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ABSTRACT

In this work we propose a variational reconstruction algorithm for
enhancement and denoising of flow fields that is reminiscent of
total-variation (TV) regularization used in image processing, but
which also takes into account physical properties of flow such as
curl and divergence. We point out the invariance properties of the
scheme with respect to transformations of the coordinate system
such as shifts, rotations, and changes of scale. To demonstrate the
utility of the reconstruction method, we use it first to denoise a
simulated phantom where the scheme is found to be superior to
its quadratic (L2) variant both in terms of SNR and in preservation
of discontinuities. We then use the scheme to enhance the quality
of pathline visualizations in an application to 4D (3D+time) flow-
sensitive magnetic resonance imaging of blood flow in the aorta.

Index Terms— regularization, variational reconstruction, de-
noising, vector fields, curl, divergence, invariance, total variation,
flow-sensitive MRI.

1. INTRODUCTION

With recent advances in medical imaging, it is now possible to
measure three-dimensional vector flow in vivo using a variety of
imaging modalities. Flow-sensitive magnetic resonance imaging
(MRI), for instance, can be utilized to produce gated measure-
ments of blood flow in the cardiovascular system, which permit
one to form an analysis of blood circulation and vessel wall para-
meters [1, 2]. Acceleration is desirable in this context to shorten
relatively long acquisition times; however, as a general rule, faster
acquisition leads to lower quality, measured in terms of signal-to-
noise ratio (SNR). In addition, physical properties of flow such as
incompressibility are not automatically enforced in unprocessed
acquisitions. Furthermore, in flow visualization based on particle
tracing, some form of flow-field enhancement is often desirable
to improve the visual quality and informativeness of renditions by
emphasizing important features and suppressing noise.

The above observations point to a need for physically-
motivated algorithms for flow-field correction, enhancement,
and denoising, which combine the adaptability and physical
soundness needed to address the noted issues in a satisfactory
manner [3, 4]. In the present paper, we aim to propose one such
algorithm that, together with its generalizations, belongs to the
family of variational reconstruction methods. In addition to its
theoretical appeal from a variety of standpoints (statistical inter-
pretation, link with PDEs, etc.), variational reconstruction—often
identified by the keyword regularization—can, under suitable
conditions, lead to convex optimization problems that guarantee
uniqueness and which can be solved using reliable techniques.
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Specifically, we shall focus on reconstruction schemes which
can be posed as the minimization of a cost functional

J( f ; y) := d( f ; y) +
∑

i

λiRegi( f ) (1)

where f is a possible solution; y is the vector of measurements
(observations); d is a data fidelity criterion (= 0 if y corresponds
exactly to measurements made from f ); the Regi ’s are regulariza-
tion functionals that take large values if the solution is undesirable
in a certain respect; and, finally, the λi ’s are regularization para-
meters that endow the algorithm with some level of flexibility to
adapt to different circumstances by adjusting the contribution of
each of the component terms of J . From a different perspective,
the same cost functional can be seen as the Lagrange relaxation
of a constrained optimization problem with inequality constraints.
In practice, however, the constraint bounds are often unknown;
using the formulation given in (1) allows us to interpret the λi ’s
as tuning parameters of the algorithm, which can be adjusted to
improve or optimize some measure of reconstruction quality.

Most of the variational algorithms proposed in the context of
vector field reconstruction to date have used quadratic regulariza-
tion [5–8]. In the present paper, we contrast quadratic schemes
to those based on L1 regularization that is reminiscent of total-
variation (TV) regularization in 2D image processing [9, 10]. It is
found that the latter display better preservation of discontinuities,
while also improving upon quadratic regularization in SNR.

Another notable property of the family of algorithms con-
sidered here (inclusive of quadratic and L1 variants) is that they
exhibit invariance to coordinate transformations such as rotation
and scaling, which goes hand-in-hand with their inherent connec-
tion to physical properties of flow such as irrotational vs solenoidal
tendencies [11, 12].

In the remainder of the paper, we first describe the variational
formulation of the reconstruction problem and propose our solu-
tion in the continuous setting (§2.1). This is followed by a brief
description of one possible way of discretization and numerical
resolution of the problem in §2.2. We then discuss applications of
the resulting scheme to denoising and enhancement of simulated
and real data in §3, before concluding with a summary of the main
points and future research directions in §4.

2. VARIATIONAL RECONSTRUCTION OF FLOW FIELDS

2.1. Continuous formulation

The choice of the data fidelity criterion in (1) is in practice often
dictated by statistical observations with regard to measurement
noise as well as practical convenience. The most common choice,
to which we shall adhere, is the mean squared error or, in finite
sample sizes, simply the absolute squared error.
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The regularization functionals in (1) typically take the form of
integrals
∫
�dΦ(R f (x )) dx , where R is a differential-type operator

and Φ is a convex function.
In many practical situations, a preferred choice of orientation

and scale cannot be inferred from the data, at least within a wide
range. It is therefore reasonable in such circumstances to require
that the regularization functionals not have preferential behaviour
with respect to orientation and scale. For the above functional
to be invariant under rotation, shift, and scaling (up to a scalar
factor), it is sufficient to take Φ to be a homogeneous function
and choose a regularization operator R that commutes with the
said transformations (up to a scalar factor where appropriate). For
homogeneous Φ we can write Reg( f ) as

Reg( f ) = ‖R f ‖pp
where the Lp norm is in general computed for the magnitude of
R f (since R f can be vector-valued).

As for the regularization operator R, one can directly verify
that the appropriate commutation/invariance laws are satisfied by
the curl and divergence, as well as their properly formulated com-
binations with their adjoints (among which one finds the vector
Laplacian Δ = graddiv−curl curl). Note that coordinate rota-
tions for vector fields follow a law that is different from scalar
fields. This is because coordinates of a vector field are specified
in the coordinate system of its domain; hence, when rotating the
domain coordinates by some orthogonal matrix Ω, one must trans-
form the vector by ΩT to keep its direction fixed. The rotation
formula for vector fields is therefore f �→ ΩT f (Ω·).

Among cost functionals that fit the above description, here we
shall focus on the following first-order one, which can be seen as
the vector equivalent of TV regularization in some sense:

J (p)( f ; y) =
∑

m

| f (m)− y[m]|2 +λc‖curl f ‖pp +λd‖div f ‖pp

=
∑

m

| f (m)− y[m]|2 +λc

∫
�d

(
�|curl f |2)p

+λd

∫
�d

(
�|div f |2)p.

(| · |, when applied to a vector, denotes its magnitude). This cost
functional allows us to independently penalize rotational and
compressive/divergent behaviour of the reconstruction by means
of the parameters λc and λd .

2.2. Discretization and implementation

Replacing partial derivatives by finite difference operators δi : f �→
f − f [· − ei], where ei , i = 1, . . . , d, denotes the ith standard unit
vector in �d , we arrive at the discrete formulation of the problem
(in implementation, boundary conditions are incorporated in δi):

J (p)δ ( f ; y) =
∑

m

| f [m]− y[m]|2+λc

∑
m

��|curlδ f [m]|2�p

+λd

∑
m

��|divδ f [m]|2�p,

(2)
where for the magnitudes of discrete curl and divergence we have,

|curlδ f [m]|2 = ∑
1≤i< j≤d

(δi f j[m]−δ j fi[m])
2;

|divδ f [m]|2 = ∑
1≤i, j≤d

δi fi[m]δ j f j[m].

We shall consider the quadratic (p = 2) and L1 (p = 1) cases.
The former is comparable to what is given in Dodu and Rabut [7]
and Arigovindan & al. [8], while the latter is more reminiscent of
TV regularization. For p = 2, (2) describes a quadratic programme
that can be solved using iterative linear solvers (the derivatives of
a quadratic cost function are linear). For p = 1, on the other hand,
we follow Figueiredo & al. [13], and form a sequence of quadratic
upper bounds (majorizers) on the cost function, which can then
be reduced sequentially in order to approach the global solution.

Specifically, using the inequality
�

a ≤ �a′ + 1
2
(a− a′)/

�
a′

for positive a, a′ and ignoring terms that depend only on f ′ and y
(which do not affect the solution), we define the upper bound at
fixed f ′ as

Qδ( f , f ′; y) :=
∑

m

∑
1≤i≤d

fi[m]
2−∑

m

∑
1≤i≤d

2 fi[m]yi[m]

+λc

∑
m

c−1
m |curlδ f [m]|2

+λd

∑
m

d−1
m |divδ f [m]|2,

with

cm :=
�|curlδ f ′[m]|2, dm :=

�|divδ f ′[m]|2. (3)

Next, consider the sequence

f̃(n) := argmin
f

Qδ( f , f̃(n−1); y), (4)

defined recursively with some initialization such as f̃(0) = 0. For
a given f̃(n−1), the above minimization is a quadratic re-weighted
least square problem, which can be solved by a linear solver. Note
that minimizing Q( f , f ; y) is equivalent to minimizing J (1)δ ( f ; y).
Furthermore, we have

Q( f̃(n), f̃(n); y)≤Qδ( f̃(n), f̃(n−1); y)

<Qδ( f̃(n−1), f̃(n−1); y) =Q( f̃(n−1), f̃(n−1); y)

which shows that, with increasing n, the J (1)δ ( f̃(n); y)’s form a
decreasing sequence.

The final scheme for p = 1 is given in Algorithm 1. In practice
the local minimization in the last step of the loop may be replaced
by a fixed number of iterations of a linear solver such as conjugate
gradient (CG), which will still reduce the global cost.

Algorithm 1: Algorithm for L1 regularization

input : y;
f̃(0)← 0;
repeat

n← n+ 1;
for all data coordinates m do

cm ←
�|curlδ f ′[m]|2; dm ←

�|divδ f ′[m]|2;
end
f̃(n)← argmin f Qδ( f , f̃(n−1); y);

until stopping criteria are met;
return f̃(n).
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3. EXPERIMENTS

3.1. Simulation

As our first experiment we considered the problem of denoising
velocities sampled from a phantom modelling laminar flow with a
hyperbolic profile inside a tube passing through a torus in which
a uniform flow circulates (see sample visualizations of input and
output in Fig. 1). We repeated the experiment with different levels
of independent additive white Gaussian noise, and compared L1
and L2 regularization (corresponding to p = 1 and 2 in (2)) for
each instance. For L1 denoising, a CG solver with 100 iterations
was used to approximately solve the quadratic problem in each
iteration of Algorithm 1, and the number of external iterations was
fixed at 20. For fair comparison, in the case of L2 regularization we
allowed a maximum of 100× 20 CG iterations to solve the linear
problem, although in practice the CG solver always converged
before reaching this limit.

Results are summarized in Table 1. L1 regularization is seen
to be superior to L2 regularization in all cases in terms of SNR,
and visual inspection also showed it to be better at preserving
discontinuities, as is the case for its scalar counterpart (TV).

Table 1: Comparison of denoising algorithms for phantom data

dataset SNR [dB]
input 0.00 10.00 20.00

L1 regularized 9.01 14.53 21.22
L2 regularized 8.77 13.79 20.85

Although in the results reported in Table 1 we used an oracle
to optimize the parameters λc ,λd (done separately for L1 and L2
regularization), comparison with the Monte Carlo SURE method of
Ramani & al. [15], which does not use the ground truth, showed
that under the Gaussian noise hypothesis, optimal parameters can
be accurately estimated form the noisy data alone at twice the
computational cost of using an oracle.

3.2. 4D flow-sensitive MRI

In our second experiment, we used flow-sensitive phase-contrast
MRI recordings of blood flow in the thoracic aorta of a healthy
subject. The dataset was acquired on a 3T MR system (Magnetom
TRIO Tim, Siemens Medical Solutions, Erlangen, Germany) using
a 12-channel body coil. All measurements were made using an RF-
spoiled gradient echo sequence with prospective ECG gating and
respiratory gating [16]. The sequence made use of parallel ima-
ging based on the GRAPPA technique [17] with 24 auto-calibration
lines and undersampling factor R = 3. The sequence included cor-
rection for Maxwell terms and the data were further corrected for
background phase error using a second-order model [18].

To this data we applied the proposed L1 algorithm for flow
enhancement. In this case the Gaussian noise assumption was
not valid in this case, and algorithm parameters predicted by
Monte Carlo SURE were overly conservative. We therefore set
the parameters manually so as to correct for non-zero divergence
in the measured data and thereby enhance visualization based
on particle tracing, by strongly penalizing non-zero divergence
(i.e. by setting λd 
 λc); this was justified on the basis of the
near-incompressibility (hence almost zero divergence) of blood.
Pathline visualizations of the flow, before and after correction
using L1 regularization, can be seen in Fig. 2. Pathlines (also

called particle traces) represent the trajectories of virtual particles
in a velocity field which, in our case, were emitted from a plane
in the ascending aorta and integrated over two cardiac cycles
in the blood flow velocity field. Here we used a commercial 3D
visualization software package (EnSight, CEI, NC, USA) to produce
the visualizations.

As is seen in Fig. 2, pathline visualizations of the uncorrected
MR dataset produced many pathlines flowing outside of the lumen
volume. Consequently, there were few pathlines going all the way
through the aorta. In visualizations created from the corrected
dataset, on the other hand, fewer pathlines were flowing out of
the arterial volume and there were more trajectories going down
the aorta all the way to the descending aorta. Because of these
two aspects, the apparent quality of pathline visualizations made
from the corrected dataset was substantially improved compared
to those created from the original uncorrected dataset. Due to the
limited resolution of the data and of the proximity between the
thoracic trunk and the aorta, in both visualizations one can see
cases of pathlines that cross vessel walls.

4. CONCLUSION

In the present paper we considered the related problems of de-
noising and correction/enhancement of vector field data, and
proposed variational algorithms for this purpose based on the no-
tion of invariance to coordinate transformations such as rotation
and scaling. Among variational algorithms that satisfy these in-
variances, we focused on a first-order variational scheme with L1
regularization which is evocative of TV regularization for scalar
fields, but is different in that it additionally takes account of vector
qualities without scalar parallels, such as rotation and divergence.

We described an implementation of the variational scheme
using quadratic upper bounds and re-weighted least squares, and
compared it against its L2 variant (comparable to smoothing spline
schemes in image processing). In experiments with simulated
phantoms, the proposed algorithm was found to be superior both
in terms of SNR and in preserving discontinuities, over a range of
input SNRs. We then discussed an application of the scheme to
real data obtained by means of flow-sensitive MRI, for the purpose
of improving the characteristics and visual representation of blood
flow by correcting for non-zero divergence.

Possible directions for future research include higher order
algorithms in the same family not covered in the present paper,
faster implementations, and alternative means of predicting regu-
larization parameters and assessing results, as well as applications
in resolution enhancement, deconvolution, and other areas where
reconstruction of vector fields might be of interest, such as image
registration and estimation of optical flow.
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(a) Noisy field (0 dB SNR) (b) Denoised field, using L1 regularization (9.01 dB SNR)
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Fig. 2: Flow-sensitive MRI recordings of blood flow in the aorta before and after denoising.
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