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ABSTRACT

The aim of this study is to obtain voxel-by-voxel images of binding parameters between [11C]-
umazenil and ben-
zodiazepine receptors using positron emission tomography (PET). We estimate �ve local parameters (k1, k2, B

0
max,

kon=VR, ko�) by �tting a three-compartment ligand-receptor model for each voxel of a PET time series.

It proves diÆcult to �t the ligand-receptor model to the data. We trade noise and spatial resolution to get better
results. Our strategy is based on the use of a multiresolution pyramid. It is much easier to solve the problem at
coarse resolution because there are fewer data to process. To increase resolution, we expand the parameter maps to
the next �ner level and use them as initial solution to further optimization, which then proceeds at a fast pace and
is more likely to escape false local minima.

For this approach to work optimally, the residue between data at a given pyramid level and data at the next level
must be as small as possible. We satisfy this constraint by working with spline-based least-squares pyramids. To
achieve speed, the optimizer must be eÆcient, particularly when it is nearing the solution. To that e�ect, we have
developed a Marquardt-Levenberg algorithm that exhibits superlinear convergence properties.
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1. INTRODUCTION

Receptors are sites that interact with extracellular physiological signals called neurotransmitters or ligands, and that
convert them into intracellular e�ects.1 Ligand-binding methods have been enormously important for mapping the
anatomical distribution of di�erent neurotransmitter receptors in the brain.

Several researchers attempted to obtain voxel-by-voxel images of ligand-binding parameters between [11C]-
um-
azenil and benzodiazepine receptors using Positron Emission Tomography (PET) in human volunteers.2{4 When
a molecule is known to interact selectively with speci�c receptors, which happens for the 
umazenil molecule and
the benzodiazepine receptor, one can use the molecule to probe in vivo the regional distribution of, and aÆnity to,
the relevant binding site. The procedure requires that one administers 
umazenil molecules that are labeled with a
positron emitting radionuclide, which then allows one to monitor the time course of the local tracer concentration.
The corresponding data-acquisition protocol involves multiple injections of radioligand; their e�ect is usually recorded
as an extensive time-series of PET volumes. By �tting one three-compartment ligand-receptor model per voxel, �ve
physiologically relevant local parameters can be estimated (k1, k2, B

0
max, kon=VR, ko�).

However, so as not to harm the patient, it is common to severely limit the amount of injected radioactivity
when acquiring PET scans. This typically results in noisy data. In the analysis of ligand-receptor interactions, the
problem is exacerbated because the cumulated dose of radioactivity must be shared between injections. Moreover,
the duration of individual volume acquisitions is short because it is necessary to achieve a suÆcient time resolution
when acquiring the series of PET volumes, which results in even noisier data. For these reasons, it proves diÆcult
to �t the ligand-receptor model to the data in a way that is sound from a physiological point of view.

An additional diÆculty comes from the complexity of the ligand-receptor model which requires an iterative
optimization procedure to achieve the �t, with the risk of getting trapped into a non-global optimum. This model
complexity also adds to the computational burden which is already large due to the amount of data to process.
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To get better results, a natural idea is to trade noise and spatial resolution. Traditionally, one selects a volume
of interest and averages data within. In this paper instead, we propose an alternative strategy based on the use of
a spatial multiresolution pyramid. Starting at its coarsest level, it is much easier to solve the problem because there
are fewer data to process and because data have been denoised by the averaging e�ect of the pyramid; the price to
pay is low spatial resolution. To achieve better resolution, we expand the parameter maps to the next �ner level and
use them as initial solution when applying the optimization procedure at this �ner level. Since the initial conditions
are already good estimates of the true solution, the optimization can proceed at a fast pace and is more likely to
escape false local minima. We proceed similarly until we have reached the desired spatial resolution.

For this approach to work optimally, it is important that the residue between data at a given pyramid level and
data at the next level be as small as possible. We satisfy this constraint by working with spline-based pyramids that
are optimal in the sense that the residue between levels is minimized with respect to a mean-squares criterion. To
achieve speed, it is crucial that the optimizer be eÆcient, particularly when it is nearing the solution. To that e�ect,
we use a Marquardt-Levenberg algorithm which exhibits superlinear convergence properties near the solution. The
superlinear regime is available at once, without the need to explore the surroundings of the solution in the parameter
space.

We have obtained parametric images both with, and without the proposed multiresolution strategy. We are able
to show that the proposed strategy is more robust since it results in images that are in better agreement with the
expected physiology; meanwhile, the computation time is signi�cantly reduced. Finally, the freedom to stop the
optimization at any resolution level o�ers us the possibility to perform measurements in a time and at a resolution
that can be clinically acceptable.

2. COMPARTMENTAL MODEL

2.1. Structure and Equations

Figure 1 shows the compartment model that is used in this study. It is a nonequilibrium, nonlinear model that includes
three compartments, one for the concentration of each molecule variety (unmetabolized 
umazenil in plasma, free and
nonspeci�c ligand that has left the plasma, ligand bound to receptor sites), and �ve parameters.5,6 The parameters
k1 and k2 are associated with the exchange of molecules between the plasma and the free ligand compartment; B0max

represents the concentration of receptors available for binding; kon and ko� are the association and dissociation rate
constants between free and bound ligand, respectively. The goal of this study is to adjust these parameters to �t
the model of Figure 1 to the experimental data. Unfortunately, the quantities kon and VR cannot be estimated
separately, where VR is a dimensionless coeÆcient that controls the volume of reaction|after correction for tissue
inhomogeneities. Only the ratio kon=VR can be identi�ed.

The model of Figure 1 has often been used to study in the human brain the binding of 
umazenil, which is a
convenient ligand because it is an antagonist with high aÆnity and selectivity for central benzodiazepine receptors.7{10

In this paper, three injections of 
umazenil (FMZ) are performed. A �rst injection of labeled [11C]FMZ at time T1
is followed by a displacement injection at time T2, where the dose contains only unlabeled FMZ ligand. The last
injection at time T3 contains a mixture of FMZ and [11C]FMZ. The unlabeled and labeled ligand kinetics are assumed
to be similar; thus, the model contains two parts with the same structure and the same parameters.

To estimate the arterial concentration of labeled and unlabeled ligand, C�p(t) and Cp(t), respectively, we draw a
series of plasma samples and measure C�pm(t), the concentration of labeled

� ligand in the plasma. This concentration
must be corrected because of metabolite buildup; we proceed as follows:

C�p(t) =

8<
:

C�pm(t) (A1 exp(�B1 (t� T1)) +A2 exp(�B2 (t� T1))) T1 < t � T3

C�pm(t) (A1 exp(�B1 (t� T3)) +A2 exp(�B2 (t� T3))) T3 < t;
(1)

�We can assume with con�dence that our injections provide the sole source of labeled ligand. This con�dence vanishes for
unlabeled ligand, because some amount is naturally present at all times in the body due to physiological processes. Thus, Cp
cannot be measured directly but must be inferred from C

�

p .

Proc. SPIE Vol. 43212



C�p

Cp

Arterial concentration

M�
f+ns

Mf+ns

Free ligand and nonspeci�c binding

M�
s

Ms

Bound ligand

-

k1

-

k1

�

k2

�

k2

-

kon
VR

(B0max �M�
s �Ms)

-

kon
VR

(B0max �M�
s �Ms)

�

ko�

�

ko�

Labeled ligand (PET experimental data)

Unlabeled ligand

Figure 1. Model of the 
ow of FMZ concentration

where An and Bn represent the bi-exponential coeÆcients used for metabolite correction. The unlabeled ligand
concentration related to the injection dose is then given by

Cp(t) =

8>>>>><
>>>>>:

0 t � T2

J2
J�1

C�p(t� T2) T2 < t � T3

J3
J�3

C�p(t� T3) + Cp(T3)
C�p(t)

C�pm(t)
T3 < t;

(2)

where J�i and Ji correspond to the dose at time ti of labeled and unlabeled ligand, respectively.

Finally, the system of di�erential equations that describes Figure 1 can be established as follows:

dM�
f+ns

dt
= k1 C

�
p(t)� k2M

�
f+ns(t)�

dM�
s

dt
(3)

dM�
s

dt
=

kon
VR

(B0max �M�
s (t)�Ms(t)) M

�
f+ns(t)� ko� M

�
s (t) (4)

dMf+ns

dt
= k1 Cp(t)� k2Mf+ns(t)�

dMs

dt
(5)

dMs

dt
=

kon
VR

(B0max �M�
s (t)�Ms(t)) Mf+ns(t)� ko� Ms(t); (6)

where Equations 4 and 6 include the interaction between the labeled and the unlabeled ligand.

The experimental data f(x; ti) at time ti collected by the PET scanner at location x measures the accumulated
radioactive decay between time ti�1 and ti. We model it by

g(x; ti) =
1

ti � ti�1

Z ti

ti�1

�
M�

f+ns(x; t) +M�
s (x; t) + FV C�pm(x; t)

�
dt;

where the parameter FV represents the fraction of blood present in the tissue volume, and where the various con-
centrations all depend on the �ve parameters we want to measure, thanks to the model of Figure 1.
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2.2. Experimental Protocol

The protocol consists of three injections of radiolabeled 
umazenil and/or cold 
umazenil. At the beginning (T1 = 0),
about 15mCi of [11C]FMZ were injected intravenously over a 1-minute period. At T2 = 39 min., an intravenous
injection of 0:01mg=kg of unlabeled ligand was performed (displacement injection). At T3 = 69 min., a third
injection of a mixture of labeled (about 9mCi at time of the injection) and unlabeled 
umazenil in the same syringe
(coinjection), was performed. Although this third injection introduced a lower amount of radioactivity than the �rst,
the corresponding amount of labeled 
umazenil was much higher because of the physical decay of [11C] activity that
took place between T1 and T3.

The whole experiment lasted about two hours, during which �fty sequential PET scans of size 128 � 128 � 32
and of increasing duration (from 30 seconds to 5 minutes) were reconstructed after each injection of of radiolabeled
and/or cold FMZ.

The identi�cation of the �ve model parameters � = (k1, k2, B
0
max, kon=VR, ko�) requires the knowledge of the

blood time-activity curves C�pm(t). During the study, seventy arterial blood samples were collected from the radial
artery. The time interval between each sample varied from �ve seconds (during the two minutes following each
injection of labeled FMZ) to 10 minutes (when the change in the blood radioactivity concentration slowed down).
The time-activity curves were then corrected for the physical decay of [11C] activity and the plasma radioactivity
concentrations were translated to FMZ time-concentration curves using the corresponding speci�c radioactivity of
[11C]FMZ. The values of the coeÆcients for metabolite correction were A1 = 0:7, A1 = 0:13, B1 = 0:35, and B2 = 0.

Finally, the value of the fraction of blood present in the tissue volume is assumed to be FV = 0:04.

2.3. Parameter Identi�cation

In this study, we identify for each position x the model parameters �(x) by minimizing the weighted least-squares
cost function de�ned by

"2(x;�) =
mX
i=1

wi(x) (f(x; ti)� g(x;�; ti))
2

where fti : i 2 [1 : : :m]g is the set of data sampling times, where wi(x) is the weight associated at time ti with
the decay-corrected measures f(x; ti) at position x, and where g(x;�; ti) is the value predicted by the model with
parameters �, according to the experimental protocol. The cost function "2 is minimized by using a Marquardt-
Levenberg algorithm.11 The parameter values that minimize "2 give the best estimate and are noted by �0.

We have no analytical solution to the system of di�erential equations 3{6, especially considering the e�ect of the
experimental boundary values C�pm(t) given in Equation 1; for this reason, we proceed numerically. Similarly, the
gradient @"2=@� is estimated by a �nite di�erence.

The choice of a weighting matrix is a very important step. Absolute scaling is paramount since the identi�cation
results are identical when the weights are multiplied by a constant factor, but their relative values should re
ect the
relative credibility of the measures. If the variance denoted by var(f(x; ti)) is assumed to be known for each measure
f(x; ti), then the optimal choice for weights is given by12

wi(x) =
1

var(f(x; ti))
:

In practice however, the value of data variance is not often well known. Here, we have used the weight de�ned by

wi(x) =
ti � ti�1
f(x; ti)

;

which is a reasonable choice in experiments involving radioactivity counts in an image.13

Figure 2 shows typical time-concentration curves obtained with our multi-injection protocol. These curves corre-
spond to the large regions of interest (ROI) used in most quanti�cation studies and include from about 150 to 300
pixels, both from receptor-rich and receptor-poor structures, along with an ROI consisting of a whole slice of the
brain that contains an average density of receptors. It is easy to discern the �rst increase in radioligand concentration
after the injection at time T1 = 0 min. of [11C]FMZ, which reaches a maximum that depends on the receptor density,
and gently decays thereafter. The concentration then plummets at time T2 = 39 min., due to the displacement
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Figure 2. Several time-concentration curves
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injection that introduces a large amount of unlabeled ligand which quickly washes the labeled bound ligand from
the receptor sites, denoting a fast dissociation rate. Finally, the coinjection of labeled and unlabeled FMZ at time
T3 = 69 min. produces a sharply rising peak in the time-concentration curves due to the large amount of injected
FMZ, after which the decay of the radioactive ligand resumes.

2.4. Error Analysis

We estimate the parameter uncertainties by using both the information matrix and the measure of the residual di�er-
ence between experimental data and model-predicted values. This methodology provides an approximate parameter
covariance matrix. From this matrix, we deduce an estimation of the standard error of each parameter.

The starting points of most studies on parameter error estimates are the sensitivity functions which are de�ned
as the derivatives @g(x;�; ti)=@�k and can always be calculated using a numerical procedure. Let sk(x;�; ti) be the
sensitivity function corresponding to a parameter �k and let S be the so-called sensitivity matrix de�ned by

[S(x)]i;k = sk(x;�; ti):

Moreover, let r be the number of parameters (�ve in the present case), and letW be the diagonal matrix composed
of the elements wi(x) which is called the weighting matrix. The matrix M = S>W S is called the information
matrix. If the data variances are unknown and if the weighting matrix is correctly justi�ed, an approximation ~C of
the covariance matrix C can be constructed as follows12,14{16:

~C = s2M�1;

where

s2 =
"(�0)

m� r
:

Finally, assuming that the sampling distribution of the estimate �0 is approximately Gaussian, an estimate of the
standard deviation ��k =

p
var(�k) of the parameter �k is given by the square root of the k-th diagonal component

of ~C, denoted by [ ~C]k, as can be seen in12,14

��k =

q
[ ~C]k = s

p
[M�1]k:
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3. MULTIRESOLUTION

3.1. Motivation

Given the time-series of data f(x; t) and measurements C�pm(t), our goal is the estimation of the parameter map
�0(x). If we proceed directly, as described in Section 2.3, then we have to face a diÆcult problem because the high
level of noise inherent in the experimental data will perturb the solution of the system of di�erential equations 3{
6. To lessen the in
uence of noise, we are willing to trade it with spatial resolution: noise reduction is generally
achieved by any of a number of smoothing mechanisms, the simplest being the selection of a region of interest and
the averaging of data within|we shall soon consider a better method.

Meanwhile, our optimization is based on a Marquardt-Levenberg algorithm. Thus, we must �rst obtain an initial
solution before we let the optimizer re�ne it. Since no a priori knowledge is available, this initial map of parameters
is usually selected to be constant 8x, which may markedly di�er from the optimal solution. Thus, the possibility
that the optimizer gets trapped into a non-global minimum during its search is likely. There are two complementary
ways to avoid this condition. First, a reduction in the complexity of the data (i.e., of the data amount) will lead
to a less convoluted criterion function "2(�), which in turn will obliterate many a local minimum. This increases
the odds of the optimizer to locate the global optimum. Second, a better initial solution will not only help bypass
non-global optima, it will also bring large speed bene�ts.

One may think that a better initial condition leads to a faster optimization simply because the optimizer has
less territory to explore before it �nds �0. While this is true, the e�ect of this mechanism becomes irrelevant when
compared to a far more potent one, namely, the superlinear property that a Marquardt-levenberg optimizer exhibits
near an optimum. This superlinearity strongly boosts the speed of convergence; unfortunately, it comes at the price
of a poorer performance than some optimizers (e.g., steepest gradient) when the actual parameters being re�ned
are remote from a minimum. Thus, the availability of a good starting condition is a very critical aspect of the
Marquardt-Levenberg optimizer.

A dyadic multiresolution pyramid o�ers an elegant solution to both the noise problem and to the initial condition
problem. Let f (j)(x; t) be the representation of our data at resolution level indexed by j, where (j + 1) is the next
�ner level, up to the original (�nest) resolution J of the pyramid. For all resolutions but the �nest one, the noise will
have been reduced by the smoothing property of a pyramid. Moreover, the data will have been made less complex
by the downsampling operation. Both e�ects concur to the avoidance of non-global optima and lead to increased
robustness.

Furthermore, suppose that we have at our disposal the map of optimal parameters �
(j)
0 obtained by the optimizer

at the j-th level. Then, we can expand this map to the next resolution and use it as initial condition for optimizing
at level (j + 1), where the amount of details that tell the two resolutions apart is hopefully small because most of
the energy of practically all images or biomedical volumes is concentrated toward low frequencies. This will favor
the establishment of the superlinear regime of the Marquardt-Levenberg algorithm. By proceeding recursively, we
can bene�t from speed and robustness all the way up to the �nal J-th level.

Performing optimization at the coarsest pyramid level is an easy task too, even without the bene�t of an informed
initial solution: there is few data to process, which allows for a thorough exploration of the space of parameters � at
virtually no computational cost. Moreover, the paucity of data tends to simplify the topology of the criterion "2(�);
in addition, the data has undergone the largest amount of smoothing, which favors a well-de�ned optimum of the
criterion.

While building the pyramid, we smooth level (j + 1) and then downsample it to get level j. For optimal noise
reduction, it is important that the amount of smoothing before downsampling be just right, so that no aliasing be
present, nor oversmoothing. For best performance, it is also important that the amount of detail that distinguishes
one pyramid level from the next be as small as possible. We satisfy these two conditions by using a least-squares
pyramid based on splines.17 The essential property of this pyramid is that the �delity of any level to the next �ner
level is the largest possible, in a least-squares sense.

The pyramid algorithm that we cited17 is most general. We will shortly derive a version that applies to the
speci�c context of a dyadic pyramid; but �rst, we must establish the grounds for a continuous model of our data.
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3.2. Interpolation Model

Let �n be the B-spline of degree n de�ned as the n-fold convolution of �0(x) = 1
2 (sign(x+

1
2 )� sign(x� 1

2 )). Some
of its many interesting properties are a �nite-support of width (n + 1), an (n + 1)-th order of approximation, and
multiresolution space embedding.

The cardinal spline �n is an interpolating function that satis�es �n(k) = Æk and that shares the properties of
�n mentioned above, except that it has an in�nite support. Since its approximation order is also (n+ 1), it closely
approximates the sinc function, and is very appropriate for interpolation in theory; in practice, its in�nite support
forbids its direct use, an inconvenience that we are about to lift. It is de�ned by

�n(x) =
X
k02Z

(bn)
�1

(k0)�
n(x� k0);

where the discrete sequence (bn)�1 (k) has the z-transform

(bn)�1 (k)
z
 !

1

�n(0) +
Pbn2 c

k=1 �n(k) (zk + z�k)
: (7)

We can thus easily express a continuous model of a function f given by a sequence of samples f(k) as

f(x) =
X
k12Z

f(k1) �
n(x� k1)

=
X
k12Z

f(k1)
X
k02Z

(bn)�1 (k0)�
n(x� k0 � k1) =

X
k22Z

X
k12Z

f(k1) (b
n)�1 (k2 � k1)

| {z }
ck2

�n(x� k2)

=
X
k2Z

ck �
n(x� k);

where we have just converted the in�nite support of the interpolating basis function �n into the �nite support of
�n, without approximation, but at the cost of the determination of coeÆcients ck. As seen in the derivation, these
coeÆcients can be obtained by digital �ltering; an eÆcient procedure is described in.18 Note that, to obtain the
continuous model for volumetric instead of linear data, it is enough to consider the tensor product of splines.

3.3. Pyramid Algorithms

Multiresolution space embedding is the most relevant property of splines for pyramids. For an odd degree n, it allows
one to express an expanded B-spline as a linear weighted sum of normal B-splines

�n(
x

2
) =

X
k2Z

un2 (k)�
n(x� k);

where un2 is the binomial �lter de�ned by

un2 (k) =

8<
: 2�n

�
n+ 1

k + n+1
2

�
jkj � n+1

2

0 n+1
2 < jkj:

3.3.1. Expansion

Let f0(x) =
P

c0(k)�
n(x� k) be a known function. We want to construct a version f�1(x) =

P
c�1(k)�

n(2x� k)
that is expanded by a factor two and that is as close as possible to f0, in a least-squares sense (in fact, we show that

we can even reach perfection with f0 = f�1). This algorithm will be used to obtain �(j) out of �
(j+1)
0 .

f0(x) =
X
k2Z

c0(k)�
n(x� k) =

X
k2Z

c0(k)
X
l2Z

un2 (l)�
n(2x� 2 k � l) =

X
m2Z

X
k2Z

c0(k)u
n
2 (m� 2 k)

| {z }
c�1(m)

�n(2x�m):

In short, the expansion of the coeÆcients is given by c�1(k) = (un2� "2 (c0)) (k), where the operator "2 (�) upsamples
its argument, and where the operator � represents a discrete convolution such that (u � v)(k) =

P
l2Z u(l) v(k � l).
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3.3.2. Reduction

Let hf(�); g(�)i =
R1
�1

f(x) g(x) dx represent the scalar product of two functions. Let f1(x) =
P

c1(k)�
n(x=2 � k)

be a reduced version of f0. We want that the residual error (f1�f0) be orthogonal to the space of functions that can
be represented by the coarser basis function �n(�=2). This is equivalent to mean-square minimization, or to asking
that hf1 � f0; f1 � f0i be minimal. Thus, we write

0 = hf1(�)� f0(�); �
n(
�

2
� k)i 8k 2 Z:

Developing this requirement, we obtainX
l2Z

c1(l) h�
n(
�

2
� l); �n(

�

2
� k)i =

X
l2Z

c0(l) h�
n(� � l); �n(

�

2
� k)i:

Because of space embedding, and since a B-spline is de�ned as an n-fold convolution of a symmetric function,

2
X
l2Z

c1(l)�
2n+1(k � l) =

X
l2Z

c0(l)
X
m2Z

un2 (m) h�n(� � l); �n(� � 2 k �m)i:

By rearranging the terms, using again symmetry and n-fold convolution, we �nally get

c1(k) =
1

2

��
b2n+1

��1
� #2

�
un2 � b

2n+1 � c0
��

(k); (8)

where b(k) = �(x)jx=k and where #2 (�) downsamples its argument by two. Note that, should several pyramid levels
be computed at once, additional computational savings are considered in.17

3.4. Signal Extension

Section 3.3 has shown that a very limited repertoire of operations is suÆcient to perform either expansion or reduction
of data by a factor two in a least-squares sense: upsampling, downsampling, and discrete convolution. Since un2 and
bn are FIR �lters, the only apparent diÆculty comes from the IIR �lter b�n of Equations 7 and 8. We show now
how to adapt a previously published algorithm18 to suit our present needs.

Practical signals are always �nite. Thus, data extrapolation is necessary to calculate the in�nite sum of a
convolution. A popular extrapolation method is known as zero padding; though the simplest of all, it compromises
ease of implementation for quality because an arbitrary value (that is, zero) leaks into the signal for as far as the
convolution �lter extends, up to in�nity in the b�n case. Moreover, a zero-padding method creates an arti�cial edge
between the arbitrary value zero and the endpoint values of the data.

Another solution|signal double-mirroring around the endpoints|can be found in the literature,18 where ob-
served instead of arbitrary data values are used to perform the extrapolation; moreover, no arti�cial edge is created
at the data endpoints. A serious drawback of this otherwise appealing extrapolation method is as follows: let a signal
s(x), x 2 [x0; x1] be extended as �

s(x+ x0) = s(x0 � x)
s(x+ x1) = s(x1 � x):

Then, it is not diÆcult to show that s(x) = s(x+2 (x1� x0)), which implies that the signal is periodic. For discrete
data sk, k 2 [1 : : :K], the endpoints proposed in18 are x0 = 1 and x1 = K, in which case the resulting period 2K�2
is inadequate for a dyadic pyramid: among other reasons, if K is even, then the period of a reduced version of the
data will be K � 1 = (2K � 2)=2, which is odd and cannot be further reduced.

Here, we propose instead to extend the data by the simple periodization s(x) = s(x + K). No arbitrary value
is introduced, but an edge may be present at the data endpoints. Along with a shift of the range of validity from
[1 : : :K] to [0 : : :K � 1], this modi�cation requires that Equations (2.6) and (2.5) in18 be rewritten as follows:8>>>><

>>>>:

y+(0) = 1
1�zK

i

�
x(0) +

PK�1
l=1 zli x(K � l)

�
k = 0

y+(k) = x(k) + zi y
+(k � 1) k 2 [1 : : :K � 1]

y(K � 1) = �zi
1�zK

i

�
y+(K � 1) + zi

PK�2
l=0 zli y

+(l)
�

k = K � 1

y(k) = zi (y(k + 1)� y+(k)) k 2 [0 : : :K � 2]:

These expressions are exact. Of course, since the decay of the sequence b�n is exponential, it is also possible
to truncate the sum early, as soon as the terms zli take a negligible value. Alternatively, one can perform the
convolution y = b�n � x in Fourier, by using the substitution z = ej ! in Equation 7.
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4. EXPERIMENTAL RESULTS

We have acquired data according to Section 2. So as to conform to common practice in the �eld, we have considered
one slice at a time (2D processing), even though it may be more bene�cial to consider the whole volume simultaneously
(3D processing). Each slice has size 128� 128.

The �rst task is the generation of the multiresolution pyramid for the time-series of PET data. For this paper,
we achieved the deepest possible depth and produced an eight-level pyramid with sizes 128� 128, 64� 64, 32� 32,
16 � 16, 8 � 8, 4 � 4, 2 � 2, 1 � 1. Figure 3 shows the four �nest levels of the pyramid at time ti, where the �rst
row gives the amount of e�ective data, which results in varying sizes of �xed resolution, and where the second row
lets the resolution vary while �xing the size. Note that these two representations are exactly equivalent in terms of
intrinsic data amount. These data are to be compared to those of Figure 4.

Then, starting with the 1 � 1 level, we consider the data time-series and �t the compartmental model. This
produces �ve 1 � 1 parametric maps, one for each component of �. The curve showing the average density of
receptors of Figure 2 corresponds to the 1� 1 map for B0max. This map is expanded to yield the initial condition for
the next level, as explained in Sections 3.1 and 3.3.1. This procedure is iterated until we reach the �nest level. We
show in Figure 5 the concentration B0max that represents the best map resulting from optimizing at some level, and
that gives at the same time the initial condition for the next level. The spatial resolution increases from left to right
as 1

8 ,
1
4 ,

1
2 , and 1 (full size) in the last column.

All images have the same spatial extent; only their resolution di�er. We observe that the result at half resolution
is very close to the result at full resolution; from a clinical perspective, the di�erence in quality is immaterial, while
the gain in speed is certainly signi�cant (four times faster).

5. CONCLUSION

Given a time series of noisy positron emission tomography data of the head and given a time series of blood samples,
we have proposed a solution to the problem of �tting �ve parameters of a compartmental model for ligand-receptor
interactions. We have used a spline least-squares pyramid to trade noise for spatial resolution; at each pyramid level,
we have optimized the �t thanks to a Marquardt-Levenberg algorithm. By propagating the �t from a coarse pyramid
level to the next �ner one, we were able to gain in robustness and speed; this scheme bene�ts strongly from the high
quality of the pyramid and from the superlinear performance of the optimizer near the optimum. We have performed
an experiment with real data that shows that an additional substantial gain in speed can be achieved by stopping
the optimization at half resolution, without prejudice to the clinical applicability.
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