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Abstract

This paper deals with automatic text independent speaker recognition in a telephone bandwidth context. First, the
meaning of text independence is reviewed; then, we present our solution 1o this problem.

Our aim is to get a sufficient number of different methods, in order to fruitfully combine them. Hence we present four
methods of text independent speaker verification. Algorithms and performances are individually analyzed before we attempt
to combine them. These methods are essentially statistical in nature; they make use of cepstral vectors obtained by LPC

analysis.

The first method simply characterizes the speaker by his mean cepstrum. The second method is based on the
accumulation of vector quantization error of a locution by the speaker’s codebook. The third method is derived from the
second one by using differential cepstral vectors instead. The fourth and last method exploits the histogram of entries in a
universal cepstrum codebook, according 10 a vector quantization technique.

The combination of the resulting distances given by these four methods is achieved by a Fisher linear discriminant
analysis, which provides a great improvement in performances over any single method. The performances achieved are

compared to what can be found elsewhere in the literature.

Introduction

A speaker recognition method is aimed at discovering
or confirming the identity of people on the mere basis of
their speech (for a review, see {1, 3, 18]). Human beings
currently solve this problem quite easily in everyday life,
while the machine runs properly only when the conditions
are good enough (no bandwidth limitation), and the task is
simple enough (password detection). However, an
automatic solution would be interesting not only in
restricting access to security areas, but also when conditions
are less favorable, like in authenticating transactions over a
telephone network, in forensic applications, or in any kind
of application involving vocal print.

Text independence addresses the very text to be
spoken by the user. It is usually useful to discemn some
gradations between text independent and text dependent
mode. The most constrained type is total text dependence,
often referred to as password. The text is fixed and the
machine has already heard it several times in a training
phase. Then comes constrained text, where the speaker has
no choice about what to say (the machine dictates the
phonetical content of the locution), but maybe never trained
the machine before with these particular sounds, or strings
of sounds. Constrained vocabulary is next, where the
speaker is free to select words in a limited vocabulary
known by the machine, forming any sentence he likes
within the given vocabulary. Text independence is achieved
by letting the speaker talk with no constraints about the
content of the locution. With total independence, we would
accept to release the remaining constraints, that is, accept
simultaneous speech from several speakers, different
emotional content (cries, laughs, tears, songs, etc.),
acoustical pollution from other sources (music, traffic jam,
etc.), or environmental peculiarities like diver's helium
atmosphere.

A speaker recognition method would come in two
forms. The first one is speaker identification, where one
simply talks, and the machine tells who is speaking. The
second form is speaker verification, where one has to both
give an identity claim and speech input. The machine's
answer may be "registered user” or "impostor”.

From now on, we will restrict ourselves to text
independence (vs total independence) and speaker
verification (vs identification).

Furthermore, we have to define a figure of merit, by
using some way of (usually a posteriori) error probability

estimation [11]. Known are Minimum Average False Reject
and false Acceptance rate (MAFRA), Equal Error Rate
(EER), and false reject rate for a given Constant False
Acceptance rate (CFA). The first one (MAFRA) sets the
speaker verification trade-off (rejecting authorized users vs
acknowledging impostors) such that the sum of the false
reject and the false acceptance rates is minimized. The
second one (EER) sets the trade-off such that both types of
error are equally treated, assuming that there is a priori as
many correct users as incorrect ones. The existence of the
last figure of merit (CFA) pinpoints the fact that, in
practice, people are mostly interested in securing an access,
at the cost of some casual discomforts for the user
(unmotivated rejects safer than wrong approvals). We have
selected the equal error rate as basis of confrontation
between methods.

Paper outline

The introduction presents the problem to be solved,
addressing the text independence concern. Then, the
parameter space is reviewed, leading to LPC cepstral
computation. The description of four methods of speaker
recognition comes next, presenting the average cepstrum,
the accumulation of cepstral vector quantization error, the
accumulation of differential cepstral vector quantization
error, and the distribution of eatries in a universal
codebook. Some experimental results confirm the
usefulness of each individual method. The combination of
these methods is then achieved by Fisher linear
discriminant analysis, leading to enhanced performances. A
summary, where the results obtained are compared to
published ones, precedes the conclusion.

Parameter space

The cepstrum has been chosen as main parametric
representation of speech, on the basis of previous studies
demonstrating its good properties for speaker
characterization [5, 9, 17, 21, 22, 23].

The speech signal is acquired by a consumer-quality
microphone and stored on tape. It is then low-pass filtered
(8th order RC, fc=3,400 [Hz]) and sampled (fs=8,000 [Hz],
12 [bit] linear resolution). These values have been selected
in order to be compatible with telephone bandwidth
applications [7, 8, 10]. The gain of the system is such that
no saturation occurs, while assuring a dynamic of about 10
to 11 [bit]. Every ensuing operation will be conducted using
a 4 bytes floating-point representation of numbers.
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First, we segment speech in frames of 30 [ms], the
start of two consecutive frames being delayed by 10 {ms].

(1) stn)  nel[0,N-1] N =240 AN =80

Then, we do some preemphasis over the signal,

0 n=0
@ YO = smypstn-1) ne [1,N-1]
n=095
multiply it by a symmetrical Hamming window,
2n+1-N
(3) h(n) =y(n)- { a+(l-a) - COS(rn: Nel ))
a=0.54
compute biased autocorrelation,
4 RK) = > h(n) - h(n+k) ke [0,P)
ne[0,N-1-k]
P=14

and finally run LPC analysis by the Levinson algorithm,
yielding inverse filter coefficients ay satisfying:

1 j=0
6 a={ XaREKD=RQ je (1P
77 | ke[1,P]
0 i>P
The regressive cepstrum conversion
0 i=
-a; j=1

O =), vl
J :

] je [2,Q1]
ke(1,-1]

Q=20

results in a cepstrum vector of dimension Q, obtained by
the usual way of LPC computation [5, 24], portraying each
frame of the speech signal. Note that the cepstrum vector is
redundant, as Q>P. The best choice of Q and P has not yet
been investigated, because we're more interested in the
magnitude of the efficiency gain between single and
combined methods, than in the efficiency itself.
Furthermore, it is significant of this careless approach that it
takes into account every frame of the speech record, wether
it is actually speech or silence.

Methods

a) <cpt>: average cepstrum

If the hypothesis of a time invariant channel between
speaker and digitizing device is verifyed, then the temporal
average of the cepstral vectors issued from a single speaker
does represent the cascade of his average vocal tract
cepstral response and the channel cepstral response. By
virtue of homomorphic analysis, subtracting two averaged
cepstra leads to terms which cancel out (same channel) and
terms which possibly do not (vocal tract), resulting in a
cepstral vector whose magnitude hopefully represents some
kind of discrepancy between speakers [18].

Let S be a set of S speakers i and let them pronounce
some locution IL; characterized by a set of cepstral vectors
Cix
( S={ilie[1,S]} §=10

Li={Cix ke [0,L-1]} L,=1534

Compute an average cepstrum for speaker i

(8) <ci>=%- > Cix ie[1,8]
' ke[0,L;-1]

We can now measure in an Euclidean space the squared
distance between two locutions j and 1

(9 &%) = 1<Cp> - <Cp>12 @) e [1,9]
If this distance is small enough, we will pretend that
speaker i and speaker j are but the same person. If the
distance is bigger than some threshold T}, we will pretend
that two different people spoke.

b) 2VQ: accumulation of cepstral vector
quantization error

Looking at the average cepstrum exemplifies the
interest we have in the steady-state part of vocal production.
The speaker jumps indeed from one of these states to
another while producing any utterance; this is reflected in
the fact that we can classify the whole range of cepstra into
a reduced set of representatives, named a codebook. This
codebook can then be used to reconstruct the whole
utterance by replacing each original cepstrum by the nearest
representative from the codebook, leading to a small error
between original and reconstructed speech. The next step is
simply to accumulate this vector quantization error for all
cepstra of a given utterance. We hope that a codebook
tailored to a single speaker will yield small accumulated
errors for utterances pronounced by himself, and bigger
ones for locutions spoken by any other speaker [12, 17, 21,
22].

We used a technique named H-means in order to build
the codebook [13]. This technique is recurrent; an initial
condition is refined until certain criteria are met. Let IF; be a
speaker's partition at step t, and match each cepstrum C;
to the nearest representative;

(10) P{= [Pi_‘glge [0,G-11) G=32
q, = ArgMin ICix - Pi_‘glz ke [0, L;-1]
ge[0,G-1]

compute the new partition representatives by averaging
cepstra,

1
(1) = - 28zq) - Cix
y 282,90 ke[0,L-1]
ke [0,L;-1]
1 =
g = { 0 g#g ge [0, G-1]

and stop when no more change occurs, the last partition

obtained being the final result P;.
ReB  B=PY
(2 1= w1 PPt

The distance obtained for speaker j quantized by speaker i's
codebook is now:

(13) d%(j,i):%‘ 2ICix-Pig? GjellS]
? ke[0.L;1]

Again, we can define a threshold T2 deciding wether
or not the distance is small enough to pretend that i and j
are two instances of a same person.

¢) XaVQ/ot: accumulation of differential
cepstral vector quantization error
Until now, we have investigated two methods dealing

with stable segments of speech. However, a human being
never truly switches from one state to another; there is some
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ual transition instead, which has not yet been taken into
account [6). To improve this matter of fact, we devise a
third method simply by replacing in equation (10) each
cepstrum C; , with its time differential 9C; ,/ot.

(14) d2G.i) =ﬁ- 2.19C; /0t - P
T ke[lLi1]

9C;j /ot = Cjy - Cjxq j)e(1,8]

Of course, we define a new distance and a new
threshold T3 as well. By doing so, we hope that each
speaker has his own characteristic way of walking from one
state to another; furthermore, the information available in
the transient parts of the speech should be independent of
that found in stable parts. The drawback is that if we find G
stable states, there are G-(G-1) possible transitions to look
for, urging for the need of a much bigger codebook size.
Nonetheless, our careless approach leads us to keep the
same value for G in mcthodpEVQ and Y.0VQ/ot, arguing
that no language ever uses all possible transitions.

d) p(P): distribution of entries in a universal
codebook

The vector quantization technique has two inputs and
two outputs. One input is the cepstrum to be quantized, the
other is the codebook; one output is the quantization error,
the other is the code selected, which yet remains to be
exploited. With this in mind, we design a universal
codebook with the same technique as developed in TVQ,
but with a greater codebook size, in order to represent well
enough every speaker in the world.

(15) P={P,iue [0, U-1]} U =256

Now, let us vector quantize a locution L; by this
codebook, in order to estimate the probability of use of any
one entry in the codebook;

(1) p® =1 L8 w
' ke[0,L;-1]

ue [0, U-1]

the distance obtained by this fourth method is linked to a
threshold T4, and reads

(7 &G = X @P)-pP)?
ue{0,U-1]

G.jpel1,S]

With this procedure, we pretend to discriminate
between people who would have almost identical vocal
tract response, but would differentiate in the global amount
of time spent in any given stable state; for example, a
French speaker will spend no time at all in the English
sound /6/, like in "three". In this sense, the last two
methods are more behavioral than physical, and as such,
their correlation should be low. The correlation between
<cpt> and Y VQ should be low as well, because of the
different time scale; the same should be true of Y9VQ/ot

and p(P).

Experimental results

a) experimental setup

We have already seen in equation (7) that a set of 10
speakers pronounced some 15-second-long locutions.
Among these speakers are 9 men and 1 woman, between 20
and 40 years of age; each uttered, in a single session, eight
sentences built up with twenty different French numerals.
No two sentences were the same. The recordings took place
in a quiet room, without any other special acoustic care.

We estimate the error probabilities by the leave-one-
out method. We select each locution in a row and build a
reference (mean cepstrum, codebooks and entries'
distribution) for it, considering then all other locutions as

S )

claims for the same identity. When this claim is founded,
we get an intra speaker distance; when not, an inter speaker
one. Finally, we put a speaker dependent single threshold
Tn yielding EER for the whole set of data pertaining to
method n and speaker i.

b) <cpt>: results

Table 1 shows the confusion matrix for false
acceptance, speaker by speaker. Each entry is at most 64,
this value meaning that no intruder is ever rejected. Table 2
shows the false reject array. Each entry is again at most 64,
this value meaning in this case that a legitimate user has no
access at all. Zeros represent ideal cases.

--> Reference X X

{ Speaker Y Y Z = false_accept (Y by X}

v

Y\X | 0 1 2 3 4 S 6 7 8 9 | sum
01 0 0 0 0 0 [ 0 32 0 o | 32
1 0 ] 0 19 1 15 13 3 14 4 | 69
2 | 0 o] [ 1 0 0 0 o] 0 01 1
31 o -37 21 0 4 2 0 5 2 26 | 97
4 | 0 20 17 6 0 1 0 ¢ 39 0| 83
51 o 28 0 1 [ 0 0 0 20 ot 49
6 i 0 30 0 o] 0 2 ¢ 19 0 71 S8
71 14 12 5 1 0 0 11 0 0 S { 48
8 | 0 18 0 0 13,1 0 0 0 o1 42
9 i 0 2 2 1 0 0 0 1 o] 0 | 6

sum | 14 147 45 29 18 31 24 60 75 42 | 485

Table 1: false accept for <cpt>; EER = 8.7%

X\X | o] 1 2 3 4 5 6 7 8 9 | sum

sum | 2 16 6 4 2 4 4 6 8 6 | S8

Table 2: false reject for <cpt>; EER = 8.7%

One can see that our <cpt> method is never totally
perfect, whoever the speaker is. It is nonetheless interesting
to see some individual differences; compare for example

speaker 0 and speaker 1.

¢) 2VQ: results

Table 3 and 4 are equivalent to table 1 and 2, in the
case of vector quantization. One can see that the average
magnitude of efficiency is quite similar, although individual
results may be quite different. For example, the efficiency
of the TVQ method for speaker 0 and 1 is almost the same,
albeit it was not true for the <cpt> method.

--> Reference X X

| Speaker Y Y 2 = false_accept (Y by X)

v

Y\X | 0 1 2 3 4 S 6 7 8 9 | sum
01 Q 1 0 0 0 0 0 0 ] 31 4
11 10 o 24 31 12 0 1 2 9 9 1 98
2 0 [o} [ 3 0 0 o 0 [o} 0 i 3
31 0 0 [ 0 0 [ 0 o} o] 01 0
4 | o} 6 45 11 0 0 0 0 [ 0| 62
5 1 0 0 o] 0 o} o} 0 0 0 01 0
61 17 14 16 15 [y 2 0 6 0 19 1 89
71 22 10 36 14 0 7 10 0 0 20 1 119
8 | 0 9 13 5 0 o] ] ] [ 04 27
9 | 8 6 22 30 0 [y 6 8 ¥ 0| 80

sum | 57 46 156 109 12 9 17 16 9 51 | 482

Table 3: false accept for XVQ; EER = 9.1%

X\X | 0 1 2 3 4 S

sum (7 6 18 15 2 2 3 2 2 6| 63
Table 4: false reject for IvQ; EER = 9.1%

To confirm that the errors done by one method can be
corrected by the help of the other, we construct the scatter

graph of figure 1 (speaker 0), where one can see two almost
non-overlapping domains.
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Figure 1l: scatter graph <cpt> vs XVQ

The inter speaker domain is characterized by points,
while the intra speaker domain is constituted by circles.

d) 29V Q/at: results

As shown by tables 5 and 6, the results obtained by the
third method are not excellent. Notwithstanding this lack of
efficiency, we ascertain that this method is useful, due to its
good error decorrelation property with regard to YVQ
(scatter graph not shown).

-~-> Reference X X

| Speaker Y Y 2 = false_accept (Y by X)

v

YAX | ] 1 2 3 4 5 [ 7 8 9 | sum
[l 0 10 0 3 0 23 24 14 0 39 77
1 20 o] 8 22 17 39 29 16 8 8 | 167
21 16 17 0 59 17 32 16 17 17 19 | 210
31 0 0 2 0 0 1 o] 0 ] 0 i 3
4 | 39 47 41 57 0 49 39 33 43 27 | 375
51 0 [¢] o] 0 0 0 0 0 o 01 [
6 1 22 18 3 17 3 24 0 19 1 2 | 109
71 6 10 8 10 8 41 10 0 S 8 | 116
8 | 29 32 32 40 32 34 29 20 0 17 | 265
9 | 38 20 40 64 14 44 27 21 [ 01 274

sum | 180 154 134 272 91 287 174 140 80 B84 |1596

Table S: false accept for XdvQ/dt; EER = 29.0%

X\X | 0 1 2 3 4 5 6 7 8 9 | sum

sum | 22 18 15 31 12 33 23 16 14 11 { 195

Table 6: false reject for YdvQ/dt; EER = 29.0%

e) p(P): results

Tables 7 and 8 condense the results obtained for the
distribution of entries in a universal codebook method.

--> Reference X X

| Speaker Y Y 2Z = false_accept (Y by X)

v

YA\X | 0 1 2 3 4 ) 6 7 8 9 | sum
[l 0 3 0 0 2 0 15 0 0 0 | 48
11 8 0 5 0 28 3 21 o 27 2 | 94
2 | 0 6 [} 0 23 0 2 0 13 0 | 44
34 0 33 17 0 22 3 4 0 24 27 | 130
4 i 0 30 24 0 0 0 9 0 23 0| 86
S | o] o] o 0 0 [¢] o] Q 0 0 i 0
6 | 9 33 4 0 17 4 0 0 12 71 86
71 21 39 6 0 6 5 20 0 11 51 113
a | o 16 0 [¢] € 0 0 0 0 01t 22
9 | 0 13 9 1 1 2 8 0 6 ot 40

sum | 38 201 65 1105 17 79 0 116 41 | 663

Table 7: false accept for p(P)}; EER = 14.1%

X\X | o] 1 2 3 4 5 6 7 8 9 | sum

sum | 6 24 8 2 12 10 12 14 14 6 1 108

Table 8: false reject for p(P}; EER = 14_1%

Combination of the previous methods

a) Fisher linear discriminant analysis

Up to now, we have used four different methods to
compute a distance between some speech input and a given
reference, but we still have to find a way of combining
them, at least when they disagree in accepting or rejecting a
claim [14, 15, 19]. For example, a slanted line in figure 1
would design a frontier separating intra speaker and inter
speaker domains. The scope of this section is to determine
such a frontier in our four dimensional space, according to
certain optimality criteria. The algorithm chosen is named
Fisher linear discriminant (4, 16]; it aims at maximizing the
ratio of inter class mean difference to intra class scatter.

Let D, be the set of intra speakers distance
measurements, and [D | the inter speakers set,

{18) D= [dj lje [0, D11}
D, ={d ke [0, Dn-l]j
where Du' Dn are the sets' cardinality, and di the

quadridimensional distance vectors obtained by the other
methods

(19) d,=(d;, dy dy, d )t
We describe a straight line through the origin by a vector w.

Every d, can be projected onto this line, leading to a scalar
measurement y;

(20) Yiz“vf' di
We name the inter class difference & .

@) 3 =w'-Sp-w Sg=(m,-m) - (m,-m)"

nRJ:=E}-. E:dj xnr‘zi%—.
v je(0.D 1] " ke{[0,D -1
[¥]

We name the intra class scatter §_,
(22) 3, =wl.Sy-w Sw=05-S,+05-5,

1
So=p~r  2(d-m))-(d-m)!
Y je[0,D 1]

1
Snzﬁ—' Z(dk'mr»)‘(dk"“m)f
" ke[0,D,-1]

The criterion we seek to maximize is

23) ) =2
(23) J(w) =2

v

The solution is the vector
(24) W=S;},-(mu-mh)

onto which we project every measurement, in order to
obtain a scalar global distance resulting from the
combination of the distances computed by the four original
methods.

b) Fisher: results

Tables 9 and 10 give the results obtained for the
combination of the four previous methods. The numerical
interpretation of table 9 remains the same as for previous
tables, whereas in table 10 we have removed all
comparisons of a test locution with the very reference built
gvith. This leads to a maximum intra speaker confusion of

6.
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--> Reference X X
Y 2 = false_accept (Y by X)

i Speaker Y

v

Y\X | Q 1 2 3 4 5 6 7 8 9 | sum
01 0 [ [¢] 0 0 0 0 2 0 [JI] 2
11 4] o 0 8 2 0 1 2 2 2 1 17
2 | 0 0 o o] 0 0 0 o] o] 31 3
31 o] [ 7 0 [¢] 0 0 0 0 11 8
4 | [¢] 0 18 [¢] 0 0 0 0 0 0| 18
51 0 0 0 0 0 0 0 0 0 0 | [¢]
6 | 0 11 0 o] o] o} ] 6 0 5t 22
71 15 20 1 0 o] 0 9 0 o] 2 1 47
8 | o] o] 6 0 ] 0 0 0 0 0! 6
9 | 0 7 4 1 o] 0 o] 1 o] o 13

sum { 15 38 36 9 2 o 10 11 2 13 { 136

Table 9: false accept for Fisher; EER = 3.0%

X\X | 0 1 2 3 4 5 6 7 8 9 | sum

sum | 2 4 S 1 2 ] 2 2 1 2| 21

Table 10: false reject for Fisher; EER = 3.0%

One can see that the results are far better when
combined than when obtained by any single method, the
gain being a factor of three.

C) summary

The table 11 summarizes the results obtained for each
method, with EER as figure of merit.

method | <cpt> | ZVQ | ZvQ/dt | p(P) | Fisher |
EER | 8.7% | 9.1% |  29.0% | 14.1% | 3.0% |
Table 11: EER summary

Looking at these results, one has to remember that no
special care has been taken to optimize any parameter (P,
Q. G, U), that pauses arc included in computations, and that
distance measurements are simply Euclidean instead of
(e.g.) Mahalanobis [20]. Furthermore, our decision is not
delayed until sufficient confidence is met, but immediate.
The comparison with some other results given in literature
suggests that the scores we obtain are good.

Method | EER | Comment
<cpt> (18] | 5.8 | L1 is 6 times longer
Tvo & ¥3vQ/dt [17] | 3.0% | More samples for d/dt

1 | Li is 3 times longer

| | G is 2 times bigger

! | Already combined results
p (R} | | Our method is new
Fisher (2] { 1.9% | Delayed decision

More combined methods

Table 12: comparison to literature

Conclusion

We have described four different methods dealing with
automatic speaker recognition in a text independent mode.
Experiments have shown that these are valuable by
themselves, but we were still able to greatly improve the
performance of any single method by combining them,
using a Fisher linear discriminant technique. On our
database, the error rate is divided by a factor of about three.
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