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Fig. 1. Left: Positron Emission Tomography (PET) of a human
brain, which depicts its functional activity. Right: Magnetic Res-
onance Image (MRI) of the same brain, which depicts its chemical
composition.

Abstract— Mutual information is an attractive registra-
tion criterion because it provides a meaningful comparison
of images that represent different physical properties. In
this paper, we review the shortcomings of three published
methods for its computation. We identify the grid effect
and the overlap problem as the most severe artifacts that
these methods face, and propose a solution based on irreg-
ular sampling to solve for the grid effect. By implementing
irregular sampling as stochastic sampling, we see that our
solution covers the two problems at once, as the overlap
problem ceases to be an issue, too.
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I. INTRODUCTION

Since 1995, when it has been first proposed in [1] and [2], the
registration criterion called “mutual information” (MI) has gained a
wide acceptance in the medical community. Its purpose is to give
a quantitative measure of the degree similarity between two images
or volumes. By varying the relative position of the images (e.g., by
rotating, translating, rescaling, and more generally warping one of
the two), an optimal position is found such that MI is maximized.
This position is said to give the best alignment.

The maximization of the grayscale correlation of two images plays
a similar role but has a significant drawback: it results in the expected
alignment only when the two images are close to being a copy of each
other, up to noise and up to the deformation due to their misregis-
tration; but correlation fails when the images are too different from a
photometric point of view, for example when they are anticorrelated.
By contrast, MI is impervious to such effects because it measures
how well, on average, any given graylevel of one image can predict
the graylevel of the other image at the same position. This measure
of the quality of prediction is performed without ever attempting to
give any specific prediction. For this reason, MI can cope with pairs
of images for which there would exist no bijective relation between
graylevels. This is typically the case when one attempts to register
two images that were acquired by very different modalities, such as
PET vs. MRI, a problem which is illustrated in Figure 1.
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The discrete entropy! H{f} of image f and the discrete mutual
entropy H{f, g} of images f and g are closely related to their discrete
mutual information I{f, g}, because the latter is defined as

{f,g;F,G} H{f}+ H{g} — H{f,9} (1)
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where h is the joint histogram of both datasets, and where hy(¢) =
>ovec M#,7) and hg(y) = 3 ep h(é,7) are the marginal his-
tograms of the joint histogram h. The normalizing factor N =
sk 2e R(@,7) is the total of all histogram entries, and ¢,
7, run over the discrete sets of graylevel intensities F, G, of im-
ages f, g, respectively. We note that F and G participate to
the definition of I; it would therefore be meaningless to compare
I{-,F,G} to I{,xF' ,G'} if F # F' or G # G’. This is one of
the reasons for which Equation 2 should never be thought of as a
quantized version of the continuous form of the mutual information

I=[[p($7) logz(%)d@i%

In this paper, we concentrate on the computation of the joint his-
togram h and leave aside many aspects related to the optimization
of I, to the specification of the geometric transformation g used to
perform registration, and to the interpolation required for applying g.
It would appear at first that computing a histogram is a trivial oper-
ation, but it happens that MI exhibits a surprising sensitivity to the
specifics of histogram computation—the Devil is in the details. Arbi-
trary choices (e.g., interpolation model, choice of the samples used in
estimating h) are a necessary ingredient of any practical implementa-
tion of a registration method based on MI. In terms of information,
the uncontrolled introduction of arbitrariness may have severe effects.
In particular, we show experimentally that computing h by sampling
the images on a regular lattice leads to undesired artifacts. By re-
sorting to stochastic sampling, we effectively remove some degree of
arbitrariness (the fact that the sampling was regular) and are able to
mitigate these effects.

II. PrREVIOUS WORK

Three major ways to compute h have been published in the con-
text of MI. The authors of [3] adopt a two-tiered probabilistic view
where the entropy is seen as the expectation—computed as an em-
piric average—of the logarithm of a probability density, and where
this same probability density is estimated by a superposition of Gaus-
sian densities. Their final expression for the joint entropy of image
f(-) and of transformed image g(g(+)) is

H{f ()} =3 > p(¢,7) loga p(¢,7)
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1By “entropy”, one must understand the entropy of the data
graylevels.



We observe that two independent sets of random samples are used:
A and B, with N4y = card(A) and Ng = card(B). In addition, we
observe that no discrete set of intensities F or G is explicit; this is
a hint to the fact that this approach approximates I rather than
I. We note also that, contrary to the claim made in [3], the use of
Gaussian densities has the unexpected technical consequence that the
marginal probability density of the reference image is made to depend
on the geometric transformation. This is unfortunate as, obviously,
the true probability density of an image that never changes should
itself never change. Finally, MI is computed according to Equation 1.
This approach has not been implemented often, perhaps in reason
of practical difficulties: for example, the computation of p(¢,v) is
costly because Gaussian densities have an infinite extension, and N
has to remain modest, which leads to a bad approximation of I. In
the present paper, we call this approach “Gaussian Parzen” (GP).

The authors of [4] propose a very different approach that they call
“Partial Volume” (PV). In their approach, an explicit joint histogram
is constructed as a sum of independent contributions, while no explicit
transformed image needs be built. Let g be the geometric operation
applied to image g; then, the pixels f(k) of the reference image are
aligned with g(g(k)). If one would produce g(g(k)) by linear inter-
polation, one would have to compute a weighted sum of intensities
g9([g(k)] + A1), where [] indicates rounding to the nearest integer,
and where A1 is a symbolic representation of the coordinate offsets
needed to reach some close-range neighborhood of [g(k)]. The PV
method puts emphasis on the weights of this sum. More precisely,
the joint histogram can be expressed as [5]

W, v) = Y 8(f(k1)—¢) > 8(g(ka) —7) B (g(kr) — ka),
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where 8™(x) is the tensor-product B-spline of degree n. In this ex-
pression, we observe that only terms of the form g(k) are computed,
but that no term of the form g(g(k)) appears. Consequently, for this
approach to the computation of h to be well-behaved, it is necessary
that D C Z9, with ¢ = 2 for images, and ¢ = 3 for volumes, respec-
tively. Meanwhile, the discrete set F must be identical to the range of
the quantized image f, same for G and g. (Some freedom in the spec-
ification of F and G can be recovered by re-quantizing the images.)
Finally, MI is computed according to Equation 2.

In [6], we have proposed another method that is based on Parzen
windows. We bypass the expectation process of GP and replace the
Gaussian weight functions by B-splines. This allows us to produce
a simple expression of the gradient 0I/0g. Contrary to GP, our
expression is exact. Moreover, the marginal histogram of the reference
image f does not depend anymore on the transformation g. Our joint
histogram is computed as

hov) = B(F(x) — ) B (9(g(x)) — ). (3)
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We observe that interpolation of g is required since terms of the form
g(g(x)) do appear. To avoid having to interpolate f, the condition
D C Z9 is assumed in [6]. Finally, MI is computed according to
Equation 2 with explicit F and G; these sets can be arbitrarily chosen.
In the present paper, we call this approach “Spline Parzen” (SP).

III. GRID EFFECT

We now perform a simple experiment to investigate the behavior of
MI. We take the classical (512 x 512) Lena image in the role of both f
and g, and let the transformation g(+; 0, y) be a vertical translation of
y pixels. We let D be such that no border effect occurs, by ignoring a 5
pixel-wide margin on each side of f(-) and g(g(+;0,y)). We present the
resulting plot of I vs. y in Figure 2. The top curve corresponds to the
PV approach, while the bottom curve corresponds to SP. Both satisfy
card(F) = card(G) = 200. We observe a well-defined MI maximum at
v = 0, a translation for which f = g(g). From this observation, many
papers of the literature move on to other topics such as optimization
or implementation issues, but we think there is more to say on the
definition of MI and of its associated joint histogram.

We now change slightly the conditions of the experiment, by in-
troducing a constant horizontal offset of 2 pixels. In other words, we
consider g(g(+;z,y)) with & = 2 instead of x = 0. We present the
resulting plot of I vs. y in Figure 3, where it is obvious that the slight
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Fig. 2. Mutual information vs. translation of the Lena image for two
different methods. Perfect registration is obtained for y = 0.
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Fig. 3. Mutual information vs. translation of the Lena image for two
different methods, with irreducible offset (see text).

change that we introduced produces dramatic effects. The top curve
(PV) now exhibits many local extrema, which makes for a very diffi-
cult optimization problem. Moreover, the pattern of maxima clearly
coincides with the grid of samples over which f is defined; as a matter
of fact, the global maximum (for the range considered) is integer for
the PV method, with gypy = —1. The SP method suffers less from
these artifacts which are called “grid effect”; nevertheless, they are
not totally suppressed. The global maximum ggp ~ —1.4 is likely to
be more correct than ypy—we do not expect § = 0 when x = 2—
but is perhaps disturbed by the grid effect, too. The conditions of
Figure 2 are exceptionally favorable, in the sense that the trajectory
in the space of parameters—in the present case, the (z,y)-space—
reaches the global optimum. In practice, we are never so lucky, and
the conditions of Figure 3 are much more representative of a real
registration task.

The specific interest of MI is to solve for registration problems
where correlation methods fail; in other words, where f and g are
very different. For example, translating the volume data of Figure 1
along an axis perpendicular to the displayed slice results in the even
stronger grid effect of Figure 4. These curves have been obtained
by setting again the arbitrary choice card(F) = card(G) = 200. The
PV method has many local maxima which are strongly biased toward
integer values, while the SP method is biased toward half integers.
We see that the bias is lesser for SP than for PV, which reduces the
risk of being trapped in a non-global optimum. It would be even
better if there would be no bias at all; its removal is the topic of
Section IV.

As large as it is, the grid effect is not the ultimate difficulty that
classical methods encounter: difficulties could have been further rein-
forced, had we not applied a mask on D to keep constant the domain
of overlap? between f and g. Allowing now card(D) to vary pro-
portionally to the area of overlap results in the curves of Figure 5,

2We were able to control the overlap in the present experiment
because we knew in advance its extent, but this knowledge would not
have been available in a real registration task.
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Fig. 4. Mutual information vs. translation of a pair of biomedical

volumes for two different methods, with irreducible offset and
dissimilar data (see text).
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Fig. 5. Mutual information vs. translation of a pair of biomedical vol-
umes for two different methods, with irreducible offset, dissimilar
data, and varying overlap (see text).

where we observe a severe loss of regularity—the overlap problem—in
addition to the grid effect. The curves are not continuous anymore,
which makes for a very difficult optimization problem. We propose in
Section V a solution to the overlap problem that restores continuity.

IV. IRREGULAR SAMPLING

‘We propose to remove the assumption D € Z9 in Equation 3. The
claim of this paper is that irregular sampling does away with the
grid effect. Thus, irregular sampling is extremely beneficial to the
robustness and accuracy of registration; the cost is that interpolation
is needed to compute f(x), in addition to g(g(x)). We substantiate
our claim by producing the bottom curve of Figure 6, where the
conditions are the same as those of the SP curve of Figure 4, but for
the fact that the samples {x} = D are now realizations of a uniform
distribution that covers at least the common support of f and g(g).
Those realizations of x that fall outside the common support are
rejected. Obviously, the bottom curve of Figure 6 does suffer much
less from non-global maxima than the curves of Figure 4 and is easy
to optimize, particularly near the expected global optimum.

V. OVERLAP AND STOCHASTIC SAMPLING

Stochastic sampling offers the freedom to specify an arbitrary num-
ber of samples Np = card(D). On one hand, reducing the number of
samples can accelerate the computations. On the other hand, since
we have introduced a random process, our MI criterion is not de-
terministic anymore; a reduction in Np leads to a greater variance
VAR{I}, and to potential aliasing. Figure 6 shows what happens
if we let the nominal Np be reduced by a factor {1,2,4, 8,16}, from
bottom to top—The bottom curve has been built with the same nom-
inal number of samples as in Figure 4, which corresponds to critical
sampling (1 sample per voxel, on average). We see that the change
in variance is not the only effect; the amount of mutual information
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Fig. 6. Mutual information vs. translation of a pair of biomedical vol-
umes for the proposed method. The number of samples card(DD)
decreases from bottom to top.
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Fig. 7. Mutual information vs. translation of a pair of biomedi-

cal volumes when estimating the joint histogram by stochastic
sampling. The dotted curve indicates +3 standard deviations
(0.99998 percentile for a Gaussian distribution). The plain curve
is the average of 100 realizations.

(i.e., the measure of the quality of prediction) increases when reducing
Np. This has for consequence that we cannot allow for a prestored
set D of coordinates, as comparing I{f, g(g1)} to I{f,g(g2)} would
be meaningless because of a systematic bias if g1 and go are such
that Np, # Np,—that is, if there is a change of overlap.

We have estimated the empirical standard deviation of MI for the
bottom curve of Figure 6 by computing 100 realizations of this curve.
We present the result in Figure 7, where we see that the depar-
ture from the average curve is very small and that its dependence
on the actual value of I is weak. The largest standard deviation
over y € [—2.5,2.5] is only max(c) = 0.0024. Therefore, although
non-deterministic, our proposed method succeeds in dramatically re-
ducing the grid effect. In addition, it gracefully avoids the difficulties
associated with the bias which other methods have to face when a
change of overlap occurs. Finally, we note that it would be incorrect
to infer from the partially jagged appearance of the curves of Figure 6
that their gradient 81/0g is erratic. In our case, an analytical form
of this gradient is available; we use this form and we never estimate
0I/0g by a finite-difference approach. This leads to a gradient that
is the realization of a random variable (which exhibits a small vari-
ation), as opposed to the “gradient” of the realization of a random
variable (which would be erratic and meaningless).

VI. CONCLUSION

Mutual information is a promising criterion for the registration of
biomedical datasets. At its core, it relies on the computation of a joint
histogram. Traditional implementations perform this computation by
a regular sampling of the data, which is plagued by undesirable ar-
tifacts called “grid effect”. Traditional implementations also suffer
from another systematic bias, unrelated to the grid effect, which is
referred to as the “overlap problem”. We propose here to use irregular
sampling to suppress the grid effect. By realizing this irregular sam-



pling as a random process, we are able to solve the overlap problem at
the same time. We substantiate our claims by dramatic experimental
evidence.

The proposed method is free from grid effect and from overlap
effect. The gradient 01 /0g can be computed easily and without ap-
proximation, because we use Parzen windows which are based on
B-splines, are differentiable, and have a finite support. It can also
easily be shown that the marginal histogram of the reference image f
does not depend on the transformation. We expect that this combi-
nation of favorable properties will sensibly enhance the accuracy and
robustness of the registration task.
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