ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

FRACTIONAL BROWNIAN MODELS FOR VECTOR FIELD DATA

Pouya Dehghani Tafti, Member, IEEE, and Michael Unser, Fellow, IEEE

Laboratoire d'imagerie biomédicale, Ecole Polytechnique Fédérale de Lausanne (EPFL),
CH-1015 Lausanne, Switzerland

ABSTRACT

In this note we introduce a vector generalization of fractional
Brownian motion. Our definition takes into account directional
properties of vector fields—such as divergence, rotational beha-
viour, and interactions with coordinate transformations—that
have no counterpart in the scalar setting. Apart from the Hurst
exponent which dictates the scale-dependent structure of the
field, additional parameters of the new model control the bal-
ance between solenoidal and irrotational behaviour. This level
of versatility makes these random fields potentially interesting
candidates for the stochastic modelling of physical phenomena
in various fields of application such as fluid dynamics, field
theory, and medical image processing.

Index Terms— Fractional Brownian motion, fractional
Brownian vector fields, stochastic modelling, vector fields,
invariance, generalized random processes, characteristic func-
tional.

1. INTRODUCTION

Although the processes we know today by the name of
fractional Brownian motion (fBm) had already appeared
in mathematical literature in the 40s (see for instance
Kolmogorov [1]), it was after their systematic study
by Mandelbrot and Van Ness in their 1968 paper [2]—
from where they obtained their current name—that they
gained widespread popularity as models for self-similar
stochastic phenomena and found applications in an in-
creasing number of disciplines such as network traffic
analysis, the study of financial markets, hydrology, and
image processing, to name only a few [3-9].

The definition of fBm given by Mandelbrot and
Van Ness is in 1D and involves a fractional integral
with respect to the differential of Brownian motion. To
extend the definition to multiple dimensions, it has been
found expedient instead to characterize the random field
axiomatically, a la Paul Lévy [10], as a Gaussian random
field with zero mean that passes through the origin at
x = 0 almost surely and whose (stationary) increments
obey the following condition on their variances

E{|Bp(z) — Bu(y)*} = c|z — y||*"
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(in the case of H = 1/2 one recovers the definition of
standard Brownian motion with d parameters) [11]. The
parameter H is the well-known Hurst exponent which
ranges between 0 and 1 (exclusive).

The practical interest in fBm models is rooted in their
remarkable quality of statistical self-similarity (that is,
self-similarity in law), which goes hand-in-hand with the
empirical observation of inverse power-law (or 1/ f2H7+)
power spectra in a wide range of applications; although
the latter statement has to be made with caution, as the
classical notion of power spectrum is not applicable in
the case of fBm’s, which are non-stationary.

To put the spectral behaviour of the field in evidence
and on a rigorous mathematical foundation, it is helpful
to give yet another characterization of the random field,
this time in terms of a whitening operator. One may in fact
define fBm as the solution of a fractional stochastic PDE
with suitable boundary conditions (zero at = 0 up to a
certain order); to wit, for H € (0, 1), By is proved [12,13]
to be the solution of the fractional Poisson equation

o
2

(-A) By =W, (1)
subject to By (0) = 0 (a.s.), where W is a white Gaus-
sian noise field in the sense of generalized random pro-
cesses [14]. The precise Fourier domain interpretation of
the above equation makes use of the characteristic func-
tional of By, which is related to its probability meas-
ure by the Bochner-Minlos theorem [15] (see also Tafti
& al. [12] for a discussion of the connection between
the above characterization and the harmonizable rep-
resentation [16] of fBm). In addition to emphasizing
the spectral character of the random field (the whiten-
. H_ d .
ing operator (—A)2 7 is represented by the power-law
symbol |jw|# +%), the above definition lends itself to a
natural and direct generalization to the case of H > 1,
leading to Gaussian fields with stationary nth-order in-
crements [17]. A different but interesting generalization
is to replace the Gaussian white noise field in (1) by a
non-Gaussian white noise (such as a Poisson noise).
Our aim in the present note is to follow the above
line of argument in order to define vector-valued random
fields that are intended to serve as stochastic models
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for self-similar (i.e. fractal) physical vector quantities.
As a consequence of the success of fBm models in the
statistical study of images, motivation for such a gener-
alization is partly derived from the progress in recent
years of imaging modalities for vector-field measure-
ment (such as Doppler ultrasound imaging and velocity
mapping via time-resolved magnetic resonance imaging
(MRI) [18]); however, it is also of significance that some
important vector phenomena, such as turbulent flow, are
understood to be inherently fractal [19].

Let us emphasize at this point that it is not with the
trivial vector generalization of fBm (by means of concat-
enation of independent scalar fBm’s in vector form) that
we shall be primarily concerned here. Instead, through-
out the presentation, we shall insist on certain directional
properties of vector fields that have no counterpart in
the scalar setting. The construction we propose puts at
the forefront the invariance properties of the random field.
These invariances single out a parametric family of oper-
ators (—A); generalizing the fractional vector Laplacian
with new parameters (&1, &2) = £ that effectively control
the balance between rotational and compressive beha-
viour of the field. Fractional Brownian vector fields are
then defined as solutions of the equation

E_;’_i
(_A)52 4BH = GHW.

In what appears next, we first define the differential
operators introduced above and describe their invari-
ances (§2). This is followed by the definition of vector
fractional Brownian motion and a list of its important
properties (§3). We then briefly mention how instances of
such random fields can be simulated (§4) and conclude
with a recapitulation of the some of the key points (§5).

2. OPERATORS AND INVARIANCES

We define our generalization of the fractional vector
Laplacian as the operator (fA)g with Fourier expres-
sion

wa

=] o

[lwl]?

wa

B (w) = o] oS 20 g e (1 -

lw]]?
with v € Ry and € = (£1,&) € R2 This definition is
guided by the invariance properties we wish the oper-
ator (and consequently the random vector fields to be
defined) to possess, as detailed below [20].

2.1. Invariance properties

In formulating invariance properties we take our in-
spiration from two sources. The first is the quality of
self-similarity or fractality. The second is the mathem-
atical framework that governs the interaction of vector
fields with coordinate transformations. The mathem-
atical manifestation of these invariances is through the
observation that the operator commutes with them.

2.1.1. Self-similarity

Self-similarity dictates that (—~A)/ should commute with
scaling (up to a homogeneous scale factor), meaning that
one should be able to interchange the order of applica-
tion of (—A)g and a uniform scaling of the domain. This
property holds in the following way (a Fourier domain
verification of the result is straightforward).

(~A)8, =78, (-A)]
where S, : f(z) — f(o~'x) is the scaling operator.
2.1.2. Vector rotation
An elementary result of vector calculus states the fol-
lowing: Given two R? — R representations of a vector
field, one in the standard Cartesian coordinates u € R¢
as f(u), and the second in rotated coordinates x = Qu as

fa(x) (Where Q is a rotation matrix), the representations
are related by

fo(z) = Qf (u) = Qf(Q ).
This motivates the definition of the vector rotation oper-
ator Rg : f(z) — Qf(Q"x).
The generalized Laplacian (—~A)} commutes with

Rg for all rotation (and reflection) matrices 2. In other
words, for any orthogonal matrix €,

(~A){Rg = Ro(—A),.
2.2. Other properties of (—A)/
(—A){ has these additional properties:
(A (-A)g = (-A)gTE
(—A)] = (=A)§ [ E+ ¢ (Id — E)|; (factorization)

(composition)

where E is the operator corresponding to the (matrix)
Fourier expression ww' /||w|?. The significance of the
latter property lies in the observation that E projects a
vector field onto its curl-free component, while (Id — E)
is a projection onto the divergence-free component. As
a consequence, by adjusting the parameters &; and &,
one can have control over the irrotational vs solenoidal
character of the solution of (6).

2.3. Inverse operators

Since (—A){ has a non-trivial null-space (for instance, it
eliminates constants and polynomials of low degree), it
can be inverted from the right up to an arbitrary additive
term from the null-space. A right inverse operator of par-
ticular interest is the one defined by the d-dimensional
integral (using multi-index notation)

AY Y £ 1
(7A)—§f - (27T)d
. k| ke . 3)
./Rd<ej<w,w> -y Jiz!“’ )@:g(w)f(w) dw.
|k|<|2v—4%
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Note that & }(w) is the matrix inverse of ®/(w) (the
Fourier symbol for (—A)]) at all points except at w = 0,
and that the polynomial correction inside the integral is
there to cancel the singularity and impose zero bound-
ary conditions in the spatial domain at © = 0. These
boundary conditions are important for defining frac-
tional Brownian motion vector fields.

Later, we shall also need the adjoint of (—A):g, that

is, the operator (fA):g satisfying

(@, (—A) 1) = (-A) ¢, %) 4)

over §¢. This operator (which we call the left inverse) is
given by the relation

(AU =
- _7 f(k)
/RdeJ< B ( Z ) w.

\k|<L2“/
6
The following observation is of key importance: (—A)~/
maps rapidly-decaying smooth test functions of Schwartz
class (i.e. f € 8% to functions with finite energy (L$
functions with || £[12 = || £3 L412 := 32, 1 fi; L2I).

3. FRACTIONAL BROWNIAN VECTOR FIELDS

We define the normalized vector fractional Brownian
motion with parameters H and & = (&1, £2) as the self-
similar random vector field that is whitened by the gener-

H . d
alized fractional Laplacian (—A) £ +i ; that is,

2Hd

( A)g BH& =egW, (6)

with W a vector of normalized independent white Gaus-
sian noise fields and the constant e defined by the rela-
tion
22H+d/2F(H + %)

ID(=H)]

In addition, By ¢ (and its appropriate derivatives in the
extended case of H > 1) are required to vanish almost
surely at = 0.

A more direct statement of the definition can be made
using the inverse operator introduced in the previous
section:

vl

& = (2m)

2H+4d

BH,E = GH(fA):g W, (7)

We should note that a careful application of an oper-
ator to a random field as in the above equation necessit-
ates an appropriate mathematical formalism. Our way
of procedure is based on Gel’fand and Vilenkin’s theory
of stochastic analysis using generalized functions; which

is to say that By ¢ is identified by means of a probability
measure on Borel cylinder sets of the form

{X:<Xad)1> <a17"'7<X7¢)N> <CLN}C (Sd)/a
N€N7¢17"'7¢N esd;

or, equivalently (by Minlos’s version of Kolmogorov’s
extension theorem), via consistent finite dimensional dis-
tributions of its products (B¢, ¢) with test functions
¢ (these products being classical real-valued random
variables). By the Bochner-Minlos theorem [15], such
probability measures on (S¢)’ are in one-to-one corres-
pondence with continuous, positive-definite characteristic
functionals defined as per

Za (@) = BB} — [ dx9py (ax).
(84 7

We make use of duality and the known characteristic
functional of the white Gaussian noise W to find the
explicit form of the characteristic functional of By ¢. The
former functional is, (almost by definition)

Zw (o) =e z|\¢\|2 8)
whence,

ZBye (@) = E{e“BH-ev@}

2 ia
= Efeln (4 ¢ * W‘”} by (7);
SR AT ) by
= ZW(EH(—A):;H4+d ?) by definition;

— exp(=3e4l(=A) ¢ T @l?) by @®).

The above form is positive-definite and continuous, as a
consequence of the continuity of the left inverse and the
positive-definiteness and continuity of Zy . The Bochner-
Minlos theorem therefore applies to it.

All of the properties of vector fBm listed in the next
subsection can be deduced from the formula we have
just derived.

3.1. Some properties of vector fBm

In this subsection we briefly list some of the main prop-
erties of vector fBm. Proofs have been omitted due to
space limitations. They will appear in a separate public-
ation [21].

Self-similarity: By ¢(ox) has the same statistics as the
field o By ¢ (). In other words, the random field
behaves like a stochastic fractal. This is a con-
sequence of the scale-invariance of the left inverse
operator.
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Rotation-invariance: By ¢ interacts with rotations of
the coordinate system in the way that is expected
of vector quantities; i.e., for any rotation matrix €2,
the random fields By ¢(z) and QB ¢ (2 x) have
the same stochastic character. This, again, follows
from the rotation-invariance of the left inverse.

Non-stationarity and stationary increments: As in the
scalar case, vector fBm is non-stationary, but has
stationary increments for 0 < H < 1 in the sense
that for any step size h, the increment field

Lh(iL') = BH15(1E + h) — BHyg(m)

is stationary. More generally, for H > 1, the incre-
ments of order | H | + 1 are stationary.

Covariance structure: The covariance matrix of the in-
crement By ¢(x) — Bre(y) (also known as the
variogram) is given by the relation

E{[B¢(x) — Bue(y)] [Bue(®) — Bue(y)] '}
= 2'13'{;’]1_’,02)(33 - y)

with

_ 2H 41, —2¢ d—1 . —2¢
m = 10g(2H+de '+ spra 2>'
— 1 —2£ 2H4d—1  —2¢:
n2 = log (g™ + HEtre ™),

with @gmz) denoting the matrix-valued function
defined in Eqn (2). In the case of £ = 0 the matrix
<I>£I becomes diagonal. Consequently, the trivial
multi-component extension of fBm as a vector of
independent scalar fBm fields is included in our
formulation as a special case.

Fractional calculus: The stochastic vector field By ¢ is

whitened by the generalized fractional Laplacian
Hid
operator (—A)7 *1. In addition, for positive H
and H' with 0 < H + H' < 1 and for any £ and
¢ € R? we have

H/
(—A)g Buing+e = Bug

and )
Buimgre = (-A)2¢ Bue.

The above results mean that suitable forms of frac-
tional integration and differentiation map a given
fractional Brownian vector field to another fBm
field with modified parameters.

Irrotational and solenoidal behaviour: With the aid of
dual operators and in keeping with the factoriza-
tion property noted in §2.2, it is possible to show

that as {; — & — oo, By ¢ becomes divergence-
free (solenoidal). Similarly, as §&; — & — —oo0, Br ¢
exhibits curl-free (irrotational) behaviour. These
extreme cases mark the range of directional com-
portment exhibited by these models.

4. SIMULATION

It is possible to compute the joint distribution of the
product of By ¢ with a family of test functions {¢;} by
finding the inverse Fourier transform of Zp,, . (3, wi¢;).
Or, in the spatial domain, one can use the fact that

(Bue, ¢) = en((—A)"¢* "W, ¢)

= en(W,(-A) > g)
to compute the distribution of samples of By ¢ [22].

A simpler but less rigorous approach to simulation is
to apply Eqns (7) and (3) in the Fourier domain on dis-
crete white Gaussian noise. Using this approach, we gen-
erated instances of the output in 2D that are displayed in
the following figures (Figs 1a—c). The visualization tech-
nique used in the figures consists in directional smooth-
ing of a noise image in the direction of flow, in what is
known as line integral convolution (LIC) visualization
(we used Mathematica’s implementation).

5. CONCLUSION

In this contribution we introduced generic stochastic
models for self-similar vector phenomena that form a
family of non-stationary Gaussian random vector fields.
The construction was guided by requiring the model to
satisfy certain invariance properties. The choice of these
invariance properties was motivated on the basis of two
considerations. The first related to self-similarity and
fractality—qualities that have led to stochastic models
with applications in different areas of science and engin-
eering. The second type of invariances we considered
were derived from the laws of transformation of physical
vectors.

After defining the extended family of fractional
Brownian motion vector fields by means of their charac-
teristic functional, we listed some of their main proper-
ties that can be of interest both from a theoretical point
of view and in stochastic modelling applications. In
particular, it is important to emphasize that these new
models can exhibit a full range of vectorial behaviour,
from completely irrotational (curl-free) to fully solen-
oidal (divergence-free). Such versatility suggests that
these random vector fields could be suitable candidates
for modelling vector data arising in different fields of
application such as fluid dynamics, field theory, and
imaging science. The theoretical study of these models
can also be of independent interest to probability and
information theorists, as has been the case with their
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(@) H =0.60,&1 = 0, & = 0 (LIC)

(b) H = 0.60, £, = 100, & = 0 (LIC)

(0) H = 0.60, & = 0, & = 100 (LIC)

Fig. 1: Examples of synthesized vector fractional Brownian motion for H = 0.60 and different values of ¢; and &.
The vector field has been visualized using line integral convolution (see text) with local amplitudes inversely coded
by saturation levels. The effect of parameters £; and &; on the directional behaviour of the field is clearly visible.

predecessors (scalar Brownian and fractional Brownian
processes and fields) in the past.
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