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Abstract—We propose an active contour (a.k.a. snake) that takes the shape of an ellipse. Its evolution is driven by surface terms

made of two contributions: the integral of the data over an inner ellipse, counterbalanced by the integral of the data over an outer
elliptical shell. We iteratively adapt the active contour to maximize the contrast between the two domains, which results in a snake that

seeks elliptical bright blobs. We provide analytic expressions for the gradient of the snake with respect to its defining parameters, which

allows for the use of efficient optimizers. An important contribution here is the parameterization of the ellipse which we define in such a
way that all parameters have equal importance; this creates a favorable landscape for the proceedings of the optimizer. We validate

our construct with synthetic data and illustrate its use on real data as well.

Index Terms—Snakuscule, snake, dynamic contour, ellipse.
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1 INTRODUCTION

IN a previous paper, we introduced what would possibly
be the simplest snake that retains practical usefulness [1].

It was parameterized by just two points, and its purpose
was to latch on circular bright image patches. In the present
paper, we propose a natural extension whereby the shape of
the snake, previously circular, is now allowed to become
elliptical. While this upgrade may look trivial conceptually,
it is fraught with a surprisingly large increase in the size of
the expressions that need to be handled when compared to
the circular version. The potential benefit, however, is
substantial because ellipses are able to capture two
important properties that circles cannot, such as anisotropy
and orientation.

Since the circular version was called a snakuscule, we
now call our elliptical snake an ovuscule. It preserves
features like being a surface snake, where the energy of the
snake is driven not by the data under a curve but by the data
enclosed by it. We optimize this energy in iterative fashion.
More precisely, at each iteration, we want to tune the
geometry of the ovuscule to increase the contrast between
the intensity of the data averaged over an elliptical core, and
the intensity of the data averaged over an elliptical shell—a
bigger ellipse from which the elliptical core has been
removed, as shown in Fig. 1. If ! and !0 represent these
elliptical surfaces, with !0 ! !, and if f represents our image
data, then the criterion to minimize is J ¼ JD þ JR, where JR
is a contribution due to some regularization term and where
the data term JD is given by

JD ¼ 1

!j j

Z

!n!0
fðxÞ dx1 dx2 &

Z

!0
fðxÞ dx1 dx2

 !
: ð1Þ

There, !j j is the area of the outer ellipse. To enforce that the
criterion remains neutral when f takes a constant value f0,
we maintain !j j ¼ 2 !0j j. Under these conditions, JDjf¼f0

¼ 0
does depend neither on the snake nor even on f0.

This paper is organized as follows: After briefly reviewing
the literature on the characterization of ellipses in Section 2,
we develop the formalism of our proposed solution in
Section 3. We first detail which ellipse parameterization we
chose in Section 3.1, and show in Section 3.2 how it is
combinedwith our snakemodel.We thenpresent in Section 4
how our proposed ovuscule behaves in practice, based on
experiments with synthetic and real data, before we finally
conclude in Section 5. In the appendices, we provide a few
additional relevant properties of ellipses.

2 PREVIOUS WORK

An early example of edge-based ellipse detection can be
found in [2], where the coordinates of feature points
extracted from an image are submitted to a process based
on the Hough transform. A sequence of partial steps is
taken to avoid the handling of a 5D space of parameters.
Additional variations to take advantage of the Hough
transform to detect ellipses have been proposed in [3], [4],
[5]; an example of application can be found in [6]. Around
the same time, circular spots could be detected by a surface-
based method, albeit their size was not adaptive and their
location was restricted on the sampling lattice [7].

The use of ellipses as deformable templates was proposed
in [8], where it was applied to the detection of vertebral
contours, and in [9], where it was applied to ultrasound
sequences. Using the snakes of [10] to specifically detect
ellipses was first proposed in [11]. There, like in [8], the
energy term of the snake ignored surface contributions since
it was encouraged to converge to the nearest edge based
solely on the gradient of the image. Snakes and Hough
transformwere combined in [12],where the role of theHough
transformwas to provide a convenient elliptical initialization
for the snake; the latter, however, was allowed to deviate
from an ellipse, and was ignoring surface contributions.

Other early ellipse detection methods concern them-
selves with the task of fitting one ellipse to a discrete set of
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points. They typically differ in the merit criterion that is
optimized [13], [14]. Methods based on surfaces—more
precisely, their moments—can also be found in [15], but
they require segmented data.

More recently, a spatial Kalman filter was employed in
[16] to estimate the parameters of an ellipse represented in
polar coordinates, guided by a discrete series of 1D edge
detectors irradiating from a seed location. The found ellipse
is then tracked through time by a temporal Kalman filter to
segment vessels in an ultrasound application. In a revival of
Hough-based methods, the authors of [17] suggest that a
combination of genetic algorithms with the randomized
Hough transform is an appropriate tool to search for several
ellipses at once, as opposed to looking for an isolated one.
Likewise, the final number of ellipses detected in [18] is
determined automatically by a method that involves a
surface-based term. It favors the detection of bright
elliptical blobs that have the least amount of intensity
variation, which is a typical feature of methods based on the
Mumford-Shah framework; moreover, overlapping ellipses
are avoided. In [19], a collection of salient contour points
was extracted from sidescan sonar images to detect mine-
like shapes from their acoustic shadow; the six-parameter
curves that best fit the data were Lamé curves, a family that
includes ellipses. In a strategy that is the reverse of that
found in [12], snakes were first applied in [20] to detect
contours, and only then was an ellipse fitted to the snake.
The purpose was to estimate the rotation of cells.

3 METHOD

3.1 Parameterization

3.1.1 Traditional Characterization of an Ellipse

Gardeners draw an ellipse by attaching a rope of length L
to two poles that correspond to its foci; the set of ground
locations that can be reached by the rope is an ellipse.
More formally, letting f 1 and f 2 be the coordinates of the
foci, each coordinate x of the contour of the ellipse
satisfies x& f1k k þ x& f 2k k ¼ L. This involves five free
parameters—two 2D points and a distance.

While this parameterization is easily accessible to
intuition, it is, however, not well suited to our task, as
hinted at in Fig. 2. For this case, assume that the initial
configuration to optimize is that of Fig. 2a, and that the

desired configuration is Fig. 2b. Then, the optimizer is faced
with the difficult task of having to apply significant changes
to the parameters (the foci of the ellipse) while having only
a modest impact on the curve. Meanwhile, it must avoid
being deceived by the fact that keeping the foci at a fixed
location and operating on L alone can also result in a large
variety of elliptical shapes; instead, it must discover by itself
that the same L applies to both sides of Fig. 2. In the
presence of noise, it is likely that such a configuration favors
the appearance of many weak local minima that may stop
the optimizer along its path. In conclusion, the traditional
parameterization of an ellipse would require an optimizer
that is able to cope with interfering parameters of widely
different sensitivity.

This problematic aspect of the parameterization above is
shared with many other ones that rely on the combination
of two points and one scalar, for example, some that would
rely on extremal points of the ellipse—those where the
curvature is, say, maximal. Since two points define an
orientation and since it seems reasonable to ask that this
orientation be related in some way to that of the main axis
of the ellipse, there will always be cases where the optimizer
will have to abruptly change this orientation to obtain just a
slight change in the ellipse, particularly when its eccen-
tricity is low. The root of the problem underlying any ellipse
parameterization where an orientation plays a role is that
the orientation of a circle is undefined.

An ellipse is also a member of a family of curves known
as quadrics. Turning to their implicit representation and
using polynomial equations or their various elaborations to
deal with ellipses does not help the optimizer either. This is
so because the impact of the various coefficients involved
differs widely from one coefficient to the next, due to the
fact that each one applies to variables raised to different
degrees. Loosely speaking, this inhomogeneous situation
results in a highly nonstationary Hessian of the criterion
with respect to the parameters, which is hard to optimize.

We have explored alternative ellipse parameterizations,
for example, one that associates to a triangle an ellipse of
identical inertia and barycenter. But it turned out that
interacting with the triangle as a proxy for the ellipse makes
for a decidedly nonintuitive control of the ellipse; moreover,
messy algebra is involved. To conclude, one of the most
delicate aspects of this work lies in the choice of the proper
parameterization of an ellipse. We have finally retained the
construct that we present in the sequel. It satisfies the
following list of requirements in every aspect.
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Fig. 2. Ellipses. (a): Tall ellipse. (b): Broad ellipse. These two ellipses of
identical area are hard to distinguish because the ratio between their
short and long axis is close to unity (it is 95 percent). Yet their associated
foci, shown as dots, are far apart.Fig. 1. Two ellipses. The outer ellipse ! is shown in darker gray; it has an

area !j j that is twice that of the overlaid inner ellipse !0 shown in lighter
gray. These ellipses are entirely determined by the triplet of points
fp;q; rg that belong to the boundary @! of the outer one.



3.1.2 Requirements
Since the initial location of the ovuscule may be given by
visual interaction with a human user, our requirements are
as follows:

. We want the parameters to be given not by sliders
and numbers, but by the coordinates of handles
whose location can be controlled graphically by the
user in an intuitive way. Because an ellipse is given
by five parameters, we need at least three control
points in two dimensions. This generates one free
parameter that needs to be regularized.

. We want the interaction with the parameters to be
natural. Therefore, a parameterization where the
control points belong to the ellipse should be favored.
In addition, the presence of the free parameter should
not lead to counterintuitive behavior.

. The parameterization must be tractable analytically.
We need this to be able to predict the variation of the
energy of the snake when moving the control points.
This requirement rules out many descriptions of an
ellipse, particularly those that result in piecewise
elliptic segments. Unfortunately, such descriptions
are naturally prevalent with ellipses because these
curves are quadrics and sooner or later a square root
shows up in the derivations. Most often, both the
positive and negative cases must be considered,
which is highly inconvenient when establishing the
value of a gradient.

. We want to be able to determine a rectangular
bounding box that is aligned with the system of
coordinates and that tightly encloses the ellipse. This
allows us to focus our attention to the relevant image
data.

. Testing if an arbitrary coordinate belongs to the
ellipse area ought to incur a low computational cost.
As this operation must be repeated for every pixel of
the bounding box when determining the energy of
the snake, any reduction in computational complex-
ity there will result in large savings.

. A permutation of the control points should leave the
ellipse unchanged. In other words, the role of the
control points should be identical. Enforcing that the
contributions of each parameter are weighted
equally is of great help to the optimizer.

In the remaining part of this paper, we propose a
parameterization that retains homogeneity by dealing with
points of interchangeable role. We also manage to escape
the fact that the orientation of a circle is undefined.

3.1.3 Proposed Solution

Let A represent an invertible affine transform in two
dimensions. To simplify the notations, we use homogenous
coordinates so that A is a ð3' 3Þ matrix with six free
parameters, two of which do represent the translational part
of the transformation. Similarly, 2D coordinates are repre-
sented by three-component vectors in ðIR2 ' f1gÞ. For
example, consider the three particular coordinates
c0 ¼ ð1; 0; 1Þ, c1 ¼ ð& 1

2 ;
ffiffi
3

p

2 ; 1Þ, and c2 ¼ ð& 1
2 ;&

ffiffi
3

p

2 ; 1Þ. They
determine an equilateral triangle with vertices that belong
to the unit circle @!I. It turns out that the curve @!A resulting
from the application of A to @!I is the contour of an ellipse.

By construction, the points ðA c0Þ, ðA c1Þ, and ðA c2Þ
belong to @!A.

Our goal now is to invert this mapping. Given three
arbitrary—but distinct—points p ¼ ðp1; p2; 1Þ, q ¼ ðq1; q2; 1Þ,
and r ¼ ðr1; r2; 1Þ, wewant to determine amatrixA such that

p ¼ A c0, q ¼ A c1, and r ¼ A c2. This is a linear system in
six unknowns; its solution is A ¼ ½p q r) ½c0 c1 c2)&1. It

follows that the area of the ellipse mirrors the area of the unit

circle after application of A; it is given by

!j j ¼ 2 !ffiffiffiffiffi
27

p "j j; ð2Þ

with " ¼ detð½p q r)Þ. As our construction inscribes a
triangle within an ellipse, it is the converse of the so-called

midpoint ellipse, which inscribes an ellipse within a

triangle [21].

3.1.4 Bounding Box
Any point x of @!A satisfies the general implicit equation of

an ellipse given by eðxÞ ¼ 0, with

eðxÞ ¼ e0 þ e1 x1 þ e2 x2 þ e11 x
2
1 þ e12 x1 x2 þ e22 x

2
2; ð3Þ

where feig are the Cartesian parameters of the ellipse which
are unique up to a shared multiplicative factor. At the same

time, its inverse-transformed version #### ¼ A&1 x satisfies the

canonic equation of a circle given by #### & ð0; 0; 1Þk k2¼ 1. By
expanding this last equality and by identification in (3) of

terms of same power, we have that

e0 ¼ & 3 ðpqÞ1 p2 q1 r2 þ ðpqÞ2 p1 q2 r1
" #

& 3 ððqrÞ1 p2 q2 r1 þ ðqrÞ2 p1 q1 r2Þ
& 3 ððrpÞ1 p1 q2 r2 þ ðrpÞ2 p2 q1 r1Þ;

e1 ¼ 3 p1 þ q1ð Þ p2 q2 & r22
" #

þ 3 ðq1 þ r1Þ
"
q2 r2 & p22

#

þ 3 ðr1 þ p1Þ
"
r2 p2 & q22

#
;

e2 ¼ 3 ðp2 þ q2Þ p1 q1 & r21
" #

þ 3 q2 þ r2ð Þ
"
q1 r1 & p21

#

þ 3 r2 þ p2ð Þ r1 p1 & q21
" #

;
e11 ¼ 3 ðp2 ðpqÞ2 þ q2 ðqrÞ2 þ r2 ðrpÞ2Þ;
e12 ¼ 3 ðp1 q2 þ p2 q1 & 2 p1 p2

þ q1 r2 þ q2 r1 & 2 q1 q2
þ r1 p2 þ r2 p1 & 2 r1 r2Þ;

e22 ¼ 3 ðp1 ðpqÞ1 þ q1 ðqrÞ1 þ r1 ðrpÞ1Þ;

8
>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>:

ð4Þ

where

ðpqÞ ¼ p& q;
ðqrÞ ¼ q& r ;
ðrpÞ ¼ r& p:

8
<

: ð5Þ

Then, we can easily find a bounding box fitting the

orientation of the Cartesian system of coordinates by

solving for eðxÞ ¼ 0 and @eðxÞ
@xi

¼ 0 in terms of four extremal

points. Setting i ¼ 1, we determine that the vertical range of

the ellipse is ½g2 & 2ffiffiffiffi
27

p
ffiffiffiffiffiffi
e11

p
; g2 þ 2ffiffiffiffi

27
p

ffiffiffiffiffiffi
e11

p ). Setting i ¼ 2, we

determine that the horizontal range of the ellipse is

½g1 & 2ffiffiffiffi
27

p
ffiffiffiffiffiffi
e22

p
; g1 þ 2ffiffiffiffi

27
p

ffiffiffiffiffiffi
e22

p ). There, g ¼ 1
3 ðpþ qþ rÞ is

the barycenter of the ellipse.
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3.1.5 Membership
To test for the membership of a point x to the interior of the
ellipse, it is sufficient to consider the sign of eðxÞ. In
particular, since an ellipse is a convex shape, we can
conclude from the relation eðgÞ ¼ &"2 that negative signs
must be associated to the interior of the ellipse, and positive
signs to its exterior. Since e is a low-degree polynomial, the
repeated test for membership of x to the interior of !A
comes at a low computational cost once its coefficients have
been established. This is even more so once (3) has been
rewritten in a system of coordinates centered on g, since
eðyþ gÞ ¼ &"2 þ e11 y21 þ e12 y1 y2 þ e22 y22, where no linear
contribution does appear. Moreover, eðyþ gÞ ¼ eðxÞ for the
centered coordinate y ¼ *ðx& gÞ.

3.1.6 Parametric Ambiguity
An ellipse has five degrees of liberty. As we are using three
points to describe it, we have six parameters at our disposal
since each point comes with two independent coordinates.
Therefore, several disjoint combinations of fp;q; rg give rise
to the same ellipse. This happens because we could have
chosen to distribute fc0; c1; c2g anywhere on the unit circle
while still enforcing them to build an equilateral triangle.
Our construction is defined up to some arbitrary rotation.

Because fc0; c1; c2g are distributed regularly on the unit
circle, fp;q; rg retain some regularity on @!A. We illustrate
that aspect in Fig. 3, where we observe that our parameter-
ization, while nonunique, feels natural. This impression
may be reinforced by the property that the orientation given
by the line pq is parallel to the tangent to the ellipse at the
opposite vertex r. This property of fp;q; rg is inherited
from fc0; c1; c2g.

3.2 Snake

3.2.1 Inner Ellipse

We associate fp;q; rg to !. Then, the question arises as how
to parameterize !0. Our requirements are as follows:
!0j j ¼ 1

2 !j j, g0 ¼ g, and the orientation of !0 must match
that of !. It can be seen that they are satisfied by setting

e00 ¼ 1
3 e0 þ 1

4 ððpqÞ2 þ ðqrÞ2 þ ðrpÞ2Þ;
e01 ¼ 1

2 e1;
e02 ¼ 1

2 e2;
e011 ¼ 1

2 e11;
e012 ¼ 1

2 e12;
e022 ¼ 1

2 e22;

8
>>>>>><

>>>>>>:

ð6Þ

where

ðpqÞ ¼ p1 q2 & p2 q1;
ðqrÞ ¼ q1 r2 & q2 r1 ;
ðrpÞ ¼ r1 p2 & r2 p1:

8
<

: ð7Þ

Moreover, we have that "0 ¼ 1
2 ". This leads to a simple

expression for testing the membership of a centered

coordinate y to !0 which is given by e0ðyþ gÞ ¼ 1
2 eðy þ

gÞ þ 1
4 "

2 < 0. By defining $ðyÞ ¼ 1
"j j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðyþ gÞ þ "2

p
¼

1
"j j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 e0ðyþ gÞ þ "2=2

p
, we see that $ð0Þ ¼ 0, $ðx& gÞ ¼

1=
ffiffiffi
2

p
for x 2 @!0, and $ðx& gÞ ¼ 1 for x 2 @!. Thus, $ plays

the role of a normalized distance between x and g.

3.2.2 Transitions
While the contrast defined in (1) seems to be a promising
energy term, it suffers from a major drawback when
computing @JD=@p, where p is any one of the components
of fp;q; rg, because localized contributions appear along
@!0 and @! when applying the Leibnitz integral rule to the
bounds of the integral. It is our opinion that it would be
more appropriate to put these contributions in relation with
some 2D surface of f rather than just a 1D curve. Therefore,
we want to avoid these localized contributions by building
two extended transition zones: one from !0 to ! and another
from ! to the exterior of the ovuscule. Naming w the weight
that captures the transitions, we rewrite (1) as

JD ¼ 1

!j j

Z

IR2
wðx& gÞ fðxÞ dx1 dx2: ð8Þ

Our task now is to properly define w. To do so, we
propose to take advantage of $ to devise an index of the
“distance” between a coordinate and an ellipse, expressed
in the units of x. We first write

d0ðyÞ ¼ yk k 1& 1ffiffiffi
2

p 1

$ðyÞ

$ %
: ð9Þ

Note that y3 ¼ 0 because y is the difference of two homo-
genous coordinates, so that yk k is equivalent to the euclidean
norm of the first two components of y. Under the convention
that @!0 ! !0, we have d0ðx& gÞ ¼ 0 for x 2 @!0; moreover,
d0ðx& gÞ + 0 for x 2 !0 and d0ðx& gÞ > 0 for x 62 !0. (Un-
fortunately, we have to note that limy2!0 d0ðð0; y2ÞÞ 6¼
limy1!0 d0ððy1; 0ÞÞ, so that d0 has no limit at y ¼ 0 because a
function can have atmost one limit.) In addition to d0, we also
define

dðyÞ ¼ yk k 1& 1

$ðyÞ

$ %
: ð10Þ

Similarly, we have dðx& gÞ ¼ 0 for x 2 @!; moreover,
dðx& gÞ + 0 for x 2 ! and dðx& gÞ > 0 for x 62 !. (Again,
limy2!0 dðð0; y2ÞÞ 6¼ limy1!0 dððy1; 0ÞÞ, but this is now irrele-
vant because we are not going to pay attention to d
anywhere inside !0.) We finally define w as
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Fig. 3. Ellipse and its bounding box. The four gray dots indicate the
location where the bounding box is tangent to the ellipse. The three fat
black dots correspond to p, q, and r, in arbitrary order. The remaining
thin dots give alternative parameterizations of the same ellipse; they are
joined by straight lines so that the corresponding triangles indicate how
to group them in sets of three. The dashed lines, along with the hollow
circles, give the two parameterizations for which the regularization is
optimal (see Section 3.2.6).



wðyþ gÞ

¼

&1; d0ðyÞ < & 1ffiffiffi
2

p ; I;

ffiffiffi
2

p
d0ðyÞ; & 1ffiffi

2
p + d0ðyÞ < 1ffiffi

2
p ; II;

1; 1ffiffi
2

p + d0ðyÞ ^ dðyÞ < &1; III;

1
2 1& dðyÞð Þ; &1 + dðyÞ < 1; IV;

0; 1 + dðyÞ; V:

8
>>>>>>>><

>>>>>>>>:

ð11Þ

Conflicting conditions may arise in (11), especially when we
have, at the same time, d0ðyÞ < 1ffiffi

2
p and &1 + dðyÞ. Since this

state of affairs only corresponds to cases where the ovuscule
is stretched thin, we shall not further it.

An interesting property of w reveals itself when we
consider the simplified case of ! being a disk of radius R.
Under a suitable translation and orientation of the system of
coordinates, we have that fp;q; rg ¼ R fc0; c1; c2g. Then,
$ðyÞ ¼ 1

R yk k, a l o n g w i t h d0ðyÞ ¼ yk k &R=
ffiffiffi
2

p
a nd

dðyÞ ¼ yk k &R. For neutral data characterized by f ¼ f0,
it follows that

JD ¼ f0
! R2

Z !

&!

Z Rffiffi
2

p &1
2

0
&1ð Þ r dr

 

þ
Z Rffiffi

2
p þ1

2

Rffiffi
2

p &1
2

ffiffiffi
2

p
r& Rffiffiffi

2
p

$ %
r drþ

Z R&1

Rffiffi
2

p þ1
2

1ð Þ r dr

þ
Z Rþ1

R&1

1

2
1& rþRð Þ r dr

%
d#

¼ 0:

ð12Þ

Since JD depends neither onR nor on f0 when fp;q; rg forms
an equilateral triangle, the optimizer will not favor one
configuration over another, even after the zones of transition
have been introduced, which is the desired behavior.

3.2.3 Sampling
Invariably in image processing, the continuously defined
image fðxÞ in (8) is given by its discrete samples f ½k).
Although it would be possible in principle to build a
continuously defined model to estimate fð,Þ given f ½,), this
is highly impractical because it would lead to intractable
integrals. Instead, we propose replacing (8) by the sampled
version given by

JD ¼ 1

!j j
X

k2ZZ2

wðkÞ f ½k); ð13Þ

where w is computed as before and where !j j is given in (2).
The range of indices k that need to be explored can be made
finite by applying the considerations of Section 3.1.4.
Moreover, because an ellipse always retains a convex
shape, further acceleration is possible within Domains I
and III of (11) if one takes advantage of Green’s theorem.
We show in Fig. 4 how the conditions in (11) have to be
applied in the case of an arbitrary ovuscule.

3.2.4 Justification of the Domains of Transition
We introduced inSection 3.2.2 a specificweighting functionw
and argued that, even in the continuous case (8), it is
desirable to design domains of transition to avoid the
localized effect of the Leibnitz integral rule. In the sampled
case, however, the Leibnitz integral rule does not apply;

nevertheless, we argue in this section that establishing
domains of transition is even more important. Indeed, in
their absence, and because of the sampling mechanism, an
infinitesimal change in the parameters of the ovuscule
would sometimes result in an abrupt swap of the member-
ship of the coordinate k to either !0, !, or ðIR2n!Þ. In turn,
this swap would lead to discontinuities in the criterion. We
now illustrate how our design of w restores a state that is
easier to optimize.

We start by observing that (13) can be rewritten as JD ¼
f0 W þ 1

!j j
P

k2ZZ2 wðkÞ ðf½k) & f0Þ for any f0 2 IR, with

W ¼ 1
!j j
P

k2ZZ2 wðkÞ. Obviously, the term W depends on

geometry alone; moreover, the condition W ¼ 0 is the only

one that satisfies our fundamental requirement that JD be

dependent only on the contrast between the data under !

and ð!n!0Þ, and not on any intensity offset f0. (Allow us to

recall here that enforcing !j j ¼ 2 !0j j along with wI ¼ &1,

wIII ¼ 1, and wV ¼ 0 makes for a consistent approach as far

as (8) is concerned.)
For the sake of the argument, we temporarily delete the

zones of transition II and IV and dole out the reclaimed area
to Domains I, III, and V. This results in w taking discrete
values in f&1; 1; 0g, delimited by the conditions d0ðyÞ < 0,
0 + d0ðyÞ ^ dðyÞ < 0, and 0 + dðyÞ, respectively. Consider
now optimizing JD around some initial condition fp;q; rg,
for instance, by exploring a range of values around one
component, say, by perturbing r2 by #r. Thus, despite
changes in the exploration parameter #r that remain
continuous, some integer coordinates k in (13) may
experience in the transitionless case an abrupt swap of
domain membership. We illustrate in Fig. 5 the impact of
these changes on W for the arbitrary ovuscule defined by
p ¼ ð&20; 10; 1Þ, q ¼ ð5;&12; 1Þ, and r ¼ ð18; 7þ#r; 1Þ,
with #r 2 ½&2; 2). (Incidentally, the ovuscule of Fig. 4
corresponds to #r ¼ 0:3.)

We see that the resultingW0 takes an agitated appearance,
with many local minima that may potentially interfere with
the data-related minimum we are seeking. If that function
would be piecewise constant, the situation would be less
dramatic because at least the gradient dW0=d#r would

386 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 2, FEBRUARY 2011

Fig. 4. Repartition of the contributions to w. Domain I, circles:
d0 < &1=

ffiffiffi
2

p
. Domain II, disks: transition zone &1=

ffiffiffi
2

p
+ d0 < 1=

ffiffiffi
2

p
.

Domain III, hollow squares: d < &1. Domain IV, filled squares: transition
zone &1 + d < 1.



vanish almost everywhere, but that is not even the case in
view of the normalization factor 1= !j j. Meanwhile, the
function W1 corresponds to the nominal case (11), with all
domains of transition restored. Their benefit is essentially to
provide for a fuzzy membership that smoothes out the swap
between domains. Clearly, the number of local minima has
much abated; moreover, the approximation of the desired
conditionW ¼ 0 is strikingly better forW1 than forW0.

3.2.5 Optimization

Many optimizers are at one’s disposal to search for the
minimum value taken by (13). Some of them require the
calculation of the gradient of JD with respect to the
components of fp;q; rg, such as the conjugate gradient-
based method that we use in this paper. In this section, we
are going to build an expression of the gradient rrrrJD ¼
ð@JD=@p1; @JD=@p2; @JD=@q1; @JD=@q2; @JD=@r1; @JD=@r2Þ by
examining each domain of (11) independently. Following
lengthy calculations1 and defining the 6D vector

ðpqrÞ ¼ ððqrÞ2;&ðqrÞ1; ðrpÞ2;&ðrpÞ1; ðpqÞ2;&ðpqÞ1Þ; ð14Þ

we find that

rrrrJ I
D ¼ 1

" !j j
X

k2$I

f ½k) ðpqrÞ; ð15Þ

where $I corresponds to Domain I of w. Meanwhile, over
Domain II, we have that

rrrrJ II
D ¼ & 1

" !j j
X

k2$II

f½k) yk k
$ ffiffiffi

2
p

ðpqrÞ þ 1

6 " $3

ð&y2 h1 þ u1; y1 h1 þ u2;&y2 h2 þ u1;

y1 h2 þ u2;&y2 h3 þ u1; y1 h3 þ u2Þ
%
;

ð16Þ

with y ¼ k& ðg1; g2Þ, with

u1 ¼ 2 e11 þ
ffiffiffi
8

p
"2 d0ðyÞ $3

yk k3

& '
y1 þ e12 y2;

u2 ¼ 2 e22 þ
ffiffiffi
8

p
"2 d0ðyÞ $3

yk k3

& '
y2 þ e12 y1;

8
<

: ð17Þ

and with

h ¼
9 ðððrpÞ2 & ðpqÞ2Þ y1 & ððrpÞ1 & ðpqÞ1Þ y2Þ;
9 ðððpqÞ2 & ðqrÞ2Þ y1 & ððpqÞ1 & ðqrÞ1Þ y2Þ;
9 ðððqrÞ2 & ðrpÞ2Þ y1 & ððqrÞ1 & ðrpÞ1Þ y2Þ:

8
<

: ð18Þ

Over Domain III, we find that

rrrrJ III
D ¼ & 1

" !j j
X

k2$III

f½k) ðpqrÞ; ð19Þ

while, over Domain IV, we write that

rrrrJ IV
D ¼ 1

" !j j
X

k2$IV

f ½k)
$
kyk & 1

2
ðpqrÞ þ kyk

12 " $3

ð&y2 h1 þ v1; y1 h1 þ v2;&y2 h2 þ v1;

y1 h2 þ v2;&y2 h3 þ v1; y1 h3 þ v2Þ
%
;

ð20Þ

with

v1 ¼ 2 e11 þ 2 "2 dðyÞ $3

yk k3

& '
y1 þ e12 y2;

v2 ¼ 2 e22 þ 2 "2 dðyÞ $3

yk k3

& '
y2 þ e12 y1:

8
<

: ð21Þ

Finally, the overall gradient is given by summing the partial

contributions found in (15), (16), (19), and (20).

3.2.6 Regularization

We have seen in Section 3.1.6 that the configuration of

parameters that minimizes (13) is not unique. To help the

optimizer settle in a well-defined solution, we propose to

add to JD the regularization term defined as

JR ¼ %

!j j
min

"
ðpqÞ22; ðqrÞ

2
2; ðrpÞ

2
2

#
; ð22Þ

where % is some positive regularization weight arbitrarily

chosen. Among all equivalent configurations fp;q; rg that

minimize JD, our regularization promotes a layout where

one side of the triangle 4ðp;q; rÞ is horizontal. We observe

in Fig. 3 that two solutions exist. Thanks to JR, the optimizer

will settle in one of them; which one depends on the

conditions that prevailed at the start of the optimization.
We provide the gradient of the regularization with

respect to the components of fp;q; rg below. We give the

three forms that correspond to the selection process in (22)

ðpqÞ22 < min
"
ðqrÞ22; ðrpÞ

2
2

#
: rrrrJR

¼ %

"j!j
ðpqÞ2 ð2 " ð0; 1; 0;&1; 0; 0Þ & ðpqÞ2 ðpqrÞÞ;

ð23Þ
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Fig. 5. Effect of sampling with and without zones of transition. Thin
graph W0: Shrinking Domains II and IV to vanishing size leads to a
discontinuous w and ultimately to a discontinuous JD. Thick graph W1:
Defining w as in (11) leads to a continuous w and ultimately to a
continuous JD. The graphs W capture the combined effect of geometry
and sampling; they do not depend on data.

1. After simplifications have been applied by a symbolic manipulation
software such as Mathematica, the gradient of (13) would still require no
less than 22 pages to print. The version that we present here is certainly
more compact.



ðqrÞ22 < min
"
ðrpÞ22; ðpqÞ

2
2

#
: rrrrJR

¼ %

" j!j
ðqrÞ2 ð2 " ð0; 0; 0; 1; 0;&1Þ & ðqrÞ2 ðpqrÞÞ;

ð24Þ

ðrpÞ22 < min
"
ðpqÞ22; ðqrÞ

2
2

#
: rrrrJR

¼ %

"j!j
ðrpÞ2 ð2 " ð0;&1; 0; 0; 0; 1Þ & ðrpÞ2 ðpqrÞÞ:

ð25Þ

4 EXPERIMENTS

We present in this section four experimental setups. In the
two first cases, we can perform an objective validation
because we know the ground truth. In the third case, the
ground truth is not known, but the shapes to detect are true
ellipses. In the last case, the shapes that we want found by
the ovuscules are mere approximations of ellipses.

4.1 Robustness to Photometric Noise
To objectively validate the performance of our method in the
presence of noise,wepropose taking advantage of a phantom
of size ð512' 512Þ built out of known ellipses. Specifically,
wewant to recover Ellipse d of thewidely used Shepp-Logan
phantom [22], with varying degrees of additive white
Gaussian noise. To comply with the fact that ovuscules
detect bright ellipses,wehave remapped the intensities of the
original phantom as indicated in Table 1. We show in Fig. 6
the visual outcome of this experiment, with ovuscules in
bright. We have enforced the initial position of the
ovuscule—that is, before optimization—to always be the
same throughout the experiments; we show it in the top-left
corner of Fig. 6, along with noiseless data. The remaining
images are increasingly noisy; the standard deviation of the
noise is f10; 20; 50; 100; 200g, which corresponds to a signal-
to-noise ratio of f38; 26; 10;&1;&13g dB, respectively.We see
that even when there is a high amount of noise, ovuscules
manage to converge on the desired optimum, in spite of the
perturbations created by the other ellipses.

As an objective measure of accuracy, we propose comput-
ing the Jaccard similarity coefficient S ¼ !0 \%j j= !0 [%j j,
where% represents the ellipse of reference. Todistinguish the
robustness to noise from the robustness to the presence of
confounding features (which would otherwise bias S), we
have simplified the original phantom by retaining only
Ellipse d of [22], with intensity 128 over a background of
intensity 0. For each given amount of noise, we have
generated 100 realizations. We report in Table 2 the outcome

of this experiment, where & is the standard deviation of the
noise.

We see that the Jaccard index never reaches exactly the
perfect value S ¼ 1:0, even in the absence of noise. This is
due in part to the fact that the image is not really noiseless
since it is but a sampled version of the ideal, continuously
defined ground truth. However, we believe that this
discrepancy is irrelevant in practice since no more than 18
out of 13;506 pixels are in error, which corresponds to only
about 0.1 percent. On the bright side of things, adding
copious amounts of noise results in just a modest degrada-
tion of the parameters identified by the ovuscule. We show
in Fig. 7 one realization for & ¼ 200, a large amount of noise2

for which the good value reached by the Jaccard index
indicates that the ovuscule is still in excellent agreement
with the ground truth. Adding more noise, however,
populates the criterion (13) with local minima in which
the ovuscule gets sometimes trapped during the iterative
optimization, as confirmed by the last row of Table 2.

4.2 Robustness to Initial Conditions

It is unusual to know beforehand the orientation or
elongation of the ellipses we want to capture. In this
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Fig. 6. Application of ovuscules to synthetic data.

TABLE 1
Remapping of Phantom Intensities

2. Because the size of the image has been adjusted to fit the printing
space, interpolation has created correlations between pixels, ultimately
resulting in reduced apparent noise. Moreover, the dithering inherent in the
printing process has brought yet additional doctoring of the image. Finally,
the human visual system itself is happy to create illusory boundaries.
Altogether, this explains why the contrast of the magnified inset seems so
poor in comparison with the apparent contrast of the full-size image. Yet,
the procedure we followed to obtain the pixels of the inset was no more
involved than simple pixel replication.



section, we focus on the impact of a mismatch between the

initial configuration of an ovuscule and that of its desired

target. We also take advantage of this experiment to

compare our parameterization to an alternative one; we

conclude that the latter is less robust than ours. Moreover,

we show in the process that a good initialization strategy is

to choose an ovuscule with a circular shape.

4.2.1 Set of Ellipses

We have built a set of ellipses that share area and

barycenter, but differ in orientation and elongation. Letting

a and b be their semimajor and semiminor axes, we have

generated shapes that span (in geometric steps of ratio 21=12)

a range from the circle a ¼ r ¼ b to the elongated case
a
2 ¼ r ¼ 2 b, and considered every tilt ' 2 ½0; !Þ of the main

axis of the ellipse with respect to the horizontal, in

arithmetic steps of !36 . We have synthesized images of size

ð256' 256Þ with r ¼ 35 as all-or-nothing sampled repre-

sentations, with foreground f0 ¼ 100 and background 0.

Thus, for any of these 468 ¼ 13' 36 ellipses, the desired

optimal JD in (1) takes the value J0 ¼ & 1
2 f0. To accom-

modate for some deviation, we have defined an ovuscule to

be successful if, after optimization, it settles in a configura-

tion for which 105
100 J0 + JD + 95

100 J0.

4.2.2 Orientation Mismatch

We have launched ovuscules of orientation ’ on ellipses of

tilt '. In Fig. 8, successes are displayed in bright and failures

in dark, with the mismatch ð’& 'Þ shown in the horizontal

axis, and the elongation a
b in the vertical axis. We have

explored 13 elongations and 36 mismatches ð’& 'Þ per

elongation. Except for ’ and ', each initial parameter

(elongation included) was set identical to that of the target

ellipse.
We have repeated this experiment with a different way

to parameterize the ovuscule. While Fig. 8 corresponds to
the parameterization fp;q; rg proposed in this paper, Fig. 9
corresponds to the alternative parameterization fg; a; b; 'g
that represents an ellipse by its center, length of semimajor
and semiminor axes, and tilt. Comparing Figs. 8 and 9, we
see that fp;q; rg clearly outperforms fg; a; b; 'g.

We illustrate in Fig. 10 a typical configuration for

’& ' ¼ !
3 , with ’ ¼ !

6 and ' ¼ & !
6 . It is comforting to

observe that the failure cases of our parameterization

correspond better to what one would consider to be the

harder task: They appear only when the amount of initial

overlap is limited. By contrast, the logic driving the failure

cases observed with fg; a; b; 'g is less intuitive.

4.2.3 Elongation Mismatch
In practice, not only the orientation, but also the elongation of
the elliptical blobs is unknown. Then,we propose to initialize
ovuscules as disks. We show the outcome in Fig. 11, where
the success rate $, averaged over 13 elongations, is given in
terms of the target tilt '. We observe that our proposed
parameterization now always succeeds, while the alternative
one fails nearly half of the time. We finally conclude that
applying a circular initialization to our fp;q; rg parameter-
ization achieves the best robustness in all cases, restoring
success even to the failure cases of Section 4.2.2.
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TABLE 2
Jaccard Similarity Coefficient

Fig. 7. Noisy realization of Ellipse d. The range of displayed intensities
here is ½&3 &; 255þ 3 &) with & ¼ 200. The inset shows a magnification of
a ð32' 32Þ area to highlight the profusion of noise.

Fig. 8. Intensity-coded success rate of the proposed parameterization,
as a function of the mismatch ð’& 'Þ and of the elongation a

b .

Fig. 9. Intensity-coded success rate of an alternative parameterization,
as a function of the mismatch ð’& 'Þ and of the elongation a

b .



4.3 Steel Needles

A mixture of steel needles and concrete has been prepared.
The needles are cylindrical rods of identical diameter and
length. Then, a slab of this reinforced concrete has been cut,
polished, and photographed. (The final purpose of the
imagingexperimentwas to characterizehowthe steel needles
did mix with the concrete, in particular their orientation and
distribution [23].) Since the intersection of the plane of the cut
with a cylindrical needle takes the shape of an ellipse,
ovuscules are particularly appropriate tools for the task.

The needles appear as bright material over a darker
background; thus, we first detected their approximate
location by applying a coarse smoothing to the original
image and by detecting the location of strong maxima. On
the nonsmoothed image, we then placed one ovuscule per
local maximum; we chose its initial shape to be a circle, and
its initial radius to be slightly larger than the known radius
of the needles. We show in Fig. 12 this initial configuration.
We then let the ovuscules evolve. The outcome can be
observed in Fig. 13, where we see qualitatively that they
manage to fit tightly the profile of the steel needles. Over
the whole image (of which only a cutout is shown in Figs. 12
and 13), we detected 191 maxima. On average, the
computational time spent while optimizing an ovuscule
was 166* 106 ms, for a code written in Java on a Mac Pro
2' 2:8 GHz Quad-Core Intel Xeon.

As a more quantitative measure, we found that the
average length of the semiminor axis of !0 is 20:4* 3:6 in
pixel units. Although some of the detected maxima could
not be associated with a needle, the result above includes all
measurements, except for eight cases that correspond to
degenerate ellipses of vanishing area. Moreover, if we reject
as additional outliers the 23 cases where the semiminor axis
is either too small or too large, with respective bounds 17
and 24, then the standard deviation of the 160 remaining
ovuscules drops down from 3.6 to 0.9, which is indicative of
subpixel accuracy.

4.4 Yeast Cells
Yeast cells have been extensively studied by biologists.
Within the interphase stage of the cell cycle, their shape is
known to be elliptical; during the division stage, the main
body of the mother cell and the budding daughter cell can
be approximated by a combination of elliptical shapes.
However, these characterizations are but idealizations of
the true shapes of these cells, which depart from perfect
ellipses or the combination thereof. Moreover, the yeast
cells we would like to segment do not adhere strictly to the
ovuscule requirements of a bright object on a dark
background. Luckily, when examined by phase-contrast
microscopy and after video inversion to exchange bright for
dark, the cells are typically surrounded by some dark halo
which can be best discerned in the interphase stage shown
in Fig. 14. The contrast provided by this halo helps the
ovuscule to converge.
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Fig. 10. Initial configuration for an angular mismatch of !3 , and final
configurations. (a) The 13 thin ellipses depict the desired target
configuration, and the thick ellipses give the initial one, with fp;q; rg
shown as black dots. (b) Our proposed parameterization succeeds nine
times. (c) The fg; a; b; 'g parameterization succeeds five times only.

Fig. 11. Success rate $ in terms of the tilt ' of the target ellipse, for a
circular initialization. Thick curve: Proposed parameterization. Thin
dashed curve: Alternative parameterization.

Fig. 12. Ovuscules before optimization.

Fig. 13. Ovuscules after optimization.



Using a similar strategy as in Section 4.3, we initialize the
center of the ovuscules by first applying a detector of local
maxima to Mexican hat-filtered data, as specified in
Appendix A. For crowded yeast cells, however, the initial
radius is critical to obtaining a good segmentation. When
this initial radius is too big, the ovuscule is influenced by
unwanted contribution of surrounding cells in addition of
those of the desired cell; during subsequent optimization,
the ovuscule is often attracted to a cluster of cells instead of
a single one. On the other hand, when the radius is too
small, the ovuscule can miss the halo and converge to small
features of the cell, or even collapse. In this application, it is
therefore advantageous to first launch a high number of
ovuscules that are initially circular and cover some range of
sizes and to sort them out after they have converged. We
show the initialization in Fig. 15 and the corresponding
result of the optimization process in Fig. 16. These images
represent a small cutout of a much larger image, over which
we launched 2;298 ovuscules; each took on average 12*
34 ms to complete optimization. This duration is shorter
than in the conditions experienced in Section 4.3 because
the cells are now smaller and because there is a greater
number of failures—which can be detected early during the
optimization process.

Once a given cell has been properly segmented within
some frame, we can propagate each segment as initial
condition for the next frame while tracking a time-sequence
of evolving cells. We have observed that ovuscules are quite
robust in terms of domain of attraction and keep snapped to

the same target, even under adverse conditions such as
spatial displacements and changes in the brightness or
shape of the cell. Thus, ovuscules provide effective means to
analyze a video sequence of dividing cells. This is especially
true for yeast cells, as those divide in a very particular
manner: A small bud starts growing on the surface of the
mother and eventually becomes a new cell. Therefore, the
fundamental original shape of the mother is not altered
through time. This behavior encourages the ovuscule to
track always the same mother cell.

5 CONCLUSION

We have proposed a dynamic curve that takes the shape of
an ellipse; we call it an ovuscule. It is parameterized by
three points that belong to the boundary of the ellipse. We
have associated to this curve an energy term that is surface-
based and that measures the contrast between the interior of
the ellipse and its exterior; therefore, ovuscules can be used
to detect elliptical bright blobs over a dark background. We
have proposed a discretization scheme that leads to a well-
defined gradient of the energy with respect to the
parameters of the curve, for which we have provided
explicit expressions. We have implemented our construc-
tion and shown with synthetic experiments that it is robust
to noise and to mismatched initial conditions. In addition,
we have shown on real data that ovuscules are also
impervious to departures from elliptical shape.

APPENDIX A

MEXICAN HAT

Let us write in 2D the impulse response n of a normalized
centered Gaussian filter of isotropic variance &2 as

nðx; &Þ ¼ 1

&2 2 !
e&

xk k2

2 &2 :

We preserve its circular symmetry by building our Mexican
hat filter m as the difference of two Gaussians given by

mðx; &Þ ¼ ! &2

logð2Þ
n x;

&ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð16Þ

p
 !

& n x;
&ffiffiffiffiffiffiffiffiffiffiffiffiffi
logð4Þ

p
 ! !

:

TH"EVENAZ ET AL.: THE OVUSCULE 391

Fig. 14. Yeast cells. (a) Interphase. (b) The same cell during the division
stage of the cell cycle, with a budding daughter cell in the upper part of
the image.

Fig. 15. Yeast cells and initial ovuscules, which come in three sizes. The

inversion of contrast allows the cells to appear brighter than their

surroundings. To reduce clutter, only @!0 is shown as a bright overlay.

Fig. 16. Yeast cells and final ovuscules. We retain only those ovuscules
that survive a pruning process that discards overlapping solutions, dwarf
and giant ovuscules, nonrealistic aspect ratios, and insufficient
contrast J. The contrast threshold has been chosen to aid in rejecting
dead cells—those that exhibit a less-smooth pattern of intensity.



Here, we have scaled and resized the Gaussians so that the
impulse response at the origin is normalized to mð0; &Þ ¼ 1
so that the zero-crossings of the Mexican hat filter lie on a
circle of radius &, for example, with mðð&; 0Þ; &Þ ¼ 0 and so
that m is strictly high pass with

R
IR2 mðx; &Þ dx1 dx2 ¼ 0.

APPENDIX B

PARAMETRIC FORM

Our ellipse parameterization does not make use of several
elements that are traditionally associated with such curves.
We propose in this and in the next appendices a few
formulas that make the link between ðp;q; rÞ and other
relevant quantities.

Any coordinate x 2 @! satisfies

xð(Þ ¼ gþ c cos (þ s sin (;

where ( 2 ½&!; !) is some free parameter and where

c ¼ 2 p& q& r

3
;

s ¼ q& rffiffiffi
3

p :

APPENDIX C

EXTREMAL POINTS

The extremal points of the ellipse are those where the
curvature of @! is either minimum or maximum. They are
given by

(k ¼
1

2
arctan

u

v

& '
þ k

!

2
;

with k 2 f0; 1; 2; 3g and

u ¼ q1 2 p1 & q1ð Þ þ q2 2 p2 & q2ð Þ
& r1 2 p1 & r1ð Þ & r2 2 p2 & r2ð Þ;

v ¼
ffiffiffi
3

p
p21 & 3 g21 þ p22 & 3 g22 þ 2 q1 r1 þ q2 r2ð Þ
" #

:

APPENDIX D

ORIENTATION

The orientation of the ellipse with respect to the system of
coordinates is

' ¼ arctan
a2
a1

$ %
;

with

a ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
& v

q
þ sgnðe12Þ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
þ v

q
:

APPENDIX E

ECCENTRICITY

Calling a the semimajor axis of the ellipse and b its
semiminor axis, we have that

a ¼
ffiffiffiffiffi
2

27

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e11 þ e22 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e11 þ e22ð Þ2&27 "2

qr
;

b ¼
ffiffiffiffiffi
2

27

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e11 þ e22 &
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e11 þ e22ð Þ2&27 "2

qr

:

The eccentricity of the ellipse is then " ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1& b2

a2

q
.

APPENDIX F

PARAMETRIC CONVERSION

Let an ellipse be described by its center g, its semimajor and
semiminor axes a and b, and the tilt ' of its semimajor axis
with respect to the horizontal axis e1. Then, a fully
regularized set of points fp;q; rg can be constructed as

p1 ¼ g1 þ a cos # cos'& b sin # sin';
p2 ¼ g2 þ a cos # sin'þ b sin # cos';

q1 ¼ g1 þ a cos # þ 3 !

2

$ %
cos'& b sin # þ 3 !

2

$ %
sin';

q2 ¼ g2 þ a cos # þ 3 !

2

$ %
sin'þ b sin # þ 3 !

2

$ %
cos';

r1 ¼ g1 þ a cos # & 3 !

2

$ %
cos'& b sin # & 3 !

2

$ %
sin';

r2 ¼ g2 þ a cos # & 3 !

2

$ %
sin'þ b sin # & 3 !

2

$ %
cos';

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

with p3 ¼ q3 ¼ r3 ¼ 1 and

# ¼ sgnðcos'Þ arccos
a sin'ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a sin'ð Þ2þ b cos'ð Þ2
q

0

B@

1

CA;

which ensures q2 ¼ r2.

APPENDIX G

FOCI

The focal points of the ellipse are ðgþ fÞ and ðg& fÞ, with
f ¼ ðf1; f2; 0Þ and

f1 ¼ sgnðe12Þ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 e22 & "2

a2 e11 þ e22ð Þ & "2

s

;

f2 ¼ &a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 e11 & "2

a2 e11 þ e22ð Þ & "2

s

:

APPENDIX H

PERIMETER

The exact perimeter of an ellipse must be expressed with
nontraditional functions aptly called elliptic integrals. The
following excellent approximation has been proposed by
Ramanujan:

@!j j - ! aþ bð Þ 1þ 3 h

10þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4& 3 h

p
$ %

;

with h ¼ ðða& bÞ=ðaþ bÞÞ2.
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