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ABSTRACT

We present a variational framework, and an algorithm based on
the alternating method of multipliers (ADMM), for the problem of
decomposing a vector field into its curl- and divergence-free com-
ponents (Helmholtz decomposition) in the presence of noise. We
provide experimental confirmation of the effectiveness of our ap-
proach by separating vector fields consisting of a curl-free gradient
field super-imposed on a divergence-free laminar flow corrupted
by noise, as well as suppressing non-zero divergence distortions
in a computational fluid dynamics simulation of blood flow in the
thoracic aorta. The methods developed and presented here can
be used in the analysis of flow-field images and in their correction
and enhancement by enforcing suitable physical constraints such
as zero divergence.

Index Terms— Helmholtz decomposition, flow-field imaging,
vector fields, curl, divergence, variational methods, alternating
method of multipliers (ADMM)

1. INTRODUCTION

The emergence of new and improved modalities and techniques
for in vivo measurement of flow fields and the availability of an
increasing volume of medical vector-field data in recent years,
motivates the consideration of practical questions related to the
reconstruction, analysis, correction, and enhancement of vector
field data arising in medical applications. Vector fields appear
directly in medical imaging as the mathematical representation of
flow and displacement, as well as indirectly due to the vectorial
nature of electromagnetic and mechanical waves used in imaging.
An important application of flow-field imaging in medicine is
in using phase-contrast magnetic resonance imaging (PC MRI)
of blood flow in the diagnosis and treatment of cardiovascular
diseases, for instance by examining complex flow patterns that
can develop in arteries [1].

In working with vector fields, the universal problem of decom-
posing them into their curl-free (irrotational) and divergence-free
(solenoidal) components (Helmholtz decomposition) is of great
practical importance, due to its intimate ties with the physical
equations that govern flow (Navier-Stokes) and electromagnetic
fields (Maxwell). Having available methods for such a decomposi-
tion is useful, for instance, in applying divergence-free corrections
to measurements of incompressible blood flow. As measurement
noise is always present, it is of interest to develop methods for
vector field decomposition that are resilient to corruption by noise.

Continuing our previous line of work on vector field denoising
and reconstruction in medical applications [2–4], in this paper
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we present a variational formulation and an algorithmic frame-
work for Helmholtz decomposition of vector fields in the pres-
ence of noise. The essence of the formulation is to decompose
the noisy vector field into three components: fcf (curl-free), fdf
(divergence-free), and n (noise), by minimising a suitable joint
energy functional E( fcf, fdf,n) subject to the constraint that these
three components sum up to measurement vector y:

minimise
fcf , fdf ,n

E( fcf, fdf,n)

subject to fcf + fdf + n = y .

We refer to problems of the above type as variational decomposition.
The approach we present here differs from other decomposition
methods used in computational fluid dynamics (for instance those
based on wavelets [5]), both in its formulation as an optimisation
problem and in accounting for noise.

In the following sections we first present the general prob-
lem formulation and then an efficient numerical optimisation
algorithm for its resolution, which is based on the alternating
direction method of multipliers (ADMM). The effectiveness of the
approach is confirmed in two experiments, before we conclude
with some final remarks and directions for future work.

2. PROBLEM FORMULATION

We begin with a general flow reconstruction problem, where a
vector field f is measured by a linear system A to produce noisy
measurements

y = A f + n (1)

(n, the ‘noise’, is the deviation from the model). In a variational
framework, we separate signal and noise by minimising an energy

αnEn(y −A f ) +α0E0( f ),

where En(y − A f ) is the so-called fidelity term and E0( f ) is
the regulariser, which corresponds to our (probabilistic or non-
probabilistic) prior on f , and where α0,αn are parameters determ-
ining the contribution of each term to the total energy (only the
ratio between the two is important). In view of (1), we may sym-
metrise the place of signal and noise, by formulating our denoising
problem as a variational decomposition of y:

minimise
f ,n

α0E0( f ) +αnEn(n)

subject to A f + n = y .
(2)

The additive combination of energies is consistent with the as-
sumption that the signal and noise are independent. In a discrete
regime, the simplest measurement operator is the identity and the
corresponding decomposition is y = f + n. This shall be the case
for the rest of this paper.
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If, in addition to denoising, we consider the decomposition of
f into curl- and divergence-free components fcf and fdf respect-
ively, we shall have the decomposition

y = fcf + fdf + n.

By definition, the curl- and divergence-free components are subject
to the constraints curl fcf = 0,div fdf = 0, in regions where the
field is differentiable.

In practice, we work with discretised fields as well as discret-
ised curl and divergence operators, which, in the simplest case,
are based on finite differences [3, 4]. Across field discontinuities
(fluid interfaces, boundaries, etc.), these operators assign non-zero
values to the discretised curld fcf and divd fdf (subscript d stands
for discrete). Moreover, in other smoother areas, the previous
terms may have small non-zero amplitudes due to the approxim-
ation of continuous operators. It is therefore useful to relax the
above constraints as

Ecf(curld fcf)≤ ςcf, Edf(divd fdf)≤ ςdf,

where Ecf and Edf are energy functionals (potentials) correspond-
ing to our variational prior on the distribution of the energy of
curld fcf and divd fdf, and where ςcf and ςdf are the respective en-
ergies of the said quantities. A similar energy principle is applied
to the noise (modelling error):

En(n)≤ ςn.

The noise energy functional En is typically defined in proportion
to the sample variance:

En(n) =
1
2
‖n‖2

2 =
1

2

∑

k∈K

|n[k]|2, (3)

conforming to a Gaussian prior if we wish to make a probabilistic
interpretation of the above (K is the set of sample indices). In
practice, the parameters ςcf, ςdf, and ςn are a priori unknown and
are left as tunable parameters of the method with the possibility
of adapting them to each problem.

As noted before, our prior on f is represented by a potential
E0( f ). As our solution, we seek the vector field that minimises E0
subject to the above constraints:

minimise
fcf , fdf ,n

α0E0( fcf + fdf)

subject to Ecf(curld fcf)≤ ςcf, Edf(divd fdf)≤ ςdf, En(n)≤ ςn,

fcf + fdf + n = y .

The Lagrange relaxation of the above problem for the first three
constraints yields:

minimise
fcf , fdf ,n

α0E0( fcf + fdf) +αcfEcf(curld fcf)

+αdfEdf(divd fdf) +αnEn(n)
subject to fcf + fdf + n = y ,

(4)

where we identify the fidelity and regularisation terms of (2) in ad-
dition to two new terms for Helmholtz decomposition. The α para-
meters in the Lagrange formulation take the place of ςcf,ςdf,ςns
as algorithm parameters.

To make the above general formulation specific, in the present
work we use the quadratic energy defined in (3) for the noise
component; for Ecf and Edf we use the `1 norm to promote sparsity,

having in mind that ideally curld fcf and curld fdf should be concen-
trated mostly at field discontinuities (which happen across lower
dimensional manifolds and are therefore sparse); and, finally, we
choose E0 to be of the form

E0( f ) =
1
p
‖R f ‖p

p

with p = 1 or 2 depending on the characteristics of the underlying
field, where R is a differential operator that is meant to capture
the dependency structure of f in space and possibly in time. The
`p norms here are defined over the finite set K of sample indices:

‖x‖p
p =
∑

k∈K

|xk |p, (5)

where | · | denotes the absolute value of a scalar or the magnitude
of a vector as appropriate (for a discussion of vector norms see
[4]).

The final energy to minimise, subject to fcf + fdf + n = y , is
thus of the form

E( fcf, fdf,n) =
α0

p
‖R( fcf + fdf)‖p

p +αcf‖curld fcf‖1

+αdf‖divd fdf‖1 +
αn
2
‖n‖2

2.
(6)

3. SOLUTION VIA CONVEX OPTIMISATION

We transform our original optimisation problem (4) with the ener-
gies defined in (6), to the following equivalent form, which—as we
shall see—is amenable to resolution by the alternating direction
method of multipliers (ADMM):

minimise
fcf , fdf ,u,v ,w

α0

p
‖u‖p

p +αcf‖v‖1 +αdf‖w‖1 +
αn
2
‖ fcf + fdf − y‖2

2

subject to u = R( fcf + fdf), v = curld fcf, w = divd fdf.

This formulation leads to the (scaled) augmented Lagrangian [6]

L( fcf, fdf, u, v , w,γ,δ,ε)

= α0

p
‖u‖p

p +αcf‖v‖1 +αdf‖w‖1 +
αn
2
‖ fcf + fdf − y‖2

2

+ ρ0

2
‖u −R( fcf + fdf)‖2

2 +ρ0〈γ, u −R( fcf + fdf)〉

+ ρcf

2
‖v − curld fcf‖2

2 +ρcf〈δ, v − curld fcf〉

+ ρdf

2
‖w− divd fdf‖2

2 +ρdf〈ε, w− divd fdf〉

with scaled Lagrange multipliers γ, δ, and ε. The augmented
Lagrangian is to be simultanesouly minimised in fcf, fdf, u, v , and
w, and maximised in γ, δ, and ε (the ρs are arbitrary positive
parameters). We use ADMM for this optimisation [6]. For the
above problem, each ADMM iteration involves minimising L se-
quentially in each of the first five variables, and taking gradient
steps in the direction of each of the last three.

For fcf and fdf we find the minimiser in each step by setting
the partial derivatives with respect to each of them equal to zero
and solving the resulting linear systems. This leads to the update
equations (superscript ∗ denotes the adjoint operator):

fcf =
�

αn +ρ0R∗R+ρcf curl∗d curld

�−1

�

αn(y − fdf) +ρ0R∗(u −R fdf + γ) +ρcf curl∗d(v +δ)
�

,
(A1)

fdf =
�

αn +ρ0R∗R+ρdf div∗d divd

�−1

�

αn(y − fcf) +ρ0R∗(u −R fcf + γ) +ρdf div∗d(w+ ε)
�

.
(A2)
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Regarding as to whether p = 1 or 2 is used for the u term, the
minimisation step in u is determined as follows. For p = 2, we set
the partial derivative with respect to u to zero in order to find the
update equation

u = ρ

α0+ρ

�

R( fcf + fdf)− γ
�

. (A3)

For p = 1 the minimiser is obtained by expanding the `1 and
squared `2 norms as sums and minimising them term by term. The
solution is given by vector shrinkage:

u =

 

1−
1

ρ0

α0
|R( fcf + fdf)− γ|

!

+

�

R( fcf + fdf)− γ
�

, (A3’)

where (a)+ = a is the positive part of a and | · | denotes the
magnitude of a vector (or tensor, depending on the range of R).

The updates for v and w take a similar form:

v =



1−
1

ρcf

αcf
|curld fcf −δ|





+

�

curld fcf −δ
�

, (A4)

w =



1−
1

ρdf

αdf
|divd fdf − ε|





+

�

divd fdf − ε
�

. (A5)

Finally, for γ, δ, and ε the update equations are given by
simple gradient ascent steps:

γ= γprev. + u −R( fcf + fdf), (A6)

δ = δprev. + v − curld fcf, (A7)

ε= εprev. + w − divd fdf. (A8)

The final ADMM iteration consists of updates (A1)–(A8) ap-
plied in sequence (with either (A3) or (A3’) depending on p).

4. EXPERIMENTS

In our first experiment, the goal was to separate a 3D gradient field
(curl-free), from an incompressible laminar flow (divergence-free),
in the presence of additive white Gaussian noise (total signal to
noise ratio (SNR) of 10 dB). The curl-free field in question was
the gradient of the function φ(x , y, z) = x y exp(−x2 − y2 − z2)
over the region [−2, 2]×[−2, 2]×[−2, 2] with sampling step 0.1.
For the incompressible component we simulated a laminar flow
with a typical parabolic intensity profile inside a cylindrical pipe
of radius 1 oriented along the z axis.

The following parameters were used in the experiment. For
regularisation operator R, we chose the simplest first order op-
erator, namely the vector gradient. E0 was defined with p = 1
(update equation (A3’)). Since the curl of fcf and the divergence of
fdf (and thus the corresponding terms in (6)) are expected nearly
to vanish, the values of parameters αcf and αdf do not considerably
affect the final outcome. They can both be chosen to be very large
(we set them to 106). α0 can always be set to 1 without loss of
generality (equivalent to dividing the objective by α0). Finally, αn
can be tuned according to noise level for optimal denoising, or set
using a method such as generalised cross-validation or SURE [7].
However, here we simply chose a value of 5 for it for the purpose
of demonstrating the decomposition without demanding optimal
denoising performance. To solve linear systems (A1) and (A2)
we used the conjugate gradient method with a maximum of 500
iterations per ADMM step and a tolerance of 10−12.

Table 1. Input and output SINR for curl- and divergence-free
components in the first experiment (see text); all values in dB

Input SINR Output SINR
curl-free comp. -2.49 7.22
div-free comp. 0.85 8.51

Fig. 1. Amplitude z cross-sections for the decomposition of an
analytical vector field into curl- and div-free components (first
experiment; see text). Top left: input (sum of curl- and div-free
fields corrupted by noise); top right: original field; centre left:
recovered curl-free component; centre right: original curl-free
component; bottom left: recovered div-free component; bottom
right: original div-free component.

The initial signal to interference plus noise ratio (SINR) for the
two components and the same quantity after ADMM iterations are
given in Table 1. Figure 1 shows the original analytical components
and the noisy measurements together with the recovered field
components. A very good separation is visibly achieved after
as few as 5 ADMM iterations, in spite of the significant overlap
between the large-intensity regions of the two components.

In the second experiment, we aimed to suppress distortion
appearing as a compressible term in a computational phantom
of blood flow in the thoracic aorta. The simplified aorta geo-
metry used in this simulation was extracted from a 3D, ECG-gated,
whole-heart, balanced Steady-State Free Precession (BSSFP) MRI
dataset acquired on a 3T clinical scanner (Siemens AG, Erlangen,
Germany) with a 3D radial trajectory based on a spiral phyllo-
taxis pattern [8]. The flow, which was assumed to be laminar,
was computed by numerically solving the Navier-Stokes equations
(using the transient solver of ANSYS® CFX® to account for the
time-dependent inflow), modelling blood as an incompressible
Newtonian fluid with a density of 1040 Kg/m3 and a dynamic
viscosity of 0.004 Pa.s., and ascribing no-slip conditions to the
walls of the thoracic aorta.

The flow was then distorted by the addition of a gradient
field and the outcome was further degraded by independent ad-
ditive white Gaussian noise (10 dB degradation relative to the
already distorted field), to reach a final SINR of −0.55 dB for the
flow. Since the flow is incompressible (divergence-free), it can be
separated from the gradient distortion using the proposed method.
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Table 2. Input and output SINR for incompressible blood flow in
the second experiment (see text); all values in dB

Input SINR Output SINR Output SINR (thresholded)
-0.55 4.41 11.00

Fig. 2. Suppression of non-zero-divergence distortion and noise for
blood flow in the thoracic aorta, vector glyph visualisation (second
experiment; see text). Left: distorted field; centre: divergence-free
output; right: divergence-free output after thresholding.

The algorithm parameters were set as follows. For the reg-
ularisation energy (E0), we used a quadratic term (p = 2) with
the vector gradient operator. αcf,αdf, and α0 were assigned the
same values as in the previous experiment. For faster execution,
we reduced the number of conjugate gradient iterations in steps
(A1) and (A2) to 100. Since reducing solver iterations in this
case is qualitatively comparable to additional regularisation, we
increased αn to 100 to compensate for this (once again without
optimising the value for best performance).

A total of 10 ADMM iterations were needed to achieve the
separation performance reported in Table 2. If we follow the de-
composition by a simple magnitude thresholding to suppress the
attenuated remnants of the distortive field, we achieve a signi-
ficant further improvement (thresholding is not possible before
decomposition since the two components have comparable mag-
nitudes). Vector glyph visualisations of the distorted and corrected
flow, produced using ParaView visualisation software (KITWare
Inc, NY, USA), can be seen in Figure 2. Figure 3 shows streamline
visualisations of the same two fields, produced using EnSight (CEI,
NC, USA). In addition to suppressing the non-zero-divergence
distortion in the flow, in terms of noise reduction, for the sum
of the two terms we achieved an SNR improvement from 10 dB
to 10.97 dB, which is comparable with the state of the art [2, 3].
Note that all these results were obtained without any substantial
optimisation of algorithm parameters.

5. CONCLUSION

In this paper we presented a variational scheme for the decom-
position of vector fields into their curl- and divergence-free com-
ponents (Helmholtz decomposition) in the presence of noise. We
formulated the decomposition as a convex optimisation problem
and proposed a numerical algorithm based on the alternating dir-
ection method of multipliers (ADMM) applied to the augmented
Lagrangian for its resolution. The effectiveness of the approach
was demonstrated by experiments consisting in the separation of
analytically computed curl- and divergence-free components in
the presence of noise (first experiment), and the suppression of
non-zero-divergence distortion and additive noise in simulated
incompressible thoracic blood flow (second experiment). Possibil-
ities for future research include using temporal regularisation for

Fig. 3. Suppression of non-zero-divergence distortion and noise in
blood flow in the thoracic aorta, streamline visualisation (second
experiment; see text). Left: distorted field; right: recovered
divergence-free field.

the global Helmholtz decomposition of 4D vector field data, and
adapting the approach to solve other problems of interest such as
phase-unwrapping in phase-contrast MR imaging of flow fields.
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