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On Regularized Reconstruction of Vector Fields
Pouya Dehghani Tafti, Member, IEEE, and Michael Unser, Fellow, IEEE

Abstract—In this paper, we give a general characterization of
regularization functionals for vector field reconstruction, based on
the requirement that the said functionals satisfy certain geometric
invariance properties with respect to transformations of the coor-
dinate system. In preparation for our general result, we also ad-
dress some commonalities of invariant regularization in scalar and
vector settings, and give a complete account of invariant regular-
ization for scalar fields, before focusing on their main points of dif-
ference, which lead to a distinct class of regularization operators
in the vector case. Finally, as an illustration of potential, we for-
mulate and compare quadratic ( �) and total-variation-type ( �)
regularized denoising of vector fields in the proposed framework.

Index Terms—Curl and divergence in higher dimensions, frac-
tional Laplacian, fractional vector calculus, regularization, rota-
tion invariance, scale invariance, total variation (TV), vector fields,
vector spaces.

I. INTRODUCTION

O UR AIM in this paper is to derive, in a principled manner,
formulas for regularization functionals suitable for re-

constructing vector fields, with a view to applications such as
denoising, deconvolution, and reconstruction from incomplete
(that is, scalar) measurements [1], [2], among others. Our moti-
vation in approaching the question of vector field reconstruction
derives from the increasing prevalence of imaging modalities
that produce measurements of vector quantities and the need to
design algorithms for treating such data [3]. Such algorithms can
also be applicable in other contexts where vector fields appear,
such as estimating optical flow and image registration [4]–[7].

Throughout this paper, we take invariance under coordinate
transformations as our guiding principle. The importance of
invariance in reconstruction was already apparent to Duchon
[8], who considered the problem of interpolating or approxi-
mating scalar fields in ; however, the mathematical formu-
lation of invariance laws is, in general, different for scalars and
vectors, as we shall see briefly in Section II and in more detail in
Sections IV and V. The appeal of the notion of invariance partly
lies in the fact that invariant regularizers do not impose a pref-
erential choice of coordinate system on the model. We give a
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rather complete characterization of invariant vector regulariza-
tion operators in Sections IV and V, after initially reviewing the
related scalar theory in Section III.

Regularized reconstruction of vector fields has been previ-
ously considered, notably by Suter and Chen [9], who proposed
quadratic ( ) regularization with mixed-order differentials of
the vector field. Arigovindan et al. [2], [10] studied quadratic
regularization with fractional-order differential operators and
paid particular attention to the invariance properties of the reg-
ularization term with respect to vector rotation, translation, and
change of scale, characterizing the complete family of quadratic
regularization functionals with the required invariances, which
essentially extend Duchon’s thin-plate splines [8] to the vector
setting. Specialized examples of such functionals, involving curl
and divergence regularization, had been considered earlier by
Dodu and Rabut [11] and (for the problem of interpolation) by
Amodei and Benbourhim [12] before them.

All of the previous schemes fall under the general heading
of smoothing spline and spline interpolation methods. They
thus exhibit similar advantages (efficient resolution by linear
methods and connection with splines) and limitations (most no-
tably, oversmoothing of discontinuities and edges which, e.g.,
occur naturally at fluid interfaces in fluid dynamical systems
and at object boundaries in optical flow). In this connection,
it has been observed in the scalar setting that schemes using

regularization––in particular, total variation (TV) type
methods––do a better job of preserving edges and discontinu-
ities than their counterparts [13], [14]. The framework that
we have adopted in this paper allows us to find natural vector
equivalents of these nonquadratic methods. (On the algorithmic
side, the nonquadratic problems that we formulate here can be
solved using techniques similar to those employed in the scalar
case (see for instance [15]), as we show by way of examples in
Section VI.)

On the theoretical side, another common property of
quadratic schemes is that, due to the association of quadratic
functionals with inner products, they can all be reduced to reg-
ularization with self-adjoint differential operators (essentially
fractional Laplacians and their extensions; see Section IV).
This is in contrast to the general nonquadratic case considered
here, where the factorization of these self-adjoint operators into
skew-symmetric ones becomes relevant (see Section V).

Finally, we wish to point out that unlike at least some of the
previous works that have been exclusively concerned with 2-D
and/or 3-D vector fields, the approach that we have adopted in
the present paper makes it possible to consider vector fields in
any number of dimensions on the same footing. This is partic-
ularly apparent in our dimensionless formulation of fractional
Laplacians in Sections III and IV, and of curl- and divergence-
like operators in Section V.

1057-7149/$26.00 © 2011 IEEE
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A. Regularized Reconstruction

The standard scenario for regularized reconstruction is as fol-
lows. We are given a vector of measurements or observations
that are assumed to depend, in a known probabilistic fashion (or
deterministically but with some measurement and/or modeling
error), on the unknown entity , which we wish to recon-
struct. will be, in our case, a function defined on some
finite or infinite domain. We then define the regularized recon-
struction of as the (hopefully unique) minimizer over of
a cost functional

(1)

composed of a fidelity criterion quantifying the proximity
of the observed measurements to hypothetical measurements
made from some possible reconstruction and a regularization
functional that measures the undesirability of based on our
(deterministic or probabilistic) prior information or assumptions
about the solution. The above formulation can be arrived at in
different ways, some of which we shall now mention in passing
for the sake of motivation, while reminding the reader that our
primary purpose here is to derive some specific families of reg-
ularization functionals and not to justify the regularized varia-
tional framework for reconstruction in general (for comparable
classifications see [4] and [16]).

1) In finite sample/parameter dimensions, that is, when
both and are finite vectors, it is often possible to
view the minimization of (1) as a case of maximum
a posteriori (MAP) estimation. In this interpretation,

and essentially play the respective roles of the
negative log likelihood and the negative log of the prior,
usually up to some normalization (and possibly also
discarding some terms that do not modify the solution).
To come up with a prior, one might seek an operator
that whitens the vector (i.e., renders its components
independent); the log of the joint probability of the
elements of then becomes additive due to indepen-
dence. This nicely fits with the most common form of
regularization functionals used in practice, i.e., sums of
the form

(2)

where is a regularization operator, is the th
element of , and is a potential function such as

for regularization or the absolute value for
regularization. Although MAP estimation is not the only
purely probabilistic interpretation of (1), it is by far the
most common one and, hence, the only one we shall
mention here.

2) The form given in (1) can also be justified from a hybrid
probabilistic–deterministic standpoint, where again
represents a negative log likelihood, whereas now
corresponds to the constraint

(3)

on the solution, put in a Lagrange form with serving as
the Lagrange multiplier. Such schemes are known under

the names of constrained or penalized likelihood. In ad-
dition, a connection can often be made with Grenander’s
method of sieves [17] (where one considers a limiting se-
quence of minimizers of the cost functional with varying

). Note that the roles of the constraint and the objective
may be inverted, e.g., when the noise variance is known.

3) Finally, a purely deterministic interpretation is also pos-
sible, where is again the Lagrange relaxation of con-
straint , whereas is a deterministic measure
of data fidelity such as the Euclidean distance between

and samples of . However, we remark that in many
practical situations, the constraint bound on which
depends is not known (or the constraint is not really a
hard one); consequently, can also be seen as a tuning
parameter of the reconstruction algorithm.

Among the above justifications for the regularized recon-
struction framework, the MAP interpretation does not trivially
generalize to the case where an infinite number of values need
to be estimated, which occurs, for example, when the domain
of is an infinite set such as (rather than a finitely countable
set); for one thing, it is generally not possible to associate a
probability distribution function, in its finite-dimensional sense,
with probabilities on the function space to which belongs,
due to the fact that the Lebesgue measure does not admit of an
infinite-dimensional generalization.

It is therefore constructive, in what follows, to imagine that
the term is derived from an inequality constraint as in the
second and third interpretations. Moreover, we shall consider
all algorithms based on the same at the same time and con-
sider (or equivalently, the constraint bound) as a tuning param-
eter of the algorithm. Probabilistic considerations then become
secondary to geometrical/analytical ones, for which reason they
shall not be emphasized in the remainder of this paper.

Even so, we still draw inspiration from the observation made
at the end of paragraph 1) to define our regularization func-
tionals as integrals of the form

(4)

where (previously the whitening operator) is now referred
to as the regularization operator. Formally, the above integral,
which replaces the sum in (2), can be thought of as the normal-
ized aggregate contribution of individual independent pointwise
innovations, i.e., the values of as a function of (al-
though, strictly speaking, without proper normalization, such a
contribution should be infinite from the probabilistic point of
view).

After this brief introduction to regularized reconstruction, let
us now describe the direction and contents of this paper. Our
primary focus in this paper is vector field regularization. Thus,
assuming the general form given in (4) for the reason that we just
described, our task is then to specify the linear operator and
the function . We shall derive the general form of admissible

s and s—for scalars as well as for vectors—by imposing in-
variances under certain geometric transformations, namely, ro-
tation (and reflection), translation, and scaling.

The motivation behind using invariances is that, in many
physical systems, there exists no obvious preferential choice of
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direction, position, or scale, at least within a reasonably wide
range relevant in many applications. We therefore seek recon-
struction algorithms that lead to a consistent solution under
such transformations, possibly by appropriately adjusting a
single parameter ( ). This requires the regularization functional

to be invariant under such transformations (possibly up to a
computable multiplicative factor).

Although our main goal here is to formulate regularization
functionals for vector fields, we begin the exposition by general
considerations that apply equally to scalars and vectors (see
Section II) and, for completeness, proceed to include a detailed
account of invariant scalar regularization in Section III, where
we derive the general form of and for the scalar case
under suitable assumptions. Next, in Section IV, we turn our
attention to vector fields and invariances relevant for them. This
is followed by some extensions of the framework in Section V,
where we additionally consider regularization operators that
map vector fields to scalars and tensors. It will become clear
by the end of Section V that, with a high level of generality,
the functional takes the form where we have the
following.

In the scalar setting, is the standard Lebesgue
norm, and is either a fractional scalar Laplacian (defined in
Section III) or a fractional gradient (defined in Section V).

In the vector setting, is a suitable generalization of the
scalar norm to vector- or matrix-valued functions (intro-
duced, respectively, in Section II and Appendix A), and is
either a generalized fractional vector Laplacian (introduced in
Section IV), which incorporates a Helmholtz decomposition
into curl- and divergence-free components, or else, it is a
fractional curl or a fractional divergence (both introduced in
Section V).

We then illustrate the proposed construction in Section VI,
where we consider the problem of vector field denoising in 2-
and 3-D and compare two solutions (quadratic and TV-like) that
fall within our framework. Some remarks in Section VII con-
clude this paper.

Symbols and other notation are defined when first used and
summarized in Table I for reference.

II. GENERALITIES REGARDING REGULARIZATION AND

INVARIANCE

As noted in the Introduction, in identifying suitable families
of regularization functionals, we are guided by the principle of
invariance under specific geometric transformations. With any
such transformation is associated a symbol that can be a scalar

(the scale) for changes of scale, a vector (the
displacement vector) in the case of translations, an orthogonal
transformation matrix when considering rotations
and reflections, or, once again, a scalar (the gain) when
multiplication by positive reals (change of units) is considered.

Since, in general, the same transformation group can act dif-
ferently on scalars and vectors (this is particularly true for ro-
tations, as we shall see in Section IV), the same symbol can
describe different laws of transformation, depending on whether
it is acting on scalars or vectors or other entities. For this reason,
we introduce the notation to denote the operator associated

TABLE I
NOTATION

with symbol and distinguish between scalar and vector oper-
ators by using subscripts as per and where necessary.

Definition 1: In mathematical terms, we assume that be-
longs to one of several transformation groups
(the translation group), orthogonal (the
orthogonal group), (the scaling group), or

(the gain group), and consider maps (isomor-
phisms) between transformation groups and groups
of operators (actions or transformation laws) acting on objects
of some class ( for scalar fields, for vector fields,

for bivector fields, etc.).
We then define for (translation);

for (gain); for
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(scaling); and for (orthog-
onal transformation of scalars). Note that the first three identi-
ties are valid for scalars and for vector fields alike, whereas the
last one only applies to scalars. Vector rotation follows a dif-
ferent rule: . The reason is that the coordi-
nates of a vector field , , are specified
in the same coordinate system as that of its argument , which
means that if the coordinate system of the argument is rotated
by , the coordinates have to be transformed by the
inverse ( ) in order to keep the direction of the vectors fixed.

We recall [cf. (4)] that we shall be seeking invariant regular-
ization functionals of the following form:

where the scalar-valued function and the operator are to be
determined.

Requiring that the regularization be -invariant up to some
readjustment of parameter amounts to demanding that

(5)

for all under consideration, where is a constant. In order
to have more flexibility in constructing regularization func-
tionals, we wish to find families of functions and operators

that we can then pick and combine independently. In par-
ticular, since we shall always include identity in our family of
regularization operators, we require to satisfy the following:

(6)

for all and all and for some constant that depends
on .

From (6) immediately follows Proposition 1.
Proposition 1: Let satisfy (6) and be continuous on some

open neighborhood. is then equivalent to a homogeneous
function; that is, (almost everywhere) for some

and ( denotes the absolute value or the modulus
of as appropriate).

Conversely, (6) holds for any such as long as the integrals
are well-defined.

Proof: From (6), we have
for all , and therefore

for almost all

We shall first consider the case of scalar , where is a func-
tion of the reals. Let belong to the gain group , and let

. We then have, for arbitrary and arbi-
trary , whence

and . Next, for arbitrary and , we
may write the following:

Fixing either or then proves that for some con-
stant . Therefore, for all ,

This shows that is an exponential function and can there-
fore be written as for some constants and , as
claimed.

When is vector-valued, rotation invariance implies that
is in fact only a function of the modulus of ; we may then
repeat the argument of the previous paragraph to once again
deduce that for some and .

To prove the converse, one can directly inspect each of the
groups of transformations involved by a simple change of vari-
ables in the integrals and verify that the desired result follows
from the invariances of the Lebesgue measure.

The following corollary is immediate.
Corollary: Vector norms

,
ess ,

(7)

are -invariant in the sense that for all
(vector-valued) . Conversely, any convex -invariant integral
functional [as defined in (6)] that satisfies the requirements of
Proposition 1 is of the form for some .

It is then sufficient, in order to have the desired independence
between the choice of and , to require that commute with
coordinate transformations up to a multiplicative constant

, in the sense that

(8)

for all . This, we note, is the quintessence of invariance, as
it means that applying the coordinate transformation before or
after the application of yields the same result (up to normal-
ization).

Consequently, the regularization functional given in (4) can
be written as (the th power of) the norm of (we absorb
all the constants in ; is required to be for the sake of con-
vexity). We may also include the -norm for
completeness since, even though it is not strictly derived from
an integral, it nevertheless satisfies the required invariances.

It is worth noting that, following the Lagrangian interpreta-
tion given in the introduction [cf. (3)], we may, in practice, re-
place by , where is an arbitrary continuous
strictly increasing function on , since all such functions de-
fine equivalent inequality constraints in the Lagrangian formu-
lation, for . Such a function
can therefore be introduced as convenient. However, if it is de-
sired to have (5) hold with a constant not depending on ,
one can then show that needs to be a multiple of the homoge-
neous function for some (cf. the proof of Proposition 1).
Putting all this together, we get the following.

Proposition 2: Let be -invariant in the sense of (8). Then,
given and any , the regularization functionals

(9)

are -invariant up to a multiplicative factor; that is, we have

for some .
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Proof: This is an immediate consequence of Corollary 1
and (8).

Excepting the case of , where one normally takes
, the preferred choice of in practice is , which

simplifies the formulas by getting rid of the th algebraic root
hidden in the definition of the norm.

As a reminder, in (8) (reproduced below for convenience),
we required that the operator commute with the
transformation associated with , where is taken from one of
the transformation groups , , , or (cf. Definition 1), i.e.,

(10)

Note that, in general, when maps objects of type to those
of a different type (such as vectors to scalars or vice versa),
the operator associated with will be different on the two sides
of (10); we have emphasized this in the above equation by sub-
scripting the operator with and as appropriate.

We say that is invariant if it satisfies (10) for all in
some understood transformation group(s) (strictly invariant
if, in addition, ). For instance, we shall talk about -in-
variant ( -invariant, etc.) operators, by which we mean opera-
tors that satisfy (10) for ( , etc.). One notes that,
for an -invariant operator, the map

(11)

is a group homomorphism from any of the transformation
groups under consideration (typically, , , , or ) onto (a
subset of) .

In the sequel, we shall limit ourselves to linear regulariza-
tion operators while reminding the reader that, in general, the
reconstruction problem remains nonlinear due to the norms
involved. We shall also assume that is stable under shifts in
the sense defined below.

Definition 2: Operator is said to be minimally -stable in
if there exists a subset of , not entirely inside the kernel

of , that is invariant under the action of and on which has
a bounded operator norm; that is, if the following conditions are
simultaneously satisfied:

for all and all

for some and all (12)

for some

In some problems of practical interest, one may wish to con-
sider a combination of regularization terms, rather than a
single one of them. These different regularizers may, for in-
stance, measure the regularity of the projections of onto dif-
ferent subspaces with special physical significance (we shall see
some examples of these in Section IV, where we consider curl-
and divergence-free subspaces). In this case, the cost functional
to be minimized takes the following form:

which can also be interpreted as the Lagrange relaxation of a
constrained optimization problem with several inequality con-
straints (i.e., , ). Since, per Proposition
2, each of the regularization terms is invariant under the desired
geometric transformations, their weighted sum will also have
this property, up to a suitable independent adjustment of the ’s
for each given geometric transformation. As such, all that was or
will be said here, in connection with the interplay of invariance
and regularization, will be understood to generalize in the sense
just described to linear combinations of regularization terms.

Having established the general form of regularization func-
tionals in terms of norms of , where is the regular-
ization operator with invariance properties dictated by (10), we
shall now take up the task of identifying such operators. This
will require us to consider scalar and vector cases separately,
primarily due to the difference in the law of rotation in the two
settings.

III. REGULARIZATION OPERATORS: SCALAR CASE

Here, we shall derive the general form of linear regulariza-
tion operators that possess specific invariance properties in the
sense of (10). Our main result here is stated in Theorem 1, which
shows that these operators take the form of fractional Lapla-
cians.

We refer the reader to Definition 1 for a list of invariances
that are of interest to us. Some peculiarities of the translation
group and the orthogonal group , together with the stability
assumption described in Definition 2, allow us to show in the
following that, for transformations in these two groups, the con-
stant in (10) is always 1.

Lemma 1: A minimally -stable operator (cf. Definition
2) that is invariant under the action of and in the sense of
(10) is strictly invariant under and , that is, it has

for all .
Proof: First, note that for those elements of that are of

some finite order , i.e., for any orthogonal matrix such that
Id, by the homomorphism [cf. (11)], we have

(knowing that ).
Furthermore, any element of , including those of infinite

order, can be written as a product of, at most, reflections ,
where is the dimension (this is the Cartan–Dieudonné the-
orem). Reflections are of order 2 and hence have coefficient

by the previous paragraph. We therefore have, for ar-
bitrary , . This proves the part of the
lemma.

We shall prove the second part by contradiction. To this end,
assume that there exists with . Without loss of
generality, we may assume (simply replace by in
the other case). Then, for some not in the kernel of ,
with defined in Definition 2, we have

which contradicts (12).
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Finally, note that, if we had restricted ourselves to rotation
matrices instead of general orthogonal transformations in the
first part of the lemma, we could still have proved with
the aid of an additional minimal -stability assumption, arguing
as we did for .

We also have the following.
Lemma 2: The factor corresponding to scaling with

[cf. (10)] is homogeneous in , that is, it can be written as

for some .
The proof is very similar to that of Proposition 1; hence, we

omit it.
The stage is now set for the following result. In some form,

this result goes back to Duchon, although here we derive it from
somewhat different premises (such as minimal -stability).

Theorem 1: Let be a real and minimally -stable Fourier
integral operator, initially defined from the Schwartz space to

for some , which is invariant under the action of , ,
and in the sense of (10). is then characterized by a Fourier
multiplier of the following form:

(13)

where is the exponent identified in Lemma 2.
Conversely, Fourier operators with symbols given by (13) are

strictly invariant under the action of and and invariant under
the action of with the same coefficient as in Lemma 2.

Proof: First, observe that, by Lemma 1, is strictly - and
-invariant, and by Lemma 2, its -invariance coefficient is

a homogeneous function of . Since is a linear
and translation-invariant Fourier operator, it is associated with
an integral as per

where is the Fourier multiplier corresponding to .
One can then directly verify that in order for to commute

with rotations and scalings (the latter up to a homogeneous mul-
tiplicative factor of ), its Fourier expression must
be rotationally symmetric and homogeneous of degree . It is
known [18], [19] that, subject to boundedness, all such dis-
tributions can be represented in the following form:

with

The same proof goes through when restricting ourselves to
rotations instead of general orthogonal transformations if we
make the additional assumption of minimal -stability.

The converse is easily verified by simple changes of variables
in the Fourier domain.

Note that is the Fourier symbol of the th (frac-
tional) power of the negative Laplacian . We can therefore
write the reconstruction cost functional as

Moreover, by the argument given at the end of the previous
section, we may additionally consider multiple additive regular-
ization terms, as in

Two of the most important regularization functionals tradi-
tionally used in image processing are the total variation of and
its counterpart: grad and grad [using the vector
norms of (7)], both of which satisfy the required invariances.
Note, however, that these regularizers, as such, fall outside the
scope of this section for the reason that they incorporate an oper-
ator (grad) that maps scalars to vectors, whereas all the operators
considered so far map to scalars and not vectors. Nevertheless,
due to a peculiar property of the norm (namely, that it is a
Hilbert space and has an inner product structure), in the case,
one can write the following:

(14)

where is the adjoint of , and the self-adjoint operator
maps scalars to scalars and is therefore included in

our framework. Hence, in particular, for the grad regular-
izer, we have grad , which belongs to the
family we derived above; the same cannot be said about TV.

Partly in order to overcome the latter limitation, later, in
Section V, we shall also develop the theory of scalar-to-vector
regularization operators and introduce fractional gradients
grad . From there, it then follows that, more generally, in-
variant scalar cost functionals can be of the form

grad

IV. REGULARIZATION OPERATORS: VECTOR CASE

Translations and scalings act in the same way
on vector fields as they do on scalars. On the other hand, we
shall need to redefine the action of orthogonal group in the
vector setting. Since a vector field is specified in the same coor-
dinate system in which its argument is given, when transforming
the domain, one has to recompute the coordinates of the vector
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field accordingly. More precisely, the formula for transforming
vector field by orthogonal matrix is

(15)

that is, the coordinates of the vector are transformed by the in-
verse of the domain transformation matrix. On occasion, we
shall refer to invariance as in (15) as contra-variance (recall that
we distinguish between the scalar and vector operators associ-
ated with by subscripting by and , respectively).

The following result, indirectly proved for in [10], is
the vector counterpart of Theorem 1. In the Appendix, we give a
different and more general proof of this theorem, which is valid
in any number of dimensions.

Theorem 2: Let be a real and minimally -stable Fourier
operator initially defined and mapping vector fields to
vector fields, which is invariant under the action of , , and
in the sense of (10). is then characterized by a (matrix-valued)
Fourier multiplier of the following form:

(16)

where and are Helmholtz coefficients (see below) and
is the exponent identified in Lemma 2.

Conversely, operators with Fourier multipliers as above sat-
isfy all of the required invariances.

Sketch of the proof: The complete proof appears in the
Appendix. Here is an introduction to it.

The part of Lemma 1 and Lemma 2 (which says that
for some ) apply without modification in the vector

setting. Furthermore, following the same line of argument as in
the proof of Lemma 1, one can prove that once again,
for all , as was the case for scalars. Since is linear and
translation invariant, it admits a Fourier-domain representation
as

where is now a matrix-valued Fourier kernel. The scale invari-
ance of with coefficient and its strict orthogonal
contra-variance translate to the following Fourier-domain iden-
tities:

for all (17)

for all (18)

In the Appendix, we prove the forward direction in two steps,
first showing that orthogonal contra-variance implies that ,
at any , has an eigendecomposition as

(19)

and then noting that, by Theorem 1, and must be of the
form , .

The converse of the theorem can easily be verified by Fourier-
domain changes of variables.

With regard to parameters and , three cases are of par-
ticular interest, namely, those of , , and .

For , the operator defined in Theorem 2 has
the Fourier expression and therefore corresponds, up to
normalization, to the fractional vector Laplacian , that
is, the scalar Laplacian applied coordinatewise. For this reason,
we shall refer to the family of operators identified by (19) as
generalized vector Laplacians, with notation [20].

To better understand the behavior of the operator when either
or is zero, note that can be decomposed as

Id (20)

where operator is defined by its Fourier multiplier
. It is straightforward to see that and its

complement Id are projections and that they, in fact, project
their argument onto its curl- and divergence-free components,
respectively; in other words, taken together, they provide a
Helmholtz decomposition of their argument.

To summarize, the operators identified in Theorem 2 effec-
tively combine a fractional vector Laplacian with a reweighting
of Helmholtz components. Moreover, one has the following:

We can now give the general form of our cost functional for
vector fields, as we did for scalar fields in Section II. Once again,
we may consider linear combinations of some regularization
terms, which retain the same invariances as the individual terms,
up to readjustment of as

However, the above family is still not complete, for reasons
similar to those given at the end of Section III. This considera-
tion forms the basis of our next section.

V. MORE ON REGULARIZATION OF VECTOR FIELDS

A. Motivation

In our discussion in the preceding sections, we implicitly as-
sumed that mapped scalar or vector fields to similar objects
and in the same number of dimensions. In other words, we con-
sidered the operator associated with in (10) to be the same on
the left and right sides. In this way, we overlooked some impor-
tant possibilities for vector regularization operators, such as the
divergence operator (mapping vector fields to fields of scalars)
or the curl (mapping vector fields to pseudovector fields in 3-D;
see below). Here, we shall remedy this by studying operators
that generalize divergences and curls (and their adjoints), in the
same way that the operators of the preceding sections general-
ized scalar and vector Laplacians.

The generalization to dimensions of the divergence raises
no difficulty. Indeed, the divergence of a vector field is defined in
any number of dimensions by means of Fourier multiplier
(given in Cartesian coordinates). The divergence maps vector
fields to scalar fields. Its adjoint is the negative gradient with
Fourier multiplier , which maps scalar fields to vector fields.
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It is less obvious how the usual 3-D definition of the curl
can be generalized to dimensions. This difficulty is essen-
tially rooted in the fact that the curl of a vector in 3-D is not
a true vector: Per the right-hand rule of physics, the curl of a
vector field transforms as an ordinary vector field under proper
rotations, but it flips sign under improper rotations (those with
determinant 1). For this reason, curl fields in 3-D are usually
referred to as pseudovector fields.

It is in fact this notion of pseudovector that does not directly
generalize to arbitrary . For this reason, in higher dimensions, it
is constructive to consider the curl operator as a map from vector
fields to bivector fields ( matrix fields with specific trans-
formation laws). We may identify bivectors with fields of
antisymmetric tensors [21]. These have independent
components, corresponding to the upper-diagonal elements of
the tensor (only in 3-D is ; hence, the difficulty
in generalizing the customary definition of the curl and pseu-
dovectors to ).

In three dimensions, identification between pseudovectors
and antisymmetric matrices (bivectors) can be made by the

-map that we introduce as

(21)

The -dimensional generalization of the curl, as a map from
vector fields to bivector fields, is then given by the Fourier ex-
pression

curl

Defining the vector-gradient grad of the vector field as the
matrix

grad

we may write the curl of as

curl grad grad

In combination with (21), the above relation yields the usual
definition of the curl in 3-D.

The adjoint of the curl, which maps bivector fields to vector
fields, is given by the following expression:

curl

(note that in the former equation is a vector field, whereas in
the latter, it denotes a tensor).

Finally, we note that in 3-D, under an orthogonal transforma-
tion of the domain by , the bivector and pseudovector
representations [the sides of (21)] transform, respectively, as

(the determinant captures the sign flip of pseudovectors under
parity transformations). The first of these two defines the general
law of action of on bivectors in dimensions

B. Curl-like and Divergence-Like Operators and Their
Adjoints

Next, we shall give categorized definitions of -dimensional
curl- and divergence-like families of operators and make the
connection between these operators and the scalar and vector
Laplacians of the previous sections. However, before this, let us
first briefly recall, in a single place, the law of action of transfor-
mation groups on scalars, vectors, and bivectors. For orthogonal
transformation by , we have

(22)

(23)

(24)

Note that in the first equation, is scalar, in the second it is
vector, and finally, in the last equation, its values are an-
tisymmetric matrices.

The actions of and on the three categories (scalar, vector,
and bivector) remain the same in all cases for
the former and for the latter, for all and

).
As noted, we may, in more generality than the previous sec-

tions, study the two families of curl- and divergence-like opera-
tors and their adjoints. Operators in the former category go from

coordinates to 1, and back by their adjoint; whereas those in
the latter go from coordinates to independent co-
ordinates (forming a antisymmetric matrix) and back to :

1) Divergences and their adjoints : These consist of
maps from vector to scalar fields and vice versa. In the first
case, the invariance equation takes the following form:

and in the second case, we require
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Given our focus on linear regularization operators and the
shift-invariance assumption, we can restate the above prop-
erties as conditions on the Fourier multipliers of and

. Scale invariance in all cases leads to the same equa-
tion as (17). With regard to reflection invariance, in place
of (18), we have

for the divergence-like operators and

for their adjoints. These follow from (22) and (23).
2) Curls and their adjoints : Curl-like operators

map vector fields to fields of bivectors. Accordingly, their
adjoints map bivectors back to vectors. For the two, we
respectively have

In the Fourier multipliers, scale invariance is again re-
flected by (17). For orthogonal invariance, the equivalents
of the preceding pair of equations are respectively

These are consequences of (22) and (24) (we are using here
a light form of Einstein’s summation convention, whence
repeated indices are summed upon; for instance,

is the product of matrices and ). Notice that
and are third-rank tensors (linear maps between

vectors and matrices) respectively acting on vectors and
matrices by

and

Example 1: Fractional Divergences and Gradients: These
are denoted by div and grad , respectively, and are defined by
the respective symbols given below:

and

The Fractional divergences act on vector fields, mapping them
to scalars; gradients do the opposite, with div and div

grad forming and adjoint pair. The fractional gradient of
order 0 grad is also known as the Riesz transform [22].

Example 2: Fractional Curls and Their Adjoint: We shall
denote the fractional curl and its adjoint by curl and curl ,
respectively. They are defined in the Fourier domain according
to

curl

curl

These definitions are valid in any number of dimensions
(they are trivial in one dimension). Fractional curls map -di-
mensional vectors to antisymmetric bivectors; adjoint curls
go in the opposite direction.

One readily verifies that the above examples satisfy the in-
variances outlined in 1) and 2).

Our claim has been that the considerations of this section are
more general than those of the previous two; and yet, until this
point, they seem to have been limited to operators mapping vec-
tors to nonvectors and vice-versa. We now show that the former
families of Section II (scalar to scalar) and Section IV (vector
to vector) can be decomposed in terms of fractional curls and
divergences and their adjoints. Specifically, for the scalar frac-
tional Laplacian, we have

grad

and for the generalized fractional vector Laplacian of
Section IV, we have

curl curl

grad curl curl

or, what is the same,

Id

curl curl

In addition, we record the following factorization results that
relate the fractional curls and divergences to combinations of
integer-order operators and fractional vector Laplacian :

grad grad

curl curl

curl curl

We shall not burden ourselves further by trying to find, in
complete generality, the equivalents of Theorems 1 and 2 for
the curl- and divergence-like families as the cases covered by
the above examples appear to us to be sufficiently versatile for
applications.

Note, finally, that in order to form regularization functionals
similar to (9), which involve curl-like operators, we shall need
to define the equivalent of -norms on tensor fields. The
matrix norms defined in Appendix A perfectly work for this
purpose. It is also easy to see that in the case of antisymmetric
matrices, the functional obtained in this ways is equal to the
vector norm of the upper diagonal elements of the matrix
(in particular, in 3-D, this is effectively the same as the norm
applied to vector fields). This means that we may alternatively
define the same regularization functional in terms of the vector

norm of the -map of the curl [cf. (21)].
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Given all this, a general vector cost functional with multiple
regularizers can be written as

curl

(the three -norms appearing in the above equation are those
defined for vectors, bivectors, and scalars, in that order; cf. (7)
and Appendix A).

An illustrative example is

Id

curl

which incorporates independent regularization of the curl- and
divergence-free subspaces [see the definition of after (20)], as
well as the fractional curl and divergence terms. Note that some
of ’s may be zero.

We conclude this section by the observation that, as we also
saw in (14), in the quadratic case , the aforementioned
functional reduces to the one given at the end of Section IV
since, in this particular case, the norm is associated with an
inner product, thus allowing us to equate curl with

and div with Id ,
as can be readily verified using Parseval’s identity. This is
generally not true for other values of (but it would have been,
had we considered the norms in the Fourier domain in place
of the usual spatial norms).

VI. ILLUSTRATION

For the purpose of illustration, we now consider the problem
of reconstructing a vector field from noisy measurements—pri-
marily in 3-D but also in 2-D—using a quadratic fidelity
criterion (consistent with a white Gaussian noise assumption).
We shall focus on divergence–curl regularization with different
( versus ) norms. We note in passing that in practical prob-
lems, higher order regularization, such as the physically moti-
vated second-order divergence–curl regularization of Suter [1],
can be of interest, particularly in the context of motion estima-
tion. Here, our primary motivation is to demonstrate and com-
pare the use of versus norms, in line with the similar com-
parison of quadratic versus total-variation-type regularization of
scalars that has frequently been made in image processing lit-
erature. For this reason, we shall limit ourselves to first-order

differential regularization operators. Specifically, we shall con-
sider the following cost functions:

curl (25)

with , where s are the measurements (in this sec-
tion, uppercase letters will be used to denote discrete quantities
such as , for in some subset
of ). In interpreting the above formula when the number of
samples and/or estimated values goes to infinity, some
form of normalization or limit argument may become necessary.
However, in practice, the number of observations will be
finite.

The norm applied to the curl in the former equation is a matrix
norm, as defined in Appendix A, but in 3-D, we may use the

-map defined in (21) and rewrite it as a vector norm [cf. (7)] as
follows:

curl

(26)

For , the mixed functional proposed above is
in the spirit of TV regularization. It is of interest to compare it
against its purely quadratic counterpart, if only to see whether
the relative advantage of TV regularization to quadratic regular-
ization in 2-D image denoising carries over to the vector setting.

In three dimensions, the explicit definitions of the curl and
the divergence are

curl

While guided by the previous continuous formulation, our
implementation on a digital computer is necessarily discrete. Al-
though there is room for more sophistication, we shall discretize
simply by taking finite differences in place of derivatives while
emphasizing that, in practice, the discretization scheme used can
play an important role in the numerical solution of inverse prob-
lems. It is therefore advisable, in real-world problems, to look
at alternatives such as discrete orthogonal decompositions (see
[23]).

Let , , denote the reconstruc-
tion corresponding to samples of over some discrete domain

. Furthermore, let us denote by the finite difference
associated with the partial derivative , that is

except at the boundaries where some preferred type of boundary
conditions is applied ( is the th standard unit vector in ).
For future reference, also note the adjoint of as
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(with appropriate adjoint boundary conditions).
Discrete divergence and curl can be defined in 3-D by the

following identities:

curl

The pointwise squared amplitudes of the curl and the divergence
that appear under the square root sign in (26) are then discretized
as

curl

Our discrete cost function can be then written as

curl

(27)

(recall that and are vectors, and denotes the Eu-
clidean length; the index runs over the sampling/reconstruc-
tion grid in ).

For , the problem is quadratic and can be efficiently
solved using iterative linear methods. For the problem, fol-
lowing Figueiredo et al. [15], we shall now propose an itera-
tive reweighted least squares (IRLS) approach belonging to the
family of majorize–minimize algorithms.

Given some with , the terms of the func-
tional can be upper bounded as

(28)

(this follows from the inequality
). Let sequence be defined by

(29)

where

curl

curl

TABLE II
COMPARISON OF DENOISING ALGORITHMS IN 3-D; ALGORITHM PARAMETERS

WERE OPTIMIZED FOR THE BEST SNR FOR EACH REGULARIZER AND INPUT

SNR. (A) GRADIENT FIELD. (B) TUBE AND TORUS.

is obtained by majorizing (27) using (28); we have collected all
terms depending only on and in the scalar function ,
which we may discard when solving (29).

Note that . Furthermore, we have

which shows that, with increasing , the ’s form a
decreasing sequence (in the second inequality, we have used the
strict convexity of and assumed that ).

For fixed , the minimizer of over is the
solution of the linear system of equations obtained by setting all
of the derivatives of equal to zero. To see this, let us first
define the following:

curl

Furthermore, let
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Fig. 1. “Gradient” phantom; see text for a description of the experiment. (a) Noisy field (0 dB SNR). (b) Denoised field, using � regularization (11.70 dB SNR).

Fig. 2. “Tube and torus” phantom; see text for a description of the experiment. (a) Noisy field (0 dB SNR). (b) Denoised field, using � regularization (9.01 dB
SNR).

After some algebraic simplification, one can write

The system of equations defined by

for and all (30)

thus corresponds to linear system (shorthand for
, for all ). This system may then be solved

using a variety of methods (conjugate gradient (CG), multi-
grid-preconditioned GMRES, etc.). In implementation, one may
add a small to numerators and denominators to avoid division
by zero.

To summarize, the complete algorithm for regularized
denoising consists of a number of outer cycles in accordance

with (29), which sequentially reduce cost functional . The
th outer iteration takes measurements and the output of the

th iteration as inputs and then moves in the di-
rection of minimizing . This local minimiza-
tion corresponds to a linear system, as specified in (30). Within
each outer iteration, this system is then (approximately) solved
using a number of inner iterations of some iterative linear solver.

A. Simulation and Results

We implemented the previously described scheme in
MATLAB (The MathWorks, Inc., Natick, MA) in 2- and 3-D.
As experiments, we considered the denoising of phantoms
corrupted by different levels of white Gaussian noise.
and were optimized for best mean squared error (MSE)
performance. In simulation, the true MSE for a given choice
of and can be calculated using an oracle. In practice,
even though the ground truth is not known and the true MSE
is therefore not accessible, so long as the white Gaussian
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Fig. 3. Amplitude cross sections: “gradient” phantom, comparing � and � denoising. (a) Original. (b) Noisy (0 dB SNR). (c) � denoised (11.70 dB improve-
ment). (d) � denoised (11.04 dB improvement).

Fig. 4. Amplitude cross sections: “tube and torus” phantom, comparing � and � denoising. (a) Original. (b) Noisy (10 dB SNR). (c) � denoised (7.96 dB
improvement). (d) � denoised (2.55 dB improvement).

noise assumption remains valid, a highly accurate estimate of
the MSE can be obtained using Monte Carlo techniques that
approximate Stein’s unbiased risk estimate, as described in
Ramani et al. [24] (see also [25]). This estimate comes at the
cost of solving an extra denoising problem for each choice of

and , but in terms of effectiveness in predicting the best
values of and , we found it to be indistinguishable from
the oracle in our experiments.

Results are reported in Table II and in Figs. 1 –5 (3-D graphics
were generated using ParaView 3.8.0 [26]). The phantoms, and
high-resolution images of their noisy and denoised versions, are
available online, at the web address http://bigwww.epfl.ch/tafti/
gal/vreg/.

The first 3-D phantom, presented in Fig. 1, consists of the
gradient field of the potential

The second 3-D phantom, depicted in Fig. 2, models fully devel-
oped laminar flow (with a parabolic profile) in a tube, encircled
by constant flow inside a torus.

We solved the version of the denoising problem using the
previously described IRLS scheme, with eight external cycles
per (29) and 600 CG inner iterations per cycle to solve the lin-
earized problem in each step. The problem was solved to
convergence using CG iterations.

In Figs. 3 and 4, we show the amplitude profile of the and
reconstructions of the two 3-D phantoms. These reconstruc-

tions are also compared in Table II in terms of SNR improve-
ment after denoising (with and optimized for the best

SNR performance) and mean angular error. The latter perfor-
mance measure is defined as the average pointwise angle be-
tween the ground truth and the reconstruction (see [27]).

The point we wish to highlight here is that regulariza-
tion performs remarkably well for the second phantom, which
features discontinuities in the flow, while being almost compa-
rable to regularization for the first (smooth) phantom. The
former regularization also better preserves small details and dis-
continuities at flow boundaries, which are smoothed in de-
noising. On the other hand, not unexpectedly, denoising pro-
duces slightly higher SNRs in the case of the smooth “gradient”
phantom, although regularization is still quite comparable in
terms of SNR and even yields smaller angular errors.

As previously hinted, we took advantage of the availability of
the ground truth to optimize parameters and for the best
SNR, for which purpose we used a bracketing search method
(it also bears reminding that the parameters were therefore not
optimized for our second quality criterion, which is the mean
angular error). The parameter values obtained in our experi-
ments are tabulated in Table III. We remark that the superior
performance of the algorithm is in spite of the fact that, in
contrast to the case, the experimentally obtained parame-
ters and for the problem may be, in fact, suboptimal,
primarily as a consequence of the problem being typically
solved only partially by fixing the number of iterations (com-
putational budget) in advance, meaning that due to the variable
state of convergence, SNR performance fluctuates about its op-
timum, thus breaking the working assumptions of typical op-
timization algorithms used to optimize and . It is also
worth noting that terminating the scheme before full conver-
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Fig. 5. Denoising in 2-D with � and � regularization applied to the noisy gradient of � (see text) with contour lines of � overlaid in color. (a) Original.
(b) Noisy. (c) � denoising output (12.74 dB SNR improvement). (d) � denoising output (12.58 dB SNR improvement).

TABLE III
OPTIMAL � AND � PAIRS USED TO OBTAIN THE RESULTS IN TABLE II

gence can itself be seen as an additional source of regulariza-
tion; the optimal parameters and therefore also depend
on the state of convergence of the problem.

As a further demonstration of potential, in Fig. 5, we provide
a sample output of 2-D vector field denoising. The phantom used
in this case was the gradient of the potential function

(contour lines of are superimposed in color). For the ex-
ample shown in Fig. 5, we observed an SNR improvement of

12.74 dB with regularization, compared with an improve-
ment of 12.58 dB when using quadratic regularization. We
note that reconstruction of 2-D vector fields can have applica-
tions beyond denoising, for instance in image registration and
motion estimation, although in the latter case, temporal regular-
ization also needs to be considered.

VII. CONCLUSION

In this paper, we have studied the question of designing reg-
ularization functionals for variational reconstruction of vector
fields. We approached this problem on the basis of requiring
that the regularization functional satisfy certain geometric in-
variance properties, which we justified from different angles.
To set the stage for our derivations, we first addressed some
commonalities of invariant regularization in scalar and vector
settings—followed by a derivation of the general form of in-
variant regularizers for scalar fields—before specializing to the
problem of invariant vector regularization. The vector regular-
ization functionals that we have derived consist of combinations
of (possibly fractional) curl- and divergence-like operators and
their adjoints, wrapped in scalar, vector, and/or matrix norms
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(also introduced in this paper). The generalized vector Lapla-
cians of [20] also fall within this framework.

Finally, we have presented an application of the proposed
framework to the problem of vector field denoising in 2- and
3-D, where we gave a natural generalization of (quadratic),
as well as (TV-type) regularization for vector fields. While
our preliminary results already show a systematic advantage
of over regularization in the aforementioned problem,
many interesting questions about the choice of higher order
regularization functionals for data with specific structure re-
main open. Moreover, in addition to vector denoising, the
proposed construction can find applications in a variety of
other problems, which we did not study here. Examples include
reconstruction of vector fields from nonuniform and incomplete
(scalar) measurements, deconvolution, estimation of optical
flow, and image registration. Another possible direction for
future investigations is the incorporation of temporal regular-
ization in the formulation.

APPENDIX

A. Matrix Norms and Spaces

The vector norms defined in (7) are special cases of the
norms for the matrix-valued functions that we

define as follows ( denotes the spectral radius):

,

This definition is motivated by a matrix Young inequality due to
[28], i.e.,

where . The preceding inequality can be used to
prove a version of Hölder’s inequality for spaces of matrix-
valued functions. Matrix spaces are then defined in the stan-
dard manner. They have similar properties to scalar spaces
(completeness, inner product structure for , duality be-
tween and with via the bilinear form

, etc.).
Definitions of matrix norms and spaces are obtained by

replacing the integrals with sums.

B. Proof of Theorem 2

By (18) (this is the only place in this proof where we use
invariance to improper rotations), we have

(31)

Next, fix , and let , , be
pairwise orthogonal vectors in , all perpendicular to and
with . We define the following rotation matrices:

Each is a simple rotation by 180 in the plane. In
particular, . We also define, for each pair , the
90 rotation matrix

maps and leaves fixed (in this proof,
and denote entire matrices and vectors, respectively, and

not the entries of some unspecified matrix or vector ).
Note that matrices , , commute pairwise;

also, by (18) and (31), we have

which shows that ’s commute with as well. Since,
for , vectors , are precisely the common
eigenvectors of , they must also be eigenvectors
of ; in particular, is an eigenvector of . Denote
its corresponding eigenvalue by . By taking the
transpose of (18) and applying the same argument, we can
show that is also an eigenvector of . Its corresponding
eigenvalue, temporarily denoted by , is equal to
since

We similarly denote the eigenvalue of by .
Alternatively, to find the eigenvectors of , we might note

that commutes with all ’s as

and since is an eigenvector of all ’s with eigenvalue 1 (it
is their only common eigenvector), must be a common
eigenvector of all ’s; thus, for some scalar
eigenvalue . Then, to show that the ’s are also eigen-
vectors of , we observe that

whereby . This shows that lies in
the kernel of . However, the kernel of exactly corre-
sponds to the span of . We can therefore write

for some and , but then,
; we also have . The last

two equations show that , that is, we have
. therefore has as eigenvectors

with respective eigenvalues of .
Next, we show that all ’s are equal to some :

by (18), we have

proving that all ’s are equal as claimed. Putting every-
thing together, we find that has the orthogonal eigenvectors
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with eigenvalues for and for the
remaining vectors. Its eigendecomposition is, therefore, of the
form given in (19) (for , we can make a similar demonstra-
tion of the above decomposition by working with the reflection
matrix with axis , instead of ’s). Finally, for (17) and (18)
to hold, and must be rotation invariant and homogeneous
of degree . Thus, by Theorem 1, we have for
some and .
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