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ABSTRACT

We present a general framework for the fast, high quality
implementation of geometric affine transformations of images (p=2)
or volumes (p=3), including rotations and scaling. The method uses a
factorization of the pxp transformation matrix into p+1 clementary
matrices, each affecting one dimension of the data only. This yields a
separable implementation through an appropriate sequence of 1-D
affine transformations (scaling + translation). Each elementary
transformation is implemented in an optimal least squares sense using
a polynomial spline signal model. We consider various matrix
factorizations and compare our method with the conventional non-
separable interpolation approach. The new method provides
essentially the same quality results and at the same time offers
significant speed improvement. ’

1. INTRODUCTION

Many applications in biomedical imaging require efficient tools for
performing geometric transformations of images with the least
possible loss of information. In the case of automatic processing, such
transformations would typically be useful when addressing a
registration problem [1]. In the case of visualization, a physician is
often interested in manipulating an image without losing important
details, and without introducing artifacts.

An application where the accurate geometric manipulation of images
is important, is-the comparison of functional brain scans of subjects
under different conditions [2]. These conditions may include a
stimulation (e. g. a drug, an odor) or a state (e. g. alcoholic or sober
patient), and the feature of interest may be an activity pattern in the
brain. A registration procedure is used to align the brain images on
the basis of a geometric criterion. Certain classes of algorithms
operate in an iterative fashion and thus require multiple applications
of geometric transformations [3].

Another example of geometric registration is the correlation-
averaging of virus particles in high resolution electron microscopy
[4]. Images of individual virus capsomers are typically extremely
noisy, and noise reduction is achieved by averaging. This averaging
process requires that the images be aligned through translation and
rotation. Scaling may also be useful when combining images from
multiple micrographs.

The focus of the paper will be to present an efficient and high quality
approach for performing the transformation of volumetric data in an
iterative registration algorithm context. The quality issue is especially
important here because of a strong desire to preserve the integrity of
the data. The speed issue is important too, for real time visualization,
or in cases such as iterative registration.

The paper is organized as follows: in Section 2, we introduce image
registration as a context in which geometric transformations occur;
these are discussed in Section 3. In Section 4, we introduce a 3x3
matrix factorization which allows any further processing to be 1-D
only. In Section 5, we present a least-squares method for the
interpolation of 1-D signals, and conduct some experiments that we
present in Section 6. We discuss the results in section 7 with special
attention paid to the issues of speed and quality, and finally we
conclude the paper in section 8.

2. REGISTRATION .
The registration algorithm that we want to implement is
schematically represented in Figure 1. The input of the process
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consists of a reference volume and a test volume that need to be
aligned, as well as a set of initial geometric registration parameters.
Based on the comparison of the transformed test input with the
reference; we derive an incremental transformation which is supposed
to improve the result if applied. This incremental transformation is
then composed with the initial one, in order to form a new set of
parameters for the geometric transformation. This scheme is iterative
in the sense that the initial guess is successively refined until a
convergence criterion (not shown) is met.
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Figure 1: Outline of the registration algorithm

volume

The most costly step in this algorithm is the geometric
transformation, especially when dealing with volumes (as opposed to
images). One way to gain efficiency is to minimize the number of
iterations needed before convergence. With respect to this point,
several solutions exist; for example, a Marquardt-Levenberg
optimization scheme [5]. A second approach, which is the one .
pursued here, is to accelerate the geometric transformation itself. One
needs to be careful that this acceleration is not achieved at the cost of
a reduced quality, since we do not want the disparity minimization
process to be affected by noisy data, and eventually to produce
imprecise updates. We will show below how to achieve
simultaneously these two seemingly contradictory goals of speed and
quality.

3. GEOMETRIC TRANSFORMATION
The geometric transformation considered is affine; that is, it consists
of any combination of translation, rotation, and (possibly non-
isotropic) scaling. Such a transformation will map a volume s(X) into
s(Ax+a), where X is a spatial coordinate vector, A is a square
(non-singular) transformation matrix, and @ a translation vector.

Consider now that the new image s(AX+a), into which s(X) is
mapped, has to be described by a discrete set of voxels located at
integer coordinates Y, as is the case with virtually any numerical
processing scheme. To each discrete y then corresponds a coordinate
X= A“(y—a) at which the value of the image needs to be
evaluated. The burden associated with this computation is that the
evaluation of high-order interpolation models involves a large
number of neighbors of X. Working with volumetric data makes the
interpolation process rather tedious; typically, the number of required
neighbors grows like the cube of the chosen interpolation order.

In this paper, we propose to reduce the computational cost for any
given model order, without any appreciable loss in image quality. The
principle of the approach is to decompose the transformation matrix
A in a series of shear and scaling operations along the coordinate
axes. The advantage of this decomposition is that each of the
intermediate transformations can be performed using simple one-
dimensional processing only.
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4. MATRIX FACTORIZATION
Any non-singular 3x3 matrix can be decomposed into a product of
elementary matrices in as much as 6 different ways, where the
elementary matrices represent 1-D transformations only. This kind of
decomposition is an extension of the decomposition originaily given
in [6] for 2x2 matrices consisting of rotations only. As an example,
we give the following factorization

11 912 43
A=|ay ap ap @
a31 O3 a3

1 0 0 A.1 Oy Oy3 1 0 0 1 0 0
A=lag Ay og 0 1 0] 0 1 0fafdlak|@
0 0 1 0 O 1 O3y O3y 7\.3 0 0 1

The other factorizations are obtained by changing the sequence of
operations. In general, the structure of the two outer matrices is the
same, while the two inner matrices differ. It should be noted that
finding the decomposition of a general matrix in four elementary
matrices is an underdetermined problem; we will see later how to
take advantage of this fact. Specifically, factorization (2) holds
whenever the following conditions are met

Oy = a19033 — a3y # 0

O3 =az, #0

31 = (a3, +appa3 — a3, fouy,

gy =(aypa33 — a3z, —1) fory, -

o3 = (1112 —0‘12)/0‘32

o33 = (az3 — 1) /o,

o3 = (a3 + ay1ap3 — a3 — A12053 ) fot,

o5 = (@ +a1pa31 — a13a31 — 12031053 —1) /oy

A5AAsAg = Det(A) @

We see that this particular decomposition is valid only when o, and
O3, are non-zero; the other five decompositions yield similar
constraints. For example, writing (2) with its two central elements
permuted is valid only if @pa3; #4aj1a35 and @, #0. However,
when none of the constraints for any decomposition amongst the six
possible ones are satisfied, it can be shown that the matrix can still be
factorized by introducing a pair of mutually canceling permutation
matrices such as those given below; one is applied directly to the data
while its inverse is used to modify the transformation matrix
accordingly. The permutation matrices are

001 010 100 001
R,={100| Ro=[001| R,=i001| Ry=|010| ()
010 100 010 100

The matrices share the property that no interpolation or computation
other than shuffling is required for their application. As such, the cost
involved in using them is minimal. Hence, the number of
intermediate steps is five, one of which is essentially free (identity,
or, at worse, shuffling). The four elementary steps in (2) involve one-
dimensional processing only, which greatly simplifies the
implementation, and also results in substantial computational savings.

5. ONE-DIMENSIONAL OPERATIONS
Each one-dimensional step of the transformation involves scaling and
translation only. To show this, consider the last element in (2) which
maps s(xy,%p,%3) into s(x;,A3 xp +a,(x),x3),x3). For a fixed value
of x; and x3, the transformation represents a 1-D scaling and
translation of the corresponding image column at coordinate x,.
Since a, = ay(xy,%3), the translation depends on the position within
the volume, but each column can be processed independently. The

basic operation is then the 1-D affine transformation which maps a 1-
D signal s(x) into s(Ax+a).
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Figure 2: Block diagram of the re-sampling scheme

The standard approach for implementing this operation is to fit a
continuous model to s(x) and then to re-sample this model with steps
spaced by 1/A and globally displaced by ~a/fA. In its simplest form,
the model is that of piece-wise constant functions, and the sampling
procedure is known as nearest neighbor interpolation, which is fast
but produces very poor quality results. The fact that no anti-aliasing
step is embedded in this approach renders it inappropriate whenever
[M<1. When |A|>1, the method introduces blocking artifacts. Even
for [A|=1, the possibility for a to be non-integer generates still
another type of artifact.

As a solution to these problems, it is often proposed to augment the
order of the model, and eventually apply an anti-aliasing pre-filter
when necessary. Typically, (bi, tri)-linear interpolation comes into
play at this stage, along with decimation filters, although the latter are
uvsually limited to integer factors only. In this paper, we consider an
alternate approach which uses the generalized sampling theory
described in [8]. Specifically, we show that 1-D affine
transformations can be performed in an optimal least-squares fashion
using polynomial-spline signal models. This optimality property is
very desirable since, in 3-D, we need to perform four such
transformations successively. If these transformations are optimal,
then the propagation of errors is reduced to a minimum.

The 1-D implementation of the affine transform consists of the three
sequential operations shown in Figure 2. The first, pre-filtering,
provides the B-spline coefficients of the input signal. These
coefficients form an exact representation of the signal, since the filter
involved is reversible. The second operation is re-sampling, with an
optimal kernel showing an explicit dependence on the scale factor A
and the translation a. The third and last operation maps the result
back from the spline coefficients domain into the signal domain by
post-filtering.

Let us represent the signal s(x) by its samples s(k). It is very
important to stress here that we replace the basic assumption of s(x)
being band-limited by the assumption that s(x) is a member of Sf,
the functional space of polynomial splines of order n with sampling
step one. Explicitely,

s(x)esp = {f"(x) = 3 c(kB"(x—k)

k=—co

c(k)e 62} ©

where ¢, is the space of square-summable sequences and where
B”"(x) is the centered B-spline of order 7. Given this assumption, the
B-spline coefficients are

c®=(b") x5tk 0

where (b") ! denotes the inverse filter of the sampled version 5" (k)
of B"(x) and provides the pre-filtering component of our approach.
This pre-filtering step can be implemented very efficiently using fast
techniques described in [9].

Suppose now that we want to find an approximation s; ,(x) of s(x)
such that s, ,(x) belongs to SR 4» the space of splines with sampling
step A=1/A translated by a.In a favorable case, both s, ,(x) and
s(x) will represent the same function of x; however the samples
used to represent them will vary in rate and relative position of the
origin

2920



400
5 (XESE, = {f”(x) = ZC(kA)B" (Ax+a-k) ckA) e £2} 8)

k=—o0

The least-squares approximation can be shown to be given by

+oo R
M= D dy OB Ax+a—k) ©9)
k=—co
where the dual B-spline " (x) corresponds to our post-filtering
o Hoo a
B 0= X (b) 0B x-k) (10)
k=—co

The re-sampling of the spline coefficients is done according to

dy () =AY, c(DE] L(kA-D) an

[=—c0

which reduces the post-filtering operation to
-1
5y.alk) = (b”‘“) *b"xdy (k) (12)
In the process, the complicated part is the determination of &} ,
E o) = A(B"+B} . J(x) =B" (x)*B"(Ax +a) a3)

Fortunately, both functions in the right-hand side of (13) are
compactly supported; hence (11) is a finite sum of terms.
Unfortunately, the analytic expression of (13) is complicated, due to
the fact that, in general, it consists of numerous small polynomial
regions. As an illustration, we report in the Appcndix the piece-wise
constant case, for which &j , is a piece-wise linear function. The
piece-wise linear case §;~0 with a=0 is reported in [7], along with
suggestions for approximating higher orders of the re-sampling kernel
by simpler expressions. In the rest of this paper, we considered a
Gaussian approximation for &3 , .

6. EXPERIMENTS

We report here a series of experiments conducted with planar images
instead of volumes. In this case, the decomposition (2) reduces to
three steps instead of four. We tried the two main approaches for the
implementation of the necessary 1-D operations: the usual spline-
fitting/re-sampling scheme (interpolation), and the new least-squares
scheme discussed above. We compared the speed and the accuracy
using several spline orders, namely constant, linear and cubic. We
investigated several strategies for satisfying the constraint (4), and we
also considered the decomposition in two steps [10], which is fully
determined. For comparison purposes, we also included the non-
separable interpolation method, for which re-sampling and least-
squares interpolation processes have been implemented as well[11].

The interpolation schemes will be labeled with their order, namely
INTO, INT1 and INT3. The least-squares schemes of corresponding
order will be labeled LSO, LS1 and LS3. The non-separable approach
will be labeled s (one 2-D scaling), the two-pass decomposition ss
(two 1-D scaling). We tried three different strategies for satisfying
(4). The first one is a safe-bet approach where the overall factor
Det(A) is distributed in a homogenous cube root fashion over every
A. This approach is labeled sss (three 1-D scaling). A second strategy
is to apply the overall factor to one A only, which can be either the
first one applied to the data (approach labeled stt), or the last (tts). If
only one intermediate scale factor is non unitary, then the two other
operations are translations only and can be done at a lesser cost via
simple convolutions.

The set of parameters we tried implied a translation by irrational
values dx=+n and dy=+/e, along with scale factors A =1,
A=+2/2, A= %(\/" 3 (golden ratio) and A =1/2. Although our
formulation offers more freedom for the choice of the affine

transformation, we limited ourselves to rotations only; the angle
selected was ©=m/4. The quality criterion we report here is
expressed in dB and corresponds to the signal-to-noise (SNR) ratio of
the standard "Lena" image undergoing a direct transformation
followed by its inverse (back-and-forthoperation, BF). The SNR was
estimated on the central (128x128) portion of the (256x256) image.
The three images (initial, intermediate and final) were stored in
integer format, while internal computations were done in floating-
point.

The timing information was obtained on a Silicon Graphics Indigo
workstation by issuing 20 BF; the numbers give the relative
computation time with respect to the simple s-s method (non-
separable) with order INTO and re-sampling.

p=1.000 INTO INT1 JINT3 LSO [LST |LS3
s 29233062 |39.28 | 30.69 40.03
[ss-ss 27.80 {29.40 |36.99 |29.17 |35.98 |37.87
lsss-sss 2722 | 28.62 | 37.78 | 28.62 | 37.78 | 40.94
Stt-tts | 27.22 | 28.62 | 37.78 | 28.62 | 37.78 | 41.69
ts-stt | 27.22 | 28.62 | 37.78 | 28.62 | 37.78 | 41.40
Table 1: Back-and-forth with A =1
|x=0.707 INTO [INT1 [INT3 |[LSO [LS1 |LS3
fs-s 23.24 |27.49 3046 |27.25 31.06
fss-ss 25.69 | 25.71 | 29.55 | 25.73 | 29.55 | 30.80
[sss-sss 2221 [26.61 {3077 | 26.57 |30.53 | 31.25
Ist-tts [ 20.55 | 25.85 | 28.49 [25.52 [ 28.51 |29.08
is-stt | 24.07 | 27.76 | 30.74 | 26.92 [ 30.87 | 31.90
Table 2: Back-and-forth with A =+2/2
P=0.618 INTO JINT1 [INT3 JLSO JLS1 ]LS3
s 23.05 [ 26.79 | 28.17 | 26.54 29.22
fos-ss 2335 [ 26.02 | 28.08 [25.75 | 28.37 [29.07
[sss-sss | 2249 [25.99 [29.03 | 23.05 [26.79 | 29.63
st-tts | 22.10 | 24.76 | 26.91 | 24.53 [ 27.40 | 28.17
is-stt | 23.32 | 26.49 | 28.30 [24.72 [ 28.83 [29.39
Table 3: Back-and-forth with A= (VE- 1) /2
p=0.500 INTO JINT1 [INT3 [LSO T[LSI LS3
b 22.02 | 25.11 [25.15 [ 24.80 26.69
fss-ss 21.66 |24.79 | 25.80 | 24.49 | 26.34 [ 26.89
fsss-sss [ 21.52 | 24.84 [26.36 | 24.69 | 26.79 [27.29
pt-tts [20.01 |23.07 | 23.95 [22.84 [24.87 | 25.25
fs-se  ]21.65 | 24.40 {2479 2032 [25.62 [ 25.87
Table 4: Back-and-forth with A =1/2
[Rel. time]INTO JINT1 JINT3 LSO JLST [LS3
|§-s 1.0 | 15 [160 ]59.0 61.0
|ss-ss 15 | 20 | 80 [ 40 [ 9.0 [270
Isss-sss 20 |25 |115 |55 [125 [380
lstt—tts 20 |20 [ 60 |30 |65 [175
fits-stt 20 120 |60 |30 |65 [175

Table 5: Relative execution times
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7. DISCUSSION

The first point that we will mention is rather expected: for a given
method, the greater the order, the better the results... and the longer
the computation time. As second point, let us compare re-sampling
with least-squares: it is experimentally quiet apparent that the quality
of LSO is nearly the same as that of re-sampling of order 1, while LS1
exhibits the same behavior as cubic re-sampling. In the case of a
translation, it has been theoretically shown in [12] that the exact
relation is LS(n) &> INT(2n +1), and we see here experimentally that
this relation tends to be true for scaling as well. As third remark, it is
also obvious that the smaller the A, the larger the quality loss, since
the intermediate image in the BF methodology retains less and less
information when A decreases.

A more detailed analysis of the experimental quality of the methods
proves to be uneasy, because no consistent winner emerges, but for
the rotation without scaling, where the non-separable approach s is
almost always better, although at the largest computational cost of all
methods. The second consistent observation is the failure of the stt
strategy. Since we considered only cases with [A|<1, this loss of
performance is not surprising: scaling down the signal as very first
operation means that all subsequent transformations are performed
with less resolution. By contrast, the tts strategy is more successful
because the errors introduced by the non-scaling steps are scaled
down at the final step. This reasoning helped us in deciding to
implement the BF strategies as mirrored pairs, that is, stt-tts and tts-
stt.

The important point, however, is that these results clearly show that
some decomposition (specifically: tts-stt) of a 2x2 matrix in three
sub-matrices yields essentially the same quality as the decomposition
in two steps (ss-ss), while reducing the computation time, especially
for higher-order models. Compared to a non-separable approach, the
speed gain is even more impressive, while the quality tends to remain
constant, at least when high-order models are used.

8. SUMMARY AND CONCLUSIONS

In- this paper, we have presented a way to implement any affine
transformation in 3-D by using 1-D operations only. We have shown
how to perform the latter in an optimal, least-squares fashion when
the band-limited assumption for sampled signals is replaced by
comparable assumptions using spline models. We have then
conducted and analyzed a series of experiments in 2-D which showed
the validity of our method.

A typical result of these experiments is that the usual non-separable
approach for applying an affine transformation to an image can be
accelerated by a factor of three, at no appreciable loss in quality. This
gain in efficiency grows more and more with the interpolation order,
and it is expected that it will be even more pronounced in 3-D.

APPENDIX

The piece-wise constant re-sampling kernel consists of five piece-
wise linear regions given by

C(p o<pyst
’“{1 1< Ab
Za;\'—h %<0 2a;i+k A<0
X0 =927 *3=92a4142 a2
= 2 0<A —— 0<A
2 2

(2a~1-A 2a+1+A
—_—  A<-1 —_— A<-l
e 2 <
“—‘;'i— -1 <0 2—“%—5 ~1£4<0
X=19," Xy = _ (A3)
2a-14h  goasi 2a41-%  hoact
2 E% A 2a2%+7»
arl— z
B e Y —_— 1<
22 2A
0 x<x
h—h(x-xo) XgSx<xy
X1~ %
§2,a(x)= h xn<x<x (A4)
h—h(x~x7') Xy £X<x3
X3 =Xy
X3<x
Note that &7 , is left undefined.
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