivatives of [45,
ch. II, §4.5, p. 119, Theorem], the corresponding members
of the null-space are polynomial functions up to a certain
degree. This, however, is not a complete characterization of the
null-space in general.

B. Inverse Operators

Looking back at (7), one may be tempted to define the inverse
of as the operator with the Fourier expression

It is immediately noticed, however, that this Fourier form has a
nonsummable singularity at the origin for ; therefore, in
general, the integral

(8)
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needs to be properly interpreted, i.e., regularized.3 Since regu-
larization can be done in more than one way, in fact repre-
sents a family of inverses rather than a single one.

Different regularizations essentially correspond to different
(boundary or other) linear constraints on the solution of a frac-
tional differential equation of the form

These constraints may be satisfied by adding an appropriate
term from the null-space of to a particular solution.

One of the possible inverse operators is the left inverse (intro-
duced by Blu and Unser in the single-variable setting [30]; de-
noted by here), which is obtained by removing a sufficient
number of lower order terms from the Taylor series expansion
of at the origin

(9)

It can be checked that

for any , hence the name left inverse.
The adjoint of over is the operator defined by

(10)

It satisfies

for all and is called the right inverse. We can extend
to a subset of by duality

wherever the r.h.s. is meaningful for all .
While the above definitions may look arbitrary at first glance,

they have intuitive interpretations. For example, supposing
to be a well-behaved test function whose moments vanish up to
degree , (9) simply corresponds to a shift-invariant
inverse (all the terms in the sum will be zero in this case), while
(10) defines an inverse with all derivatives up to order
forced to be zero at the origin. This latter property is significant
in the characterization of fractional Brownian motion as there,
by definition, the process should equal zero at .

It also bears mentioning that, unlike the fractional Laplacian,
these inverse operators are in general not shift-invariant when

3“Regularization” here stands for a general way of assigning a value to an in-
tegral with a singular kernel, in a manner that would be consistent with what one
would expect when evaluating the integral for a smooth function that vanishes in
a neighborhood of the singularity (and for which the integral can be evaluated).

applied to members of (they are, however, scale- and rotation-
invariant in the previously defined sense).

IV. POLYHARMONIC SPLINES AND WAVELETS

A. Splines and Operators

By differentiating a polynomial spline a sufficient number of
times, one procures a sum of Dirac deltas located at the knots.
This observation underlies a conceptual framework in which
splines are defined as functions that are mapped to a sum of
Dirac deltas by some suitably chosen operator . This approach
leads to interesting generalizations: one may for example use
fractional derivatives to obtain splines of fractional order [34],
[46].

Formally, in this framework, given a shift invariant operator
, we define a lattice -spline as a function for which

(11)

with and where the points belong to a lattice.
One may try to solve the equation

(12)

for (Green’s function) by finding an inverse operator.
can then be expressed in terms of and its lattice shifts, plus
a term from the null-space of ; that is

with .
In practice, it is often of interest to limit oneself to splines

, in which case we consider a modified version of
the above problem, where we introduce a localization operator
(filter) and study the equation

(13)

in place of (12). B-splines, which form spatially localized bases
for square-integrable spline spaces, are in fact solutions to such
equations [34], [37].

In the remainder of this section, we first introduce such local-
ized (B-spline) bases for spaces of square-integrable polyhar-
monic splines, for which the operator is a fractional Lapla-
cian, and is its discretization over any one of the lattices
introduced in Remark 1. Next, in Section IV-C, we show how
these B-splines can act as scaling functions for a multiresolution
analysis (Theorem 2). We follow this by the investigation of one
of the main properties of wavelets derived from these B-splines,
namely that polyharmonic wavelet kernels behave like low-fre-
quency approximations of the fractional Laplacian (Theorem 3).

B. Polyharmonic B-Splines

If we take the operator of the previous subsection to be the
fractional Laplacian , solutions to (11) (which in this case is
a polyharmonic equation) are called polyharmonic splines [56].
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As noted in Section III-B, when the function has suf-
ficiently many zeros at the origin, the fractional Laplacian can
be inverted via (8) without difficulty. Indeed, one of the ways to
deal with singular integrals is to multiply the integration kernel
by a function that vanishes at the singularity.

It is, therefore, reasonable in our problem to first choose an
appropriate localization filter whose Fourier symbol
approximates that of at its zero at the origin, thus cancelling
the singularity of and permitting us to solve the spline
equation

(14)

in the Fourier domain, for the B-spline . Different
choices of such an operator lead to different families of
polyharmonic B-splines (quasi-isotropic, orthogonal, etc.) [37].

In the simplest case, the elementary localization filter cor-
responds (up to a factor of ) to the th fractional iteration
of an elementary discretization of the Laplacian. Specifically,
for we define the elementary localization operator, ,
in the spatial domain as follows.

(see LAT–2 for the definition of s). Note also its Fourier
symbol

(15)

For other values of , we simply define

This choice of the localization operator leads to a fractional
generalization of Rabut’s elementary -harmonic B-splines,
here denoted [35], [37].

More generally, the localization operator used in (14) can
be any one with a Fourier symbol factorizable as

where is the continuous Fourier expres-
sion of some lattice operator (filter), and is bounded from above
and below with a strictly positive lower bound. We shall assume

to be normalized with .
Remark 3: The choice of , apart from these con-

straints, is essentially arbitrary in so far as it corresponds to
a discrete (lattice) filter, as all such choices lead to the same
multiresolution subspaces. However, as will be seen shortly,
different choices of do lead to different B-spline functions
spanning the same spaces, and may be specifically selected
so as to give these functions a desired correlation structure.

The solution to (14) can now be written explicitly in the
Fourier domain as

(16)

where is the Fourier transform of
the elementary -harmonic B-spline that was mentioned
before.

In order for the polyharmonic B-spline function thus
defined to be square-integrable we need to have

(17)

The following proposition summarizes the smoothness and
integrability properties of .

Proposition 1: , with , belongs to the Sobolev
space for any .

Proof: Using the Taylor expansion of , we can im-
mediately see that tends to 1 as

[cf. (5)]. In addition, both and are by definition
continuous and bounded. What all this means is that is
continuous and bounded everywhere and decays like [cf.
(16)]. It then follows from the Fourier-domain definition of the
Sobolev space that for all .

As was already mentioned, the trivial choice of
in (16) leads to elementary fractional polyharmonic B-splines.
Among other possibilities, one can, e.g., opt for the orthogonal
polyharmonic B-spline . In effect, starting from any lo-
calization operator and its corresponding B-spline ,
one can define the orthogonal localization operator as

where we have introduced the autocorrelation filter

(18)

defined as the lattice Fourier transform of
. Division by the square root of guar-

antees that . The above orthogo-
nalization depends on the positivity and boundedness of .
The demonstration of these properties is included in the proof
of Theorem 2.

C. Polyharmonic Multiresolution Analysis

The following theorem allows us to form a multiresolution
analysis based on polyharmonic B-splines (in their different fla-
vors).

Theorem 2: The polyharmonic B-splines defined in (16) have
the following properties.

MRA–1. They form a partition of unity.
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MRA–2. They fulfil a two-scale relation of the following
form:

(19)

with .
MRA–3. They generate a Riesz basis for their span.

Proofs are given in Appendix I.
Properties MRA–1–3 are those necessary to form a Mallat-

type multiresolution analysis [15], [16], [47]. The basic spline
approximation subspace is defined as

More generally, the th level multiresolution spline space is

Note that because is bounded away from zero, the defini-
tion of the above spaces is independent of its particular choice.
As a consequence of Theorem 2, these spaces are nested

and the closure of their union is .
The next result concerns the fractional derivatives and inte-

grals of polyharmonic splines, which are polyharmonic splines
in their own right, but of a different order (see Appendix I for
the proof).

Proposition 2:
1. The th fractional Laplacian of a polyharmonic spline of

order belonging to , with , is a lower order
spline in .

2. If is a polyharmonic spline of order , then
is a polyharmonic spline of order .

Polyharmonic Wavelets: Polyharmonic wavelets can be de-
fined as basis functions that span the orthogonal complements
in the series of nested approximation spaces. For a given mul-
tiresolution hierarchy, there will in general be distinct
mother-wavelets , (we shall subsequently drop
the index as all arguments apply equally to all wavelets).

The semi-orthogonality condition imposed on the wavelet
spaces forces the wavelets to have a behavior similar to the
operator at low frequencies. This quality is encapsulated in
the next theorem (a proof is given in Appendix I).

Theorem 3: A semi-orthogonal polyharmonic wavelet of
order can be written as

where (the smoothing kernel) is a polyharmonic spline of
order that belongs to the Sobolev space for any

.
A special case of the general multiresolution construction

studied in this section can be found in a previous paper [37],

where an explicit construction scheme for the 2-D quincunx lat-
tice (requiring the design of only one mother wavelet) was pro-
vided.

V. CHARACTERIZATION OF FRACTIONAL

BROWNIAN RANDOM FIELDS

A random field is said to be self-similar when applying a sim-
ilarity transform to its domain does not change its stochastic
behavior (apart from a possible renormalization factor). For a
review of self-similar random fractals we refer the reader to Be-
nassi and Istas [32]. Gaussian self-similar processes were also
studied by Dobrushin in his 1979 paper [48].

Fractional Brownian motions form a subset of (continuous)
self-similar fields distinguished by their Gaussian statistics
and stationary increments [3]. Stochastic self-similarity and
stationary increments in particular force the fields to have ho-
mogeneous (self-similar) variance functions. Given that fBms
are Gaussian and, hence, are fully defined by their second-order
statistics, one traditional way of characterizing them is by
specifying their variogram, which, for a normalized fBm of
Hurst exponent , has the following form [49, ch. 18]:

is additionally postulated to have zero mean and to be zero
at almost surely. One remarks that the derived variance
function is indeed homogeneous

Some of the other definitions of fBm fields are in terms of
integrals of white noise [50] and by their spectral harmonizable
representation [31], [51]. (The latter formulation is closely re-
lated to what we present in the sequel. See Remark 4).

An important approach to characterization often used in the
analysis and synthesis of stationary random processes relies
on the notion of whitening. In this formulation, an operator is
sought after which whitens the process in question, i.e., maps
it to white noise. Next, a suitable inverse operator needs to be
identified, which can then be applied to white noise in order
to recreate instances of the desired random process. While
standard in the study of stationary processes, this scheme can
be extended to certain nonstationary cases, and in particular
to the definition of fBm, by adopting a distribution theoretic
formalism. This will be demonstrated in this section.

In effect, in the sequel we will show that fractional Laplacians
introduced previously whiten multivariate fBm fields of corre-
sponding exponent (as also discussed by Benassi et al. [31]);
that is

where is normalized white Gaussian noise and is a con-
stant. We also show that an fBm field may be obtained by ap-
plying the right inverse (cf. Section III-B) to white Gaussian
noise, which is to say that

In addition to being conceptually interesting, the above char-
acterization of multivariate fractional Brownian motion leads to
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Fig. 1. Innovation model for multivariate fractional Brownian motion.

a natural generalization of the definition to values of outside
the (0, 1) range.

Furthermore, fractal properties of the process find their cor-
respondent in the operator: the scale-invariance property im-
posed on the operator induces the statistical self-similarity of the
process, while rotation-invariance entails its statistical isotropy.

These results all follow from a multivariate generalization of
Theorem 1 of Blu and Unser [30], which provides a spectral
characterization of fBm through its characteristic functional (cf.
Section II-C).

Theorem 4: Let . An fBm field with Hurst pa-
rameter and variogram has the following char-
acteristic functional:

(20)

where

(21)

Proof: A complete proof can be found in Appendix II. The
main step of the demonstration consists in showing that (20) de-
fines a Gaussian process whose correlation function
is that of an isotropic fractional Brownian motion with Hurst
parameter , that is, the function

We recall the characteristic functional of the unit random field
(a.k.a. white Gaussian noise)

From comparing this with (20) and by applying a duality argu-
ment, we can deduce that

with . This means that the random field ob-
tained by applying the right inverse to the unit (general-
ized) random field is a multivariate fBm with Hurst param-
eter , i.e.,

(22)

Equation (22) is an alternative characterization of fractional
Brownian motion, and can be used to extend the definition to
noninteger . The covariance function of these extensions
can be obtained with the aid of Lemma 1 of Appendix II.

It also follows that fractional Brownian motion is whitened
by the fractional Laplacian operator

a fact that leads to the innovation model depicted in Fig. 1.
Remark 4: For , a related characterization of real

fractional Brownian fields is by their harmonizable representa-
tion as the stochastic integral

where is a (Hermitian symmetric) complex random measure
corresponding to the Fourier transform of real-valued white
Gaussian noise (see Samorodnitsky and Taqqu [51] for an
in-depth discussion of the single-parameter case). The inte-
grand is comparable to the spectral
representation of the right inverse in (10), which reduces to
the said integrand for . The treatment of Benassi
et al. [31] is also of direct pertinency, and includes similar
extensions.

VI. POLYHARMONIC WAVELET ANALYSIS OF

MULTIVARIATE FBM

Considering the inherent link between polyharmonic splines
and fBms that has been emphasized throughout this article, it
should not come as a surprise that a wavelet analysis of multi-
variate fBm would have interesting properties. We study some
of these in the first part of this section. Next, we complement
and verify our derivations through some experimental results.

A. Probability Distribution of Wavelet Coefficients

Proposition 3: The polyharmonic spline wavelet transform of
order , with , maps the nonstationary
process into a series of stationary (discrete) Gaussian pro-
cesses.

Proof: We can rely on Theorem 3 and the innovation model
to see that, e.g., the wavelet coefficients at level are
stationary Gaussian processes obtained by filtering white noise

(Note that even though the polyharmonic spline
is not a Schwartz test function, its inner-product with the white
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noise process is nonetheless well-defined as it is continuous and
belongs to for some ; cf. Theorem 3). The demonstra-
tion for an arbitrary level is similar, except that a scale-depen-
dent normalization factor also appears.

What this property means is that the s correspond to
the lattice samples of a stationary process with power spectrum

(which is well-defined in the sense
since for all ). This relation is essen-
tially scale-invariant up to a proportionality factor.

Proposition 4: The variance of the polyharmonic wavelet co-
efficients depends exponentially on the Hurst exponent and the
scale as per

Proof: This property can be shown using the correlation
form . One has [cf. (28)]

More generally, we have the following result.
Proposition 5: The covariance of intrascale wavelet coeffi-

cients is given by the relation

Proof: At scale 0 we have

The proposition is then proved using (28) and with a change of
variables as in the previous proof.

Remark 5: The above result can be compared with those ob-
tained by Meyer et al. [23] in the 1-D setting. The wavelets pro-
posed by Meyer et al. depend on the Hurst parameter that is
matched to the Hurst exponent of the 1-D fBm process in con-
sideration (which should be known a priori). Independence of
the wavelet coefficients (true whitening) is a consequence of this
perfect match. This in fact corresponds to the wavelets being or-
thogonal in terms of the positive-definite form . Since
this design depends on the Hurst exponent being known, in the
problem of estimating a parameter higher than the true un-
known value must be used, in which case the wavelet coeffi-
cients will again be correlated. Also note that the results pro-

vided in the present paper are general and concern any family
of semi-orthogonal polyharmonic wavelets. In the actual imple-
mentation of wavelets for a given lattice, there is some room
for incorporating certain desired behaviors in the design of the
wavelet filter, which will in turn affect the smoothing function
of Theorem 3.

As a demonstration of potential, the above results (Proposi-
tions 3 and 4 in particular) allow us to extend 1-D wavelet es-
timators of the Hurst exponent reported in the literature [18],
[20], [27]–[29] to the multidimensional setting. In its simplest
form, estimation can be based on the identity

(23)

where is a computable constant
that depends on the choice of the wavelet (Proposition 4). This
means that a linear regression of the estimates of the variance
in each sub-band in the scale provides an estimate of .

An improved estimate may be obtained using a maximum-
likelihood (ML) formulation. This is essentially a multidimen-
sional adaptation of the ML-estimator of Wornell [27], [29].4
The estimate is defined as the minimizer of a negative -like-
lihood approximate (leaving out the constant term)

(24)

In the above formula —with a normalization
factor—is the set of parameters to estimate; is the set of levels
used for estimation; denotes the number of coefficients at
level

is the theoretical variance of level wavelet coefficients (cf.
Proposition 4); and, finally, is the observed wavelet energy
(i.e., the sum of coefficients squared) at level . In the imple-
mentation we have used the previous regression estimate as an
initial guess and applied Newton’s method to the derivative of
. This provides a fast (essentially real-time) way of producing

an improved estimate of .
MATLAB implementations of the above estimators are

available via our website (http://bigwww.epfl.ch/demo/frac-
taldimension/).

B. Experimental Results

The estimation procedure outlined previously was applied to
instances of (periodic, due to discretization) 2-D fBm, gener-
ated via Fourier domain filtering as per Section III-B [cf. (22)
and Remark 4]. The wavelets used for analysis were isotropic
polyharmonic wavelets of Van De Ville et al. [37], which have
a fast FFT-based implementation. The order of the wavelets was
chosen to exceed in order to satisfy the requirements of
Proposition 3. We used a quincunx subsampling scheme, which

4Note that, as is the case for the cited estimators, the ML formulation is ap-
proximate where the wavelet is not specifically designed to exactly match the
process, as the correlation between wavelet coefficients is not taken into consid-
eration. We have provided formulae for the covariances, which could in principle
be used to improve the estimate. This, however, would substantially complicate
the estimator.
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Fig. 2. (a)–(c) Regression plots for the estimation of Hurst exponent of discretized bivariate fBm for various values of the Hurst parameter, all generated from the
same instance of pseudo-random noise; (d) regression plot for an fMRI image (original images are given as insets).

TABLE I
WAVELET-BASED ESTIMATION OF (100 REALIZATIONS)

offers a more gradual scale progression, thus furnishing more
regression points for the estimation. Another advantage is that
the quincunx design involves only a single mother-wavelet.

Hurst parameter estimation was performed on 100 instances
of 512 512 fBm images for three different values of (0.3,
0.6, and 0.9). Decomposition levels 2 to 8 were used for esti-
mation. Examples of fBm images and corresponding regression
curves can be seen in Fig. 2. The average and standard deviation
of the estimated values, obtained by regression and ML estima-
tion are given in Table I. In experiments we noticed very good
fits and small standard deviations, which underline the robust-
ness of the process.

Results of the same analysis applied to a single axial slice of
a functional magnetic resonance image (fMRI) of the brain are
also shown in Fig. 2. Boundary and background wavelet coeffi-
cients were discarded for the analysis in order to avoid boundary
effects. The corresponding fractal dimension according to the
improved estimate is .

It has been suggested that anatomical growth processes lead
to fractal-like structures. In the case of the brain, Bullmore et
al. [52] have argued that the boundary between the white matter
and the cerebral cortex has a fractal-like shape. Additionally,
based on recently made possible 3-D high-resolution imaging

of the vasculature [53], the branching of the tree structure of
the arteries appears to constitute a fractal organization in space.
As fMR imaging of brain tissue indirectly measures the flow of
oxygenated blood, these arguments can in a way account for the
fractal behavior evidenced in Fig. 2(d).

VII. CONCLUSION

Our approach in this paper was based on the observation that
certain families of splines and random processes can be charac-
terized as deterministic vs stochastic solutions of the same frac-
tional partial differential equation.

Motivated by the works of Duchon [43], Arigovindan [44],
and Kybic et al. [42] on invariances, in this paper we focused
on a particular class of such equations that is singled out by im-
posing certain fundamental invariance properties on the oper-
ator involved. This pointed us to a family of fractional differen-
tial operators that are invariant to the translation, rotation, and
scaling of the coordinate system. We substantiated the following
points.

• These operators (which turn out to be fractional iterations
of the Laplacian) lead naturally to the definition of poly-
harmonic B-splines and multiresolution spline spaces over
a large family of multidimensional lattices.

• The same operators whiten multivariate fractional
Brownian motion, and can thus be used to rigorously
characterize this important family of random fields.

• The relation between deterministic and stochastic formula-
tions provides a natural framework for the analysis of fBm.
In particular, a polyharmonic multiresolution analysis of
fractional Brownian motion has interesting properties that
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can be deduced from the parallelism between the two for-
mulations. As an example, we showed an application of
this observtion in the estimation of the Hurst parameter as-
sociated with fBm processes.

Our results relate, generalize, and formalize previous results
of multiple authors, including those of Rabut et al. [35], [36] and
Van De Ville et al. [37] (on polyharmonic splines and wavelets),
Blu and Unser [30], [34] (on the distributional characterization
of 1-D fBm), and Flandrin, Wornell, and Veitch and Abry [20],
[27], [28] (on the wavelet analysis of 1-D fBm). In addition,
given the generality of the approach, it opens an interesting av-
enue of research for the future investigation of any of these sub-
jects.

APPENDIX I
PROOFS OF THEOREMS 2 AND 3 AND OF PROPOSITION 2

Proof of Theorem 2:
Proof of MRA–1: By (16), the zeros of are the same

as those of , with the exception of the zero at
which disappears (see the proof of Proposition 1). From (15)
we can see that is zero iff

for all

Since the vectors generate , by the definition of the dual
lattice, the above condition is equivalent to

Removing the zero at produces as the set of
zeros of .

Property MRA–1 is then a consequence of the Poisson sum-
mation formula [cf. (4); also of direct relevance is Kolountzakis
[54, Eqn (5)]].

Proof of MRA–2: Property MRA–2 can be verified by
writing the Fourier expression of the refinement filter as

(The last step results from being, per definition, a similarity
transform matrix; cf. LAT–1). We observe that (i) the numer-
ator and denominator of the last expression are, respectively,

- and -periodic; that (ii) the zeros of the numerator
and the denominator happen respectively over the sets
and and are all of order ; and finally, that (iii) both the
numerator and the denominator are bounded.

We know from (3) that . Therefore, first,
from (i) it follows that is -periodic. Secondly, from
(ii) and (iii) one concludes that is bounded, with its set
of zeros being

(25)

These observations establish that is the lattice Fourier
transform of a sequence . The two-scale relation therefore
holds.

Proof of MRA–3: Proving the existence of lower and upper
Riesz bounds is equivalent to showing that the Fourier transform
of the autocorrelation filter (18) is bounded away from zero.

Since is -periodic, we can restrict our attention
to the unit cell corresponding to the Voronoi region of with
respect to . Within this region, we rewrite (18), replacing

from (16) and noting the periodicity and boundedness of
to obtain

The existence of a positive lower bound is then evident as
is bounded from below by ,

which is strictly positive in the noted region.
Also, since we assumed , the second sum converges

for all in the unit cell, and is bounded from above (with both
factors being bounded). This, in addition to the boundedness of

, confirms the existence of an upper bound and completes
the proof of the Riesz property.

Proof of Proposition 2:
Proof of 1: Any element of can be expressed in

the Fourier domain as

where the -periodic and locally square integrable function
is the lattice Fourier transform of a sequence . By

applying to we shall have

Since is also a -periodic and locally square
integrable function (due to the periodicity and boundedness of
the second factor), it corresponds to the Fourier transform of
some sequence . can, therefore, be written in the form

whereby .
Proof of 2: From the assumption, by the definition of poly-

harmonic splines [see (11)], we have

Using (7), we can write

which, per definition, establishes as a polyharmonic spline
of order .
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Proof of Theorem 3:
Proof: The semi-orthogonality condition is equivalent to

stating that

(26)

We replace the B-spline and the wavelet in the above
equality by their higher resolution B-spline expansions, given in
(19) for and below for

where is the stable wavelet filter. The autocorrelation
filter appears in the resulting
equation. Using its symmetry, we can restate (26) as follows:

with .
Let us define . The above relation then finds the

following Fourier domain expression (cf. Viscito and Allebach
[55])

From the definition of , we have

(27)

Therefore

We see from (25) and (27) that the numerator has an uncancelled
(and isotropic) zero of degree at the origin. Since is by
definition bounded (as ), this means that we can extract
the symbol (corresponding to ) from the Fourier trans-
form of the wavelet filter, and consequently from the Fourier
transform of the wavelet itself. In other words, the function

will be continuous at .
We also note that the wavelet, by construction, has the same

Sobolev regularity as the B-splines; i.e., its Fourier transform
decays like , leading to a -like decay for .
From this we deduce that is of the claimed Sobolev regu-
larity. That it is also a polyharmonic spline of order follows
from the second part of Proposition 2.

APPENDIX II
PROOF OF THEOREM 4

As was mentioned in the introduction, the characteristic func-
tional of a Gaussian field satisfies (see Gel’fand et al. [39, ch.
III, §2.6])

Therefore, in our case, we need to show that for

(28)

This correlation form is related to the (generalized) correla-
tion function thus [ibid., ch. III, §2.1]

(29)

The correlation function of a normalized fractional Brownian
field with parameter , , derived from its variogram,
is

(30)

To show (28), we plug (30) into (29), and break the integral
at the additions to get (after replacing in the first, in the
second, and in the last integral, all by )

(31)

where

is a linear combination of test functions and is, therefore, a valid
test function itself.

The inner product in (31) can be evaluated in the Fourier do-
main by applying the Parseval equivalence

(32)

valid for [38, p. 363]. Here
is a generalized function (distribution) that corresponds to a par-
ticular (canonical) regularization of the function .
The canonical regularization is to be conducted according to
the recipe given in Gel’fand and Shilov [38, §3.3], as detailed
below.

We restate (32) in (hyper)spherical coordinates as

where , the area of the hypersphere in ,
and denotes the average of over the hypersphere
of radius centered at the origin. Also, denotes the
particular regularization of invoked in (33).

is a smooth and even function of with rapid decay,
with a Taylor series expansion of the form

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 17, 2009 at 13:05 from IEEE Xplore.  Restrictions apply. 



TAFTI et al.: INVARIANCES, LAPLACIAN-LIKE WAVELET BASES, AND THE WHITENING OF FRACTAL PROCESSES 701

For , we have and from there,
by the definition of the generalized function (see [38,
p. 363])

(33)

(where the right-hand integral should be interpreted as a limit).
By expanding and returning to Cartesian coordinates, we
can now write

(using the definition of ). From combining this with (32),
we arrive at the desired result, i.e., (28).

Remark 6: The following lemma allows us to generalize
the results given here for to the case of noninteger

. The proof is technical and is not reproduced here.
Lemma 1: Let be a test function and be non-

integer. Then, in the sense of generalized functions of Gel’fand
and Shilov
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