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Precision Isosurface Rendering of 3-D Image Data
Philippe Thévenaz and Michael Unser, Fellow, IEEE

Abstract—We address the task of rendering by ray tracing the
isosurface of a high-quality continuous model of volumetric dis-
crete and regular data. Based on first principles, we identify the
quadratic B-spline as the best model for our purpose. The nonneg-
ativity of this basis function allows us to confine the potential loca-
tion of the isosurface within a binary shell. We then show how to use
the space-embedding property of splines to further shrink this shell
to essentially a single voxel width. Not all rays traced through a
given shell voxel will intersect the isosurface; many may only graze
it, especially when the ray-tracing vantage point is close or within
the volume to render. We propose here an efficient heuristic to de-
tect those cases. We present experiments to support our claims.

Index Terms—Interpolation, order of approximation, ray
tracing, visualization.

I. INTRODUCTION

WE CONSIDER the problem of displaying the isosurface
of three-dimensional data, which is defined by the

frontier of the continuously defined solid that satisfies
, where is some arbitrary threshold. The

main difficulty of this problem is that our data are discrete;
they are given by a three-dimensional (3-D) regular array
of measurements , . Discrete 3-D data are very
common, especially in medical imaging where the output of
most scanners consists of voxel arrays. Unfortunately, the set
defined by the frontier of is discrete for discrete
data and does not lead to a well-defined continuous frontier.

An early solution to this problem is called marching cubes
[1]; it has attracted some interest by proposing a heuristic to
perform the conversion of the discrete volumetric data
into a list of polygonal faces that can be used to build a con-
tinuously defined surface. Unfortunately, this conversion is am-
biguous in some cases [2]; moreover, the number of faces may
grow very large, which may become a hindrance to the rendering
speed. In addition, the planarity of the faces stands in contra-
diction with the smooth, organic surfaces that one expects from
biomedical volumes. In such a context, this precludes the use of
marching cubes and related methods like marching tetrahedra
[3] and skeleton climbing [4].

More modern methods [5]–[8] rely on fitting the discrete data
with a continuous model , which restores the contin-

uous definition of . Then, it becomes possible to render—by a
technique such as ray tracing—the continuous surface defined
by the frontier of . The choice of the continuous
model is such that the continuous data are related
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to the discrete data by .
This choice is appropriate because it ensures the linearity of the
model with respect to the data.

In recent years, a lot of attention has been devoted to investi-
gate which specific continuous function would result in the
best performance for visualization [7]–[14]. This issue is rel-
evant because the ideal basis function (sometimes called
a filter) is known to be and cannot
be used in practice in reason of its slow, infinite decay. Since
suboptimal basis functions must necessarily be used instead, it
is important to be able to rank them in terms of quality and
efficiency. This ranking is the study subject of the theory of
approximation where a single number—the order of approxi-
mation —characterizes the quality of a basis function [15].
One of several interpretations ofexpresses that any polyno-
mial of degree up to can be represented exactly as
a weighted sum of shifted basis functions, or, differently put,

. To understand why this
is important, it is enough to remember that a truncated Taylor se-
ries is a polynomial, and that its reminder gets smaller as more
terms are considered. Since any basis function of ordercan be
expressed as the convolution of a generalized function (called a
distribution) with a B-spline of degree , and since those
basis functions that are shortest are necessarily made of nothing
else but a sum of B-splines and of their derivatives [16], then
it should come as no surprise that splines play a major role in
problems where the order of approximation is a relevant issue.
This is also the case here.

The present paper is organized as follows: in Section II, we
invoke first principles to determine which is the best basis func-
tion. To our knowledge, this is the first time that this approach is
pursued in the context of rendering. The function that is singled
out is a quadratic B-spline which is not interpolating; yet, we
want to interpolate the data in an exact fashion. We show how
to reconcile the two aspects. In Section III, we take advantage
of the nonnegativity of B-splines to achieve a large reduction
of the computational complexity. A second important property
of B-splines is space embedding. We put it to good use in Sec-
tion IV to reduce even further the number of isosurface candi-
dates. Up to this point, all operations are view-independent and
can be performed off-line. In Section V, this is no more the case;
to gain run-time efficiency, we propose there a heuristic for the
early rejection of potential candidates. We present an illustrated
and detailed analysis of our rendering method in Section VI. We
conclude in Section VII.

II. I NTERPOLATION MODEL

A. First Principles

1) Fidelity: Our first and foremost requirement is that the
isosurface be faithful to the original data from which we are
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Fig. 1. Interpolation of a sampled step function by splines of several degrees. Specifically for B-splines� of degreen, the order of approximationL = n+ 1
is one more than the spline degree.

Fig. 2. Continuous modelf(x) = c � (x� k). Here, the set of coefficients that influence the valuef(x ) is = fc ; c ; c g. The gray area shows
the domain of abscissa = [n� (1=2); n+ (1=2)] that share the same set of coefficientsfor the computation off(x), x 2 .

given the samples . For clinical applications, it is vital that
the generated images represent reality [17]. This quest for high
quality can be fulfilled only by selecting a basis function
with a large order of approximation. Low-order basis functions,
such as those that correspond to nearest-neighbor and (tri)linear
interpolation, have a short support and do not oscillate. Nev-
ertheless, similar to sinc, good candidates tend to have a
larger support and do necessarily oscillate, as shown in Ap-
pendix A. A direct consequence is that the model may overshoot
or undershoot the data; we illustrate both situations in Figs. 1 or
2.

This effect spoils the determination of an isosurface: in its ab-
sence, it is trivial to show that no part of the isosurface can be lo-
cated between adjacent samples such that sign

sign ; but, when the basis function os-
cillates, the existence of a location such that

cannot be excluded, even when sign
sign . This counter-intuitive fact, which hap-
pens only for basis functions of sufficiently high quality, can
be illustrated as follows: consider for a moment the trivial data

, , that consist of a unique impulse
. A cursory inspection of this discrete data

would seem to imply that the width of the domain defined by
cannot be large for . Certainly—at least so

says a mistaken intuition—no solution of
should exist for sufficiently far away from the origin. But
using sinc as basis function, which is thebest possibletheo-
retical choice, we determine that the continuous model for the
specific data of this example is . Thus, when
the arbitrary value happens to be close enough to zero, the
support of the domain of can be made as large as one
wishes—it tends to infinity for . It follows that a trivial
inspection of the discrete data is not enough to predict the loca-
tion of an isosurface, even approximately.

To resolve this issue, one can resort to brute-force approaches
such as making use of a large oversampling of . For ex-
ample, a ray-tracing sampling step of a tenth of a voxel is used
in [13], a twentieth in [14]. This comes at a high computational
cost, while the reward is better faithfulness to the data. Another
approach is to select a basis function that doesn’t oscillate, such
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as the quasiinterpolant B-spline used in [7], at the cost of an im-
portant loss of fidelity to the data.

2) Minimizing Ringing: Ringing is another name for the
mechanism whereby oscillations of the basis function result in
data overshoot and undershoot. An intriguing property, in the
sinc case, is that its amplitude is not reduced by oversampling,
as large as this oversampling may be (Gibb’s effect). It is,
however, the price to pay for better-quality interpolation.
Nevertheless, its presence is disconcerting at first; therefore,
our second requirement is that its contribution be minimal. We
can control the amount of ringing by choosing the order of
approximation . We illustrate in Fig. 1 how this choice effects
the overshoot of a step function that is interpolated by splines
of several degrees.

3) Efficiency: Our third requirement will be to reduce com-
putational costs as much as possible. A number of approaches
exist to reduce the cost of finding an isosurface [18]–[21]. Un-
fortunately, none is convenient for oscillating high-quality basis
functions. For a given oversampling factor, the computational
cost ultimately depends on the support of the basis function it-
self. Therefore, we seek to design a basis function with minimal
support.

4) Aesthetics:As fourth and last requirement, we ask
that the basis function be well-suited for rendering by ray
tracing. We observe that this technique requires the knowl-
edge of a normal to the isosurface. If we model locally
the continuous model as the truncated Taylor series

, then the isosurface condi-
tion implies that ,
which expresses that the normal is indeed parallel to the
gradient of the data since is perpendicular to every
vector that belongs to the isosurface. To obtain high-quality
renderings, especially when zooming close to the isosurface, it
is thus very desirable to have a sufficiently differentiable model
to get well-defined gradients for the illumination model.

B. Outcome

In summary, our four requirements are

• the order of approximation of must be large;
• ringing must be minimized;
• the support of must be short;
• the function must be continuously differentiable.

Only one family of functions maximizes while minimizing
; its members are called Maximal Order and Minimal Sup-

port basis functions, or MOMS [22], [23]. Within this family,
the shortest-support function that is continuously differentiable
is unique; it is the quadratic spline . This function is different
from the Dodgson’s interpolator [24] used in [8], which has a
lower order of approximation [25]. Contrary to Dodgson’s in-
terpolator, we observe that the quadratic spline does not satisfy
the traditional interpolation condition; in other words, we have
that . We will see in Section II-C that this
apparent difficulty can be bypassed by introducing the interpo-
lating spline of degree , which has the same order
as a B-spline of degree, the same differentiability, but an infi-
nite support. Yet, the infinite sum

is still realizableexactly in a finite (small) time thanks to
some tricks [25]. Since has the order of approximation

and is interpolating, this basis function is a very good ap-
proximation of sinc; therefore, the resulting continuous model
exhibits ringing, but it happens that the amplitude of the oscilla-
tions for is least among all interpolating splines that are
continuously differentiable, as illustrated in Fig. 1.

In this paper, we take advantage of numerous properties of
splines to derive a scheme where we are able to tell apart those
voxels that enclose the isosurface from those that do not, ef-
fectively bypassing the issue of ringing. In the context of ray
tracing, this results in a large speed-up since it is necessary to
evaluate the model only in the vicinity of the isosurface,
which avoids the need for the fruitless oversampling away from
the isosurface that other high-quality methods such as [5]–[8]
have to endure.

C. Data

Let be the centered B-spline of degree. Some of its many
interesting properties are 1) Non-negativity ; 2) finite
support of width ; 3) -th order of approximation;
4) -times continuous differentiability; and 5) multires-
olution space embedding. Also of relevance to this paper is a
computationally efficient recursion that allows one to compute
simultaneously an array of samples of the B-spline and of its
derivative. This recursion is exposed in Appendix B.

The interpolating spline shares the properties 3–5 of. It
has an infinite support and closely approximates the sinc func-
tion, much better than any apodized sinc [26], [27]. It is defined
by

where the discrete sequence has the -transform

We can thus write

where we have just converted the infinite support of the basis
function into the finite support of , without approximation,
but at the cost of the determination of coefficients. As seen
in the derivation, these coefficients can be obtained by digital
filtering; an efficient procedure is described in [28].
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D. Gradient

Differentiating the model above is done as follows:

Finally, to obtain the continuous model for volumetric instead
of one-dimensional data, it is enough to consider the Cartesian
tensor product of splines.

III. RAY TRACING

A. Geometry

Ray tracing is a rendering method that has evolved over the
years into many variants. In its basic form, rays go through a
virtual pinhole camera consisting of an eyeand of a projec-
tion plane. On one side of the eye, the rays intersect the image
under construction (the projection plane plays the role of the
retina); one pixel is painted per ray. On the other side of the eye,
a given ray will propagate until it reaches an obstacle, say, the
isosurface or the bounding box of the volumetric data to render.
The illumination model will then determine which color has to
be assigned to the pixel belonging to the ray. In addition, it is
sometimes desirable to introduce a clipping plane that is par-
allel to the projection plane. This clipping plane determines two
half spaces; any data that lies in the half space on the same side
as the eye is ignored, which is particularly handful for close-up
situations.

Let be the (3-D) coordinate of a pixel on the projection
plane. Each coordinateof a ray that goes through satisfies

, where is some rectilinear parameter. To
determine the intersection of the ray with the isosurface, one
must essentially solve for the valuesuch that

Without loss of generality, from now on we consider that
. Finding the whole isosurface is thus equivalent to finding the

set of such that

where the spline coefficientsare obtained from the data sam-
ples by recursive filtering.

B. Bystepping Ringing

Besides enjoying a basis function with finite support, a very
interesting property of the rightmost term above is the nonnega-
tivity of B-splines. To see why, consider some fixed: the finite
support of the tensor-product B-spline will determine the
finite set of those coefficients that contribute to the sum for

; meanwhile, the same sethas also to be used for every
in some continuous unit cubearound . For odd degrees, the
center of this cube is , while for even de-
grees it is . Now, whenever all members ofhappen to
have a uniform sign, it can be ascertained that the unit cube con-
tains no part of the isosurface because . We illustrate
in Fig. 2 the fact that no more than 3 coefficients do contribute

when evaluating the quadratic spline model of one-dimensional
data. Volumes require coefficients.

This suggests the following preprocessing steps for image
rendering: first, subtract the threshold from the data; then,
determine the coefficientsout of these reduced data; produce
an array of binary values where each element is set to
true when , to false otherwise; finally, update this array
by computing its morphological gradient with a structural ele-
ment that is a centered cuboid of odd size .
The goal of this binary morphological operation is to flag every
voxel where a sufficiently close neighbor of the coefficient

differs by sign. It is obtained as ,
where the operator represents binary dilation, and where
represents binary erosion by the structuring element. Since
none of the preprocessing steps depends on the viewing orien-
tation, the volumetric data can be stored directly as . We
note, however, that a modification of the threshold fromto

requires that be recomputed from scratch, whilecan be
updated by simple addition of . We illustrate the se-
quence of operations in Fig. 3.

C. Walking the Ray

The rendering itself can now proceed. While exploring a ray
for finding the isosurface, it is enough to hop1 from voxel to
voxel, based on the content of the binary array. It is only
when an element indicates a potential zero-crossing that
it is necessary to actually perform the costly operation of evalu-
ating for some noninteger. This allows for easy operations
such as cutouts (realized by binary operations on), and such
as the representation ofby an octree [18] or by other efficient
structures to represent binary data [29], which could potentially
lead to a dramatic acceleration of the rendering by transforming
hops into strides. Distance-based acceleration is another means
of achieving the same goal [30].

IV. V OXEL PRUNING

The series of preprocessing steps proposed above already re-
sults in a significant reduction of the computational burden with
respect to blind ray stepping. Nevertheless, yet another prop-
erty of splines allows us to reduce it further: multiresolution
space embedding. For odd degrees, it is possible to represent
any spline with a basis func-
tion consisting of a B-spline of same degree but with a support
scaled-down by a factor 2 (other factors are possible [31]). The
same is true for even degrees, up to an additional shift. We have
that

where

1We observe experimentally that the average jump length is about 0.653;
we leave to the reader the task to find the exact value by an argument akin to
Buffon’s needle.
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Fig. 3. (a) Slice of a volume. (b) Thresholded slice. Values that were above the threshold are shown in black. (c) Slice after application of a 3-D morphological
gradient to the thresholded volume. The unflagged (gray) voxels indicate with certitude the absence of the isosurface. The flagged (black) voxels indicate the
potential location of the isosurface. (d) Additional pruning is possible and is explained in Section IV. Here, the recursion depth isd = 4.

and

The argument applies recursively to yield ever-finer coeffi-
cients . We take advantage of this alternate represen-
tation of by remarking that the coefficients ,
are all multiplied by a nonnegative basis function. Thus, it is
easy to detect those cases where the signs of differ, but
where in reality no part of the isosurface belongs to: when this
is indeed the case, there will be a sufficient depthsuch that
all coefficients have the same sign over the set—note
that ultimately converges to some .

Thus, we propose an additional preprocessing step that con-
sists in visiting each relevant voxel in, and that removes all
those cases where it can be determined by the procedure above
that no isosurface is contained in the voxel. For a quadratic
model , this procedure can as much as halve the number
of candidates in ; the reduction is even more pronounced for
higher degrees. Ideally, the resulting binary volumeshould be
a 6-connected, 1 voxel-width shell. In practice, at any depth
it is necessary to produce and examine the sign of many coeffi-
cients. As the support of a B-spline of degreeis , and
as we deal with three dimensions, the number of coefficients
grows like . At the same time, each finer level results in
a doubling of the number of coefficients along each dimension.
Finally, at any depth it is necessary to produce and examine the

sign of coefficients, which grows very quickly out of
manageable size, even considering that this preprocessing can
be performed off-line. Nevertheless, we will see in Section VI
that a shallow recursion depth is enough to bring significant ben-
efits. We have applied four recursions to get the bottom-right
part of Fig. 3.

V. ROOT FINDING

The set of coordinates that share a set of coefficients
is centered on a voxel for even degrees, and on the corner

of a voxel for odd degrees. To simplify the discussion, we will
consider only even degrees from now on.

To find a potential solution to the equation
within a voxel indicated by as potentially containing

a part of the isosurface, we first identify the two rectilinear pa-
rameters and that correspond to the locations where the
ray enters, respectively exits, the voxel. We then compute
and , which should bracket the isosurface, a condition re-
vealed by . If such is the case, we proceed with a
standard procedure for root finding such as Brent’s [32] to get

such that . But more than often, this bracketing
fails, either because 1) there is really no isosurface within the
voxel (rare after the pruning steps of Section IV), or because 2)
the ray grazes the isosurface without piercing it (grazing miss),
or because 3) the ray pops in and out of the isosurface within
the voxel at least twice.
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A. Grazing Hits

The third case is of interest; we call it a grazing hit. To iden-
tify it, we propose the following heuristic: we compute the rec-
tilinear derivatives and ,
which requires the knowledge of the spatial gradients, ,
and . Those come at essentially no computational cost thanks
to the procedure given in Appendix B. Then, out of all the pos-
sible combinations of signs for sign sign , sign ,
and sign , we retain only two cases for which we investigate
further the possibility of an intersection of the ray with the iso-
surface. These two cases are ( , , ) and
( , , ). If one of these two conditions is sat-
isfied, we proceed by stepping the ray betweenand , even-
tually finding (or not) the isosurface; else, we skip the voxel and
resume with the exploration of.

The cases where the ray barely grazes the isosurface are few
and far apart. It then may seem at first that their importance is
minor. In practice, however, we observe that these cases play
a preponderant role, for they determine the outline of the ren-
dered isosurface. This outline is a key perceptual element of the
quality of the rendering. Some illustrative examples will be pre-
sented in Section VI.

VI. EXPERIMENTS

A. Synthetic Volumes

We have synthesized a tiny volume by sam-
pling at integer values the continuous Gaussian

. For
, the true isosurface of is a centered sphere of radius 0.83

voxel; the volume enclosed by the ideal sphere is therefore only
2.42 cubic voxel. Meanwhile, in the sampled volume, there is
a single voxel above the threshold. Typically, rendering tech-
niques that rely on polygon faces would represent this single
voxel as an octahedron. For example, Fig. 4 has been built by
applying the method [33], which is available from IDL [34]. By
contrast, the method proposed in this paper results in a much
smoother sphere around this single voxel.

The morphological gradient operation expands this voxel to
a cube of 27 elements. The optional pruning step re-
moves the corners of the cube after five iterations, which leaves
19 potential candidates in. We show the result of the rendering
in the left part of Fig. 5, where it can be seen that the isosur-
face determined from the sampled volume gives a good
approximation of the true isosurface of the continuous volume

, despite the very small amount of available data. This good
result can be obtained only if we activate the mechanism of Sec-
tion V-A that recovers the grazing hits. In the present case, ig-
noring them leads to the right part of Fig. 5, where 20 760 er-
roneously unpainted pixels can be found along the silhouette of
the sphere. Those unpainted pixels are located between the out-
line of the left part of the figure (shown on the right as a black
thin line), and the remaining gray values.

To check that the sphere above is not just a blob in dis-
guise, we need to make sure that we can build different

Fig. 4. Tiny sphere, as rendered by polygonal faces.

shapes within the same tiny volume. We have thus synthe-
sized another volume by sampling the continuous function

,
again on a array, and with . In
this case, the true isosurface of the continuousfor is
a torus with minor radius and major radius .
The sampled volume has 8 values above the threshold that form
a ring in the central slice; the 75 candidates resulting from the
morphological gradient fill the three (5 5) central slices. Five
pruning steps result in the following number of candidates:

. We show in Fig. 6 how
the location of the torus is refined by the pruning process,
which allows us to insist on the small size of the volume we
are considering. This makes the problem of reproducing the
continuous out of the discrete much more difficult
and interesting. High-quality isosurface extraction is also a
prerequisite to obtain satisfactory renderings of such a small
volume. We give in Fig. 7 the result of our approach when
applied to the torus in a array.

We indicate in Fig. 8 where the integer lattice intersects the
torus. The vertices of most polygon-based methods necessarily
belong to this intersection. For example, applying the method
[33], which is similar to [1], we obtain Fig. 9. We observe that
the polygons are very coarse, which is due to the small size of
the volume considered. The method proposed in this paper is
not sensitive to this aspect. In addition, a careful analysis of the
polygons reveals that they do not satisfy expected relations of
symmetry, which is due to ambiguities of the conversion be-
tween volumetric and polygonal representation [2]. The method
proposed in this paper does not suffer from this limitation.

Finally, we have produced Fig. 10 by slightly modifying the
parameters of the torus, with and . To achieve
disparity without changing the location of the eye, we have
imposed a slight relative shift to the torus between the left and
right image; on the left, , and on the right.
Within a volume, it would be extremely difficult to
obtain so fine a control with traditional techniques that rely on
the initial conversion of the volume into a list of polygon
faces.
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Fig. 5. Left: Phong rendering of a sphere inside a(5� 5� 5) volume, with two positional light sources. Right: The grazing hits cannot be disregarded.

Fig. 6. Evolution ofb through the preprocessing steps. Each column depicts
the whole volume as a series of slices. The first column corresponds to the
thresholding ofs(k), the second to the morphological gradient. The remaining
columns give the result of the pruning steps that confine more and more the
potential location of the isosurface.

Fig. 7. Phong rendering of a torus inside a(5 � 5 � 5) volume, with two
positional light sources.

B. Real Volumes

We show in Fig. 11 our Phong rendering of the close-up of
a lobster volume.2 The size of this image is
640 360, without antialiasing. The isosurface threshold is

. In Fig. 12, we propose similar close-up renderings for

2Lobster dataset courtesy of Advanced Visual Systems, via Mark Kessler,
University of Michigan Medical School.

Fig. 8. Location of integer-level (x,y,z)-curves on a torus inside a(5�5�5)
volume.

Fig. 9. Methods that rely on polygons have difficulties to obtain a smooth
rendering of the torus of Fig. 7.

a human spine.3 In this case, the threshold has
been set to . The aspect ratio of a voxel is cubic nei-
ther for the lobster nor for the spine, which has to be taken into
account when computing the normal to the isosurface and when
performing rotations of the volume. Finally, we show in Fig. 13
the rendering of a 3-D reconstruction of a pa-
pilloma virus,4 where a cutout has been realized onto reveal
its interior.

3Orthogonal axial spiral CT dataset of part of a human spine. Dataset courtesy
of Ramani Pichumani, Stanford University School of Medicine.

4Papilloma virus dataset courtesy of Benes L. Trus, National Institutes of
Health [35].
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Fig. 10. Torus inside a(5� 5� 5) volume with a larger minor radiusr and a smaller major radiusR, and a disparity between the left and right image obtained
by displacing the torus. The other rendering parameters are the same as in Fig. 7.

Fig. 11. Phong rendering of a lobster with two positional light sources.

Fig. 12. Phong rendering of a human spine with two positional light sources.

C. Performance Analysis

We now examine the practical benefits of the approach pre-
sented in this paper and analyze the performance of our algo-
rithms for the lobster image. We show in Table I that the lobster
volume contains 270 160 voxels indexed by that are close
enough to the isosurface that there exists at least one voxel in-
dexed by within the volume of influence such that
sign sign . This amounts to only 8% of the

3 481 600 voxels that constitute the lobster data; without the
nonnegativity of B-splines, ringing would force us to perform
ray stepping inside each and every voxel to ascertain the ab-
sence of an isosurface, whereas our scheme allows us to reject
92% right away. Moreover, after four of the pruning recursions
described in Section IV, we were able to reject 43.8% of the
remaining candidates, a nearly optimal score—in the case of a
quadratic spline, we could hope for 50% at best. These savings
are orientation-independent. In the case of the specific orienta-
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Fig. 13. Rendering of a papilloma virus with a cutout realized as a binary
operation onb.

TABLE I
BENEFIT OF PRUNING. A) PRUNING TIME IN

[S]. B) RENDERING TIME IN [S]. C) RELATIVE TIME SAVINGS

TABLE II
TALLY OF THE WORKLOAD

tion that corresponds to Fig. 11, we show in the last column of
Table I how these savings in card translate into savings of
the rendering time, as performed on a 450 MHz PowerPC G4
Macintosh. We note that the pruning time can be disregarded
because this preprocessing step can be performed off-line and
is view-independent.

The vantage point we have selected is in front of the head of
the lobster, midway between its pincers. Since this is inside the
volume, it is necessary to explicitly ignore any section of ray
that would extend behind the eye, while keeping those that
lay in front. A clipping plane is therefore desirable. We show
in the second line of Table II to how many ray segments this

condition has been applied, where we count as one ray segment
that part of the ray that extends inside a single voxel. We give
in the third line the number of ray segments that have been ex-
plored on the interesting side on the clipping plane. We see in
the fourth line of Table II that a large fraction of those segments
did not lead to an isosurface computation because they could
be rejected by considerations onalone. This fraction is larger
than (the score predicted
from Table I), because the latter is view-independent while the
result of Table II is view-dependent.

The number of nontrivial potential intersections between
a ray segment and the isosurface is given in the fifth line of
Table II. Of those, 19.2% led to the straightforward determina-
tion of the real existence of an intersection since the ray crosses
the isosurface in an unambiguous fashion. As can be seen in
the seventh line of Table II, the cases rejected by the heuristic
proposed in Section V-A are numerous since they account for
more than two thirds of the workload, bringing substantial
additional savings in computation time. Unfortunately, while
the savings of Section IV are secure, those of Section V-A are
less conservative because the function , is a
polynomial of degree 6 for a quadratic model in 3-D, while our
heuristic can only determine with certitude which polynomials
of degree at most 2 have no root within . Thus, it is
interesting to further investigate whether the rejection cases
are legitimate. Since there exists no closed form for expressing
by radicals the root of a sixth degree polynomial, we have
resolved the issue experimentally by stepping the ray for every
voxel. We conclude that only 12 cases out of 371 290 were
wrongly rejected, which we consider negligible. Meanwhile,
our heuristic accounts for 86.2% of all rejection cases.

The eighth line of Table II contains the number of voxels that
were considered worth of exploration, but that nonetheless led to
no discovery of an intersection with the isosurface. This explo-
ration is conducted by recursively dividing the interval in
smaller steps until two samples of exhibit a differing sign,
taking care never to perform two estimations that would have the
same rectilinear argument. We abandon this bracketing search
when the step becomes smaller than , which, on
average, represents about 50 samples per voxel. Whenever the
root can be bracketed, we proceed with the standard procedure
for root finding.

Finally, the last line of Table II shows how many times we
were able to recover a near miss, or, equivalently, a grazing hit,
which happens whenever a ray crosses the isosurface within a
single voxel at least twice. This represents 2.85% of the 106 273
painted pixels, which one could perhaps conclude is insignifi-
cant. To convince the reader of the contrary, we produce Fig. 14,
on the left part of which we have forgone ray stepping. That we
do not notice the plunge into the isosurface doesn’t necessary
mean that there is not another intersection farther down the ray;
this explains why we still paint 939 pixels out of the 3,033 that
one would expect to see vanish. Nevertheless, it is very apparent
that the few missing pixels play a significant perceptual role:
for example, one of the frontal left appendages of the lobster
is nearly dissolved when the grazing hits are ignored. Also, its
right supraorbital spine becomes more angular than necessary.
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Fig. 14. Effect of the grazing hits. Left: ignoring them; right: taking them into account.

VII. CONCLUSION

We have singled out the quadratic B-spline as the one and
only basis function that satisfies the requirement of smallest
support for a continuously differentiable function of maximal
order of approximation. The high order of approximation in-
volves high-quality renderings, as predicted by classical results
in the theory of approximation. The drawback is data overshoot
and undershoot, which complicates the determination of an iso-
surface.

To solve this difficulty, we have proposed three complemen-
tary ways to accelerate the rendering of an isosurface by ray
tracing in the context of high-quality spline interpolation. At
first, by expressing the spline model as a sum of nonnegative
basis functions, we are able to bypass the difficulties associ-
ated with their oscillations, while maintaining high fidelity to
the data. This results in a binary volume that indicates every po-
tential location of the isosurface. As second step, we have used
the space embedding property of splines to prune candidates in
this binary volume. The gain can be as large as the spline de-
gree, a factor two in our case. As third and last step, we have
proposed a heuristic based on the computation of exact gradi-
ents that tends to avoid the unnecessary exploration of many
voxels. While the two first acceleration methods guarantee that
no part of the isosurface is left aside, the proposed heuristic is
less conservative. Nevertheless, experiments show that the true
rejection rate is very beneficial (86.2% savings), while the error
rate is insignificant (0.0032% false rejection, no false accept).

APPENDIX

VIII. O SCILLATING BASIS FUNCTIONS

All interpolating basis functions of sufficient order
do oscillate, where we understand the interpolation condition
as being . We explain here why this is so. A
well-known result of the theory of approximation is the equiv-
alence between, on one hand, the condition on the reproduc-
tion of polynomials up to degree mentioned in Sec-
tion I and, on the other hand, the fact that the discrete mo-
ments computed as ,

, depend on integer only. In particular, we can
choose the integer and the integer to compute

. But cannot vanish for
a general because it is the sum of the product of two terms,
both of which are positive, unless the interpolating basis func-
tion oscillates. Therefore, the order of approximation of
nonoscillating basis functions that satisfy the interpolation con-
dition cannot exceed .

IX. B-SPLINE COMPUTATION

We propose here an efficient recursive scheme to compute si-
multaneously an array of B-spline values and of their derivatives
for arguments spaced one unit apart:

For better efficiency, we complement the scheme above by
making use of the property known as the partition of unity,
which is expressed as , .
This results in extra savings. For example, letting
results in only 10 operations to get

under
the hypothesis that , as follows:

A. Proof

We now give a proof of the validity of the recursion of Ap-
pendix B. To save space, we proceed in Fourier; we leave the
pointwise proof as an exercise to the reader. Our convention and
notation for a Fourier transform is
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By definition, the Fourier transform of a B-spline of degreeis

(1)

Here are three properties that are useful for our purpose:

(2)

(3)

(4)

The first derivative of the -th power of a sinc function
will also come in handy

(5)

We can finally proceed with the proof. Using (1), (2), and (3),
along with Eulers’ formula, we write

which proves the second line of the recursion. After substitution
into its first line, we can rewrite it as

Using (4), (5), and some trivial algebra, its Fourier transform
becomes

The proof follows by identification with (1).

B. Partition of Unity

Let us proof that the B-spline satisfies the
partition of unity condition. Setting in
the Poisson sum formula

, we get

Because , the only contributing term of the right-
hand-side sum has index ; this yields , .
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