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ABSTRACT

We introduce stochastic models for flow fields with parameters that
dictate the scale-dependent (self-similar) character of the field and
control the balance between its rotational vs compressive behaviour.
The development of our models is motivated by the availability of
imaging modalities that measure flow vector fields (flow-sensitive
MRI and Doppler ultrasound). To study such data, we formulate
estimators of the model parameters, and use them to quantify the
Hurst exponent and directional properties of synthetic and real-world
flow fields (measured by means of phase-contrast MRI) in 3D.

Index Terms— vector fractional Brownian motion, flow-sensitive
MRI, wavelets, vector fields, Hurst exponent, curl, divergence.

1. INTRODUCTION

Stochastic fractal models are commonly used in a range of ap-
plications where some form of self-similarity or scale-invariance
is observed (examples include image processing, seismology, and
the study of growth processes [1, 2]). The quintessential stochastic
fractal is the fractional Brownian motion (fBm)—so named by Man-
delbrot and Van Ness [3] but already considered by Kolmogorov [4]
and others before them—which can be defined by means of the
structure of its variogram (variance of increments) [5]:

E{|BH(x)−BH(y)|2} ∝ ‖x − y‖2H

In the above equation E denotes the mathematical expectation oper-
ator; H is the Hurst exponent, named after H.E. Hurst who first used
estimates of its value in the context of hydrology. The definition is
not complete unless we also mention that BH is a Gaussian process
with zero mean which almost surely takes the value 0 at x = 0.

Fractal behaviour is also observed in the study of flow and tur-
bulence [6]. With the availability of new biomedical imaging tech-
niques that allow of measurement of flow fields (e.g. Doppler ultra-
sound or flow-sensitive MRI [7,8]), the question of the applicability
of fractal models to these measured phenomena naturally arises. In
order to address this question, it is necessary first to generalize the
classical scalar fractal models to the vector setting, and then use stat-
istical methods to compare these models against simulated and real-
world data. In this paper we take steps in the mentioned directions.

To define the vector counterpart of fBm, we rely on the obser-
vation (also classical) that fBm may be regarded as the solution of a
fractional differential equation involving fractional Laplacians, sub-
ject to zero boundary conditions at x = 0 [9, 10]:

(−Δ)
H
2 + d

4 BH = εHW (1)
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(d is the dimension of the domain; W is a normalized white Gaus-
sian noise process; and εH is a proportionality constant). A vec-
tor generalization is then obtained by replacing the scalar Laplacian
in (1) with a(n extended) vector Laplacian (Section 2). In addition
to the Hurst exponent, the new random model is indexed by two
(dependent) additional parameters that control the balance between
rotational and divergent or convergent tendencies in the field.

We shall employ wavelets to address the second aspect (statist-
ical study of the models). Wavelet-based techniques have been used
with efficacy in the past in the statistical analysis of fBm and, in
particular, in the estimation of the Hurst exponent [2, 10–14]. The
effectiveness of wavelet analysis for this purpose relies on two facts:
First, wavelets essentially behave as low-frequency differentiators,
and this, by virtue of Eqn (1), means that a wavelets analysis of
fBm (which is non-stationary) yields coefficients that correspond to
(stationary) filtered white noise. Second, the multi-scale nature of a
wavelet analysis captures the self-similar structure of fBm.

Consequently, in order to move towards understanding the con-
nection between vector fBm models and biomedical data, in Sec-
tion 3 we develop a wavelet estimator of the parameters of the model,
which we then apply to synthetic fields and measured phase-contrast
MRI data (Section 4). A few remarks and observations conclude the
paper (Section 5).

2. VECTOR FRACTIONAL BROWNIAN MOTIONS

The vector extension of Fractional Brownian Motion (fBm) we shall
consider spans a new1 family of random vector field models that
are singled out by their special invariance and self-similarity proper-
ties with respect to changes of scale and rotations of the coordinate
system. These random fields can be defined as solutions of the para-
metric fractional differential equation (a.k.a. whitening equation)

(−Δ)
H
2 + d

4
ξ BH,ξ = εHW (2)

where: W is a vector of independent white Gaussian noises; (−Δ)γ
ξ

is an extended fractional Laplacian we shall define below; H denotes
the Hurst exponent that is a measure of the dependence of the values
of the random field at different locations; d is the number of spa-
tial dimensions; ξ = (ξ1, ξ2) is a vector of (dependent) parameters
that, as we shall see, capture the directional behaviour of the vector
field; and εH is a special constant. The equation is to be solved by
imposing zero boundary conditions at the origin.

The fractional vector Laplacian that appears in Eqn (2) is a
combination of the fractional Laplacian (Riesz derivative) (−Δ)γ

,
defined in the Fourier domain by the symbol ‖ω‖2γ , and a re-
balancing of the divergence-free and curl-free components of the

1 To the best of the authors’ knowledge.
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operand, achieved by means of an operator E that projects its
operand onto its curl-free component2 and has Fourier symbol
ωωT/‖ω‖2. In symbols:

(−Δ)γ
ξ =

ˆ
eξ1E + eξ2(Id−E)

˜
(−Δ)γ

with

(−Δ)γ F←→ ‖ω‖2γ

E
F←→ ωωT

‖ω‖2

(−Δ)γ
ξ

F←→ ‖ω‖2γ
h
eξ1 ωωT

‖ω‖2 + eξ2
`
I− ωωT

‖ω‖2
´i

=: Φ̂γ
ξ (ω)

(note the definition of the matrix valued function Φ̂γ
ξ ; also note that,

at least for γ ≥ 0, the operators (−Δ)γ
and E commute).

The inverse of (−Δ)
H/2+d/4
ξ , taking into account the zero

boundary conditions at x = 0, is given by the integral operator

(−Δ)−γ
−ξ : f �→ 1

(2π)d

Z
Rd

“
ej〈x,ω〉 −

X
|k|≤�H�

j|k|xkωk

k!

”
·

Φ̂−γ
−ξ (ω)f̂ (ω) dω

(f̂ denotes the distributional Fourier transform of f ). The following
identity is easy to establish.

(−Δ)−γ
−ξ = (−Δ)−γ

0

ˆ
e−ξ1E + e−ξ2(Id−E)

˜
. (3)

The inverse operator that we just introduced has the following
self-similarity properties with respect to changes of scale and rota-
tions:

(−Δ)−γ
−ξ{f (σ−1•)} = σ−2γ`

(−Δ)−γ
−ξ f

´
(σ−1•)

(scale-invariance)

(−Δ)−γ
−ξ{Ωf (ΩT•)} = Ω

`
(−Δ)−γ

−ξ f
´
(ΩT•)

(rotation-invariance)

(Ω denotes an arbitrary rotation matrix in R
d).

Using the above inverse operator, we shall now give a direct
definition of the extended vector fBm with parameters H and ξ:3

BH,ξ := εH(−Δ)
− H

2 − d
4

−ξ W . (4)

The scale- and rotation-invariance of the operator (−Δ)
−H/2−d/4
−ξ

and the statistical invariance of the white noise field W with respect
to changes of scale and rotations together mean that the vector
fBm BH,ξ is also statistically invariant with respect to scalings and
rotations of the system of coordinates. One may also note that,
as a consequence of the factorization relation (3), BH,ξ becomes
divergence-free (respectively curl-free) as ξ1 − ξ2 (resp. ξ2 − ξ1)
approaches +∞.

A few examples of computer-generated two-dimensional vector
fBm are given in Figure 1.

2 The complement, Id−E, is a projection onto the divergence-free com-
ponent

3 The action of an operator on a random field finds a rigorous interpreta-
tion in the framework of the theory of generalized random processes of
Gelfand and Vilenkin [15].

(a) H = 0.60, ξ1 = 0, ξ2 = 0

(b) H = 0.60, ξ1 = 0, ξ2 = 100

(c) H = 0.60, ξ1 = 100, ξ2 = 0

Fig. 1: Simulated vector fBm with H = 0.6 and variable ξ1 and
ξ2, visualized using Mathematica’s implementation of line integral
convolution (LIC).
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3. ESTIMATION OF VECTOR FBM PARAMETERS USING
WAVELETS

It is a well-known fact that wavelet transform coefficients can be
used to estimate the Hurst exponent of scalar fBm processes and
fields [2, 10–14, 16]. This property of wavelets holds true also in
the vector setting, in the following manner: A wavelet transform
applied independently to each of the vectorial components of a frac-
tional Brownian vector field can be used, in almost exactly the same
fashion as in the scalar setting, to estimate H . We refer the reader to
Tafti & al. [10] for the details of two such estimators.

As in the scalar case, in order for the wavelet to stationarize the
random field, it has to incorporate a fractional Laplacian of sufficient
order so as to cancel out the (non-shift-invariant) inverse operator in
(4); which is to say that it is necessary that the mother wavelet can
be written as (−Δ)γΘ, with γ > H

2
+ d

4
, where Θ is a (matrix-

valued) smoothing kernel. The component-wise analysis of a vector
field described in the previous paragraph corresponds to the special
case of Θ being a scalar matrix (i.e. a multiple of identity).

We shall now observe that such a diagonal wavelet transform
is not sufficient for our purpose of estimating all parameters of a
vector fBm. Indeed, while an independent component-wise analysis
can provide estimates of H , such an analysis cannot differentiate
between different choices of the directional parameters ξ1 and ξ2 in
a statistically meaningful way, for the reason that it does not measure
the interdependence of the vector components.

In order to estimate the directional characteristics of the field it
is therefore appropriate to consider full matrix wavelets that capture
the inter-component structure of the field. Such wavelets can be con-
structed by decomposing a scalar matrix wavelet Ψ = (−Δ)γΘ—
where Θ = θI is a scalar matrix function with diagonal θ—in the
following fashion:

Ψ = (−Δ)γΘ = (−Δ)γˆ
E + (Id−E)

˜
Θ

= (−Δ)γEΘ| {z }
Ψ1

+(−Δ)γ(Id−E)Θ| {z }
Ψ2

.

Convolving Ψ1 and Ψ2 with BH,ξ then yields

Ψ1 ∗BH,ξ = e−ξ1
ˆ
(−Δ)γ− H

2 − d
4 EΘ

˜ ∗W =: e−ξ1W1;

Ψ2 ∗BH,ξ = e−ξ2
ˆ
(−Δ)γ− H

2 − d
4 (Id−E)Θ

˜ ∗W =: e−ξ2W2.

The random fields on the right-hand side of the above equations are
stationary filtered-white-noise-type processes.

It is possible to construct a very simple estimator of the quantity
(ξ1−ξ2) if one notes that the mathematical expectations E{‖W1‖2}
and E{‖W2‖2} are constant functions of the spatial coordinates that
depend solely on the choice of the smoothing kernel Θ.4 The ratio

R :=
E{‖W1‖2}
E{‖W2‖2}

can therefore be pre-computed or, alternatively, estimated before-
hand in a calibration step. Subsequently, for a realization of BH,ξ

with unknown ξ we may estimate the ratio

E{‖Ψ1 ∗BH,ξ‖2}
E{‖Ψ2 ∗BH,ξ‖2} = e2(ξ2−ξ1)R

between the mean values of the energies of the two wavelet trans-
forms; from where an estimate of ξ1 − ξ2 can be trivially obtained.

4 Note that it is the difference of the parameters ξ1 and ξ2—and not their
individual values as such—that determines the directional behaviour of
the field.

Table 1: Estimation of the H parameter of synthesized vector fBm.

True value average of local estimates their variance

0.3 0.30 0.0074
0.6 0.58 0.0107
0.9 0.87 0.0140

4. EXPERIMENTS

To verify the correctness of the estimation mechanism sketched in
the previous section, 64×64×64 volumes of discretized vector fBm
were generated in MATLAB in accordance with the synthetic model
of Section 2. Estimation of the Hurst exponent was performed over
local neighbourhoods, using the first of the two estimation methods
described in Tafti & al. [10]. To obtain a finer scale progression we
replaced the discrete wavelet transform of Tafti & al. by a Laplacian
of Gaussian continuous wavelet transform with the σ parameter of
the Gaussian spanning the range 0.5 to 2 with steps of size 0.25. The
results are summarized in Table 1.

Next, an estimation of ξ1 − ξ2 was performed using, as input,
pseudo-random realizations of vector fBm with varying ξ1−ξ2. The
estimates were fairly accurate, with the correlation coefficient being
virtually equal to 1 over the range −30 to 30 with step size 2.

A similar analysis was applied to measured MRI data obtained
from a phantom. We shall now briefly describe the set-up. The
flow model—based on a rigid PVC tube with an inner diameter of
3.4cm—was connected to a clinical blood-pump system to produce
a constant (non-pulsatile) fully developed flow. The fluid used was
a solution of a Gadolinium chelate contrast agent in distilled water
at 37◦C. The flow model was imaged on a 3T MRI system using a
3D phase-contrast sequence [7]. The sequence relies on the differ-
ence of phase of spins moving along the direction of a magnetic field
gradient to determine their velocities. The sequence, typically used
for blood flow measurements in vivo [7,8], allows the acquisition of
three-directional velocities with a three-dimensional coverage. The
MRI acquisition parameters were: voxel size [mm3]: 0.4×0.4×0.6,
velocity encoding factor (venc) [cm/s]: 50, T E / T R [ms]: 4.62 / 8,
bandwidth [Hz/pixel]: 440, flip angle (α) [degrees]: 13.

Phase-contrast MRI can assess flow velocities without restric-
tion in anatomic coverage or direction but is limited by its relatively
long imaging times, limited spatial and temporal resolutions, or lim-
ited signal to noise ratio (SNR). Errors limiting the SNR can be in-
duced by intrinsic measurement errors, eddy currents, gradient field
inhomogeneities, concomitant gradients, or acceleration errors [17].

Figure 2 schematically shows the imaging set-up, along with a
colour-coded cross-section of local directional parameters (ξ1− ξ2);
the cross-section was taken perpendicular to the direction of flow.
(The significant part of the image is the circular disc on the left;
the background—apart from some static structures—does not cor-
respond to any flow and should be discarded.) A positive ξ1 − ξ2,
as observed inside the tube (Figure 2b), indicates a divergence-free
tendency, which is consistent with the incompressible nature of the
fluid used in the experiment. Due to the non-turbulent (and essen-
tially predictable) nature of this example, estimation of the Hurst ex-
ponent is not particularly meaningful in this case. Such an analysis
would however be of great interest in studying flow fields of a more
random and turbulent character. Further experiments and studies in
this direction are still needed and will be the subject of our future
research.
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(a) Flow model (figure taken from Stalder [18])

(b) Local estimates of ξ1 − ξ2

Fig. 2: Differential analysis of a 3D flow (see text for details).

5. CONCLUSION

In this paper we proposed a model for stochastic fractal vector fields
in the spirit of fractional Brownian motion models that was motiv-
ated by the wish to study biomedical flow-field measurements (in
particular flow-sensitive MRI data). In addition to the usual Hurst
exponent that quantify the fractality of the field, the vector models
we introduced also have parameters to control the balance between
the extremities of irrotational and solenoidal behaviour. Next, in
order to study the relevance of these models in the analysis of meas-
ured data, we developed estimators of the different parameters of
these models. We verified these estimators by applying them to syn-
thesized vector fBm, and then used them to analyze 3D flow meas-
urements obtained using phase-contrast MRI. The outcome of the
analsyis was consistent with the known properties of the flow (i.e.
incompressibility). Additional experiments will be directed at a bet-
ter understanding of the significance of the estimated parameters and
the study of flow fields with different structures.
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