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Abstract

This paper is a contribution to automatic speaker recognition. It considers speech

analysis by linear prediction and investigates the recognition contribution of its two

main resulting components, namely the synthesis filter on one hand and the residue

on the other hand. This investigation is motivated by the orthogonality property and

the physiological significance of these two components, which suggest the possibility
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of an improvement over current speaker recognition approaches based on nothing but

the usual synthesis filter features. Specifically, we propose a new representation of the

residue and we analyse its corresponding recognition performance by issuing experi-

ments in the context of text-independent speaker verification. Experiments involving

both known and new methods allow us to compare the recognition performance of the

two components. First, we consider separate methods; then we combine them. Each

method is tested on the same database and according to the same methodology, with

strictly disjoint training and test data sets. The results show the usefulness of the

residue when used alone, even if it proves to be less efficient than the synthesis filter.

However, when both are combined, the residue shows its true relevance. It achieves a

reduction of the error rate which, in our case, went down from 5.7% to 4.0%.

Résumé

Cet article présente une contribution au domaine de la reconnaissance de locuteurs.

Il traite de l’analyse de la parole par prédiction linéaire et examine la contribution en

reconnaissance de ses deux composantes principales, le filtre de synthèse d’une part et

le résidu d’autre part. Cette étude se fonde sur la propriété d’orthogonalité ainsi que

l’importance physiologique de ces deux composantes, qui suggèrent que la reconnais-

sance du locuteur se basant exclusivement sur le filtre de synthèse peut être améliorée.
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En particulier, nous proposons une nouvelle représentation du résidu et nous exam-

inons ses propriétés de reconnaissance au moyen d’expériences conduites dans un con-

texte de vérification du locuteur indépendante du texte. Ces expériences, utilisant à la

fois des méthodes connues et nouvelles, nous permettent de comparer les contributions

des deux composantes au succès de la reconnaissance. Nous commençons par com-

parer les méthodes séparément, puis conjointement. Nous conduisons ces expériences

en utilisant la même base de données et la même méthodologie, caractérisée par la

stricte séparation des ensembles d’apprentissage et de test. Les résultats obtenus

démontrent l’utilité propre du résidu, même si elle apparâıt moindre que celle du filtre

de synthèse. Cependant, le résidu se montre particulièrement utile quand ces deux

composantes sont combinées. Dans le cas reporté ici, un taux d’erreur de 5.7% a pu

être réduit à 4.0%.

Zusammenfaßung

Dieser Artikel ist ein Beitrag zur automatischen Sprechererkennung. Er widmet

sich der linearen prädiktiven Sprachanalyse und untersucht den Beitrag zur Erken-

nung der resultierenden zwei Hauptkomponenten, namentlich des Synthesefilters ein-

erseits und des Residuums andererseits. Diese Untersuchung ist durch die Orthogo-

nalitätseigenschaft beider Komponenten sowie deren physiologischer Bedeutung mo-
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tiviert, welche darauf hinweisen, daß übliche, nur auf Merkmale des Synthesefilters

basierte Sprechererkennung verbessert werden kann. Insbesondere schlagen wir ein

neues Merkmal zur Beschreibung des Residuums vor, und analysieren danach die

entsprechenden Erkennungseigenschaften durch praktische Experimente im Rahmen

der textunabhängigen Sprecherverifizierung. Wir vergleichen die Beiträge zur Erken-

nung der beiden Komponenten durch Versuche mittels bekannten sowohl originalen

Methoden. Zuerst werden die Methoden einzeln verglichen, dann kombiniert. Alle

Versuche werden mittels derselben Datenbank und nach dem selben Testverfahren,

mit getrennten Trainings- und Test-daten, durchgeführt. Die Resultate zeigen, daß

das Residuum ein recht nützliches Merkmal ist. Allein betrachtet ist es zwar weniger

effizient als das Synthesefilter. Das Residuum zeigt aber seine echte Wirkungsweise

im kombinierten Einsatz mit dem Synthesefilter. Es bewirkt eine Reduzierung der

Fehlerrate, welche zum Beispiel von 5.7% auf 4.0% gelangt.

1 Introduction

Automatic speaker recognition comes traditionally in two flavours and two colours.

The two flavours are speaker identification (SI) and speaker verification (SV), and

the two colours are text dependence and text independence. Many reviews of these
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Figure 1: Block diagram of the linear prediction analysis.

concepts have already been published [1, 5, 12, 13, 20, 21, 22, 24, 25, 30, 36]. There

are also two main trends for automatic SV pre-processing: filter-bank (FB) and linear

prediction analysis (LPC) [13, 38].

About the latter, Figure 1 shows its three features, which are usually extracted

from speech on a frame by frame basis. In the context of SV, the synthesis filter

parameters (LPC-H) are used most often; the information available in the residue

(LPC-R), if any, is usually left apart, as well as the gain signal (LPC-G). Recently,

SV research has progressed in improving old and finding new methods using FB and

LPC-H, see e.g. [3, 4, 6, 7, 32, 35, 37, 44], but little research has been done over the

use of LPC-R since the time of [13] (1985).

Now, an interesting property of LPC is to render LPC-H orthogonal to LPC-R in

some sense (that orthogonality would be lost if models of the excitation more elaborate

than the strict LPC-R would be used). Because of that fundamental orthogonality,

which holds up to the analysis order, it is fruitful to combine complementary infor-
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mation upon the user identity extracted from both LPC-H and LPC-R. Thus, if one

accepts the model that associates a vocal tract to LPC-H and an excitation to LPC-R,

then one should also accept that the independence between these two physical pro-

cesses is reflected upon their contribution within the model. We may then hypothesise

that the vocal tract excitation differs among speakers and stays stable within a given

speaker; it draws to the conclusion that LPC-R has to be investigated in order to see

if the information pertaining to the speaker’s identity may be extracted and made

useful. The novelty of our investigation comes from the fact that the residue has been

largely ignored so far in automatic speaker recognition.

In practice, informal experiments have already shown that the residue carries sig-

nificant speaker specific information, for it is known that human beings listening to

LPC-R find enough clues to recognise people [17]. Even if the residue is generally

considered to be only a coarse approximation of the true glottal flow [16], some of its

features have been shown to correlate with a subjective evaluation of voice properties

[15, 34]; for example, LPC-R has been considered useful for diagnostic purposes [27].

A parent feature, namely the fundamental frequency (F0), has also been made useful

in the SV context [9, 14].

In the coding domain, the use of LPC-R in multi-pulse LPC (MPLPC) [2, 31]

and in its extensions like code-excited linear prediction (CELP) or glottal excitation
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linear prediction (GELP) [11], has been successful in enhancing the subjective quality

of speech synthesisers, thus proving its relevance to speech processing. More accurate

models of the glottal source (as opposed to the strict LPC-R) are also known to

enhance this subjective quality [8, 10, 26, 33]. However, it is important to note, in

the context of automatic SV, that these substitute for LPC-R lack the property of

orthogonality to LPC-H.

Here, we investigate the usefulness of LPC-R in text-independent speaker verifi-

cation by proposing a representation of the residue, and by evaluating its practical

impact in a series of experiments. First, we perform experiments with new and

known methods in order to establish links with already published results; then, we

combine the methods together and compare the joint and separate performances.

All comparisons are performed on the same database, and with the same open-test

methodology. Although we restrict our experiments to a text-independent, speaker

verification framework, the principle given is also valid for a more general speaker

recognition task.

In the rest of this paper, we present briefly in section 2 a verification task formalism.

After that, we present in section 3 the database used for our experiments and in

section 4 the associated pre-processing steps, followed in section 5 by the recognition

error rates observed by using features based on the synthesis filter. In section 6,
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V(ω, λ0) = α α = a α = r

ω = ω0 A R̄
ω 6= ω0 Ā R

Table 1: Verification cases.

we present the results obtained while using residue based features. We discuss then

the combination of methods in section 7. Finally, we summarise and conclude this

paper in section 8. The discussion and formalism of our residue comparison process

is deferred in annex.

2 Verification

Let V be a verification task having an implicit access to a set of references. A first

input is ω, an identity claim of a true speaker ω0, while a second input is a speech

sample λ0. The output is a decision α ∈ D = {a, r} of the acceptance or reject of the

claim. Formally, Ω being a set of allowed identities and L a set of speech samples,

the verification task is

V : (Ω× L)→ D | (ω, λ0) 7→ α (1)

If many verification experiments are carried out, then one may construct Table 1

where the observed cases are accumulated. The number of correct acceptances of the

claim is A, the number of false acceptances is Ā, the correct rejects are R and the
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Figure 2: Verification diagram ρa vs. ζ and ρr vs. ζ.

false ones R̄. The false-acceptance and false-reject rates ρa and ρr are given by

ρa =
Ā

Ā+R
and ρr =

R̄

A+ R̄
(2)

It is frequent for the decision α to be based on the comparison of a threshold value

ζ and a dissimilarity δ computed between incoming speech and some representative

belonging to the references set. For example, we may have

D(δ, ζ) =

{
a δ < ζ
r δ ≥ ζ

(3)

The diagram of Figure 2 shows the behaviour of the error rates ρa and ρr with respect

to the threshold ζ. The peculiar threshold value ζe at which both error rates have

the same value yields the equal error rate ρe = ρa(ζe) = ρr(ζe).
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Sessions Sessions
Female I II III Male I II III
F1 • • • M1 • • •
F2 • • • M2 • • •
F3 • • • M3 • • •
F4 • • • M4 • • •
F5 • • • M5 • • •
Fa • Ma •
Fb • Mb •
Fc • Mc •
Fd • Md •
Fe • Me •
Ff • Mf •

Table 2: Speakers and sessions.

3 Database

Our database consists of French speech obtained from radio broadcasting over three

consecutive days, each one being named session till the end of this paper. It follows

that we do not have any control, or even knowledge, of the recording conditions.

A given speaker may have experienced microphone changes between sessions, the

acoustic conditions may be not the same, and the type of background noise may also

differ. The topics involved are various, ranging from weather forecasts to sport events

through political debates, not to mention sociological dissertations or spoken news;

thus, a great amount of variability is present in our database. The number of male

and female speakers is balanced.
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Sessions I II III
References Representatives Thresholds
Tests Tests

Table 3: Use of the sessions.

Table 2 shows with alphabetical characters the labels associated with each speaker

and with Roman numerals the sessions involved. In the training phase of our method-

ology, session I is used for building representatives and session II is used for estimating

thresholds yielding equal error rates in a verification task conducted with test mate-

rial coming again out of session II. A reference consists then in two parts, firstly a

representative holding the relevant statistics for the speaker, and secondly a thresh-

old. In testing phase, session III is used for independently testing the classifiers with

the aid of the thresholds previously estimated. Table 3 presents a sum up of this

procedure.

Our methodology is said to be open, or equivalently U-type, because the data set

used in the learning phase (here: sessions I and II) is strictly disjoint from the data

set used in the testing phase (here: session III). In the learning phase, we determine

entirely the classifiers, thresholds included. All of the data in session III is strictly

ignored up to the test phase; for example, none of it participates in the estimation of

the weights which may intervene in distance computations (Mahalanobis, or weighted
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Euclidean), or is used in any other way before the true test of the classifier. This

precaution assures one, under very mild statistical assumptions [18], that the final

error rate is an upper bound of the real error rate of the SV method.

In some more details, a given reference speaker ωi possesses 9 different represen-

tatives R
(j)
i , j ∈ [1, 9] estimated from his speech segments λ

(k)
i , k ∈ [1, 10] in session

I. For each representative, we build a verification diagram with the aid of 10 intra-

speaker distances and 24 inter-speaker distances computed from speech in session II

out of the set of reference speakers {F1 . . .F5,M1 . . .M5}\{ωi}. Each verification di-

agram in turn allows us to associate to the current representative an estimated equal

error rate threshold ζ̂e(R
(j)
i ), thus creating a complete reference (note again that each

speaker ωi possesses now 9 references which are independent from one another, but

all pertain to himself).

So far, we have just completed the learning phase of the acquisition procedure

without using any of the test speakers {Fa . . .Ff,Ma . . .Mf}. We proceed with the test

phase by considering the now built reference as a classifier with an a priori threshold

ζ̂e(R
(j)
i ). Then, we estimate ρ̂(j)

a and ρ̂(j)
r by applying this classifier in session III to

10 intra-speaker tests and 24 inter-speaker tests using {Fa . . .Ff,Ma . . .Mf}. Figure

3 illustrates the whole process. The global error rates for a speaker ωi is computed

by averaging its 9 ρ̂(j)
a and ρ̂(j)

r ; the final error rates ρa and ρr are obtained by pooling
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Figure 3: Overview of the open-test methodology.

the speakers together.

We then double the number of individual experiments by permuting the roles of

session I and session II; the number of tests done in assessing the error rates is

hence quite high: about twice those found in similar studies, e. g. [39] where 3456

verification comparisons pro method are conducted, against 6120 in our case, or 12240

if one counts the computations needed by the threshold estimation step.

This open-test methodology results in a false-acceptance error rate generally differ-

ent from the false-reject error rate; the equal error rate is not reported since it would

break down the methodology to a closed-test one, due to the a posteriori threshold it

would imply. Instead, the overall quality is measured as the arithmetic mean of the

two values (ρ = 1
2
(ρa+ρr)). We use our methodology under the very same conditions
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Figure 4: Speech segments (pauses are not removed).

for all the methods at hand in order to allow their fair comparison.

4 Pre-processing

Speech is cut into contiguous non-overlapping segments of 8 s duration, without

any respect to text and without pause removal. As we retain 10 consecutive segments

pro speaker and pro session, it follows that our database amounts to 56 minutes of

natural speech. We build each representative with a pair of consecutive segments,

which corresponds to 16 s of speech. A test sample consists of a single segment, that

is, 8 s. Figure 4 shows an example of this process.

Speech is low-pass filtered with fc = 3.4 KHz; it is then sampled with fs = 8.0 KHz

and quantified with q = 16 bit resolution. It is cut in overlapping frames of 0.030 s

duration stepped each 0.010 s. After pre-emphasis with µ = 0.95, each frame is

multiplied by a Bartlett window and fed to LPC with p = 14 as analysis order [28].

The resulting LPC-H coefficients are transformed into p cepstral coefficients.

The original LPC-R signal is first truncated to exactly the same duration as a
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frame’s one, and then transformed to its cepstral representation through a pair of

discrete Fourier transforms (note that no de-emphasis operation occurs). Finally,

because of symmetries due to the real nature of the residue, its cepstral duration is

truncated to that of just more than half a frame.

Formally, if s(n) is the pre-emphasised signal, windowed to an even length N , if

G is the LPC gain and if ak is the synthesis filter coefficient of order k, then the

truncated residue u(n) is given by

u(n) =
1

G


s(n)−

min(p,n)∑

k=1

ak · s(n− k)


 ∀n ∈ [0, N [ (4)

Its amplitude spectrum is given by

|U(k)| =
∣∣∣∣∣
N−1∑

n=0

u(n) · e−j2πnk/N
∣∣∣∣∣ ∀k ∈ [0, N [ (5)

The LPC-R real cepstrum then reads

v(n) =
1

N

N−1∑

k=0

ln |U(k)| · ej2πnk/N ∀n ∈ [0, N/2] (6)

Figure 5 presents an example of an unvoiced and of a voiced residue. The spike

present in the lower right part of the figure can be clearly associated with the fun-

damental frequency (F0) of the corresponding speech sample. Some authors often

summarise the whole residue in just one number representing F0 [29, 40]. We feel

however that the residue as a whole carries richer information than the fundamental

frequency alone.
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Figure 5: Amplitude spectrum (top) and real cepstrum (bottom) of a residue. The left
part is unvoiced, the right part is voiced.
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Figure 6: Methods based on LPC-H.

5 SV by LPC-H complex cepstrum

The representation of LPC-H is usually done in terms of its complex cepstrum

c, which possesses alleged good properties for SV when used in conjunction with

(sometimes weighted) Euclidean distance or with Mahalanobis distance [19]. We

discuss here the four recognition methods given in Figure 6; their results are given in
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Method Dist. ρa ρr
1
2
(ρa + ρr)

% % %
〈c〉 de 39.8 55.9 47.9

dw 10.4 21.9 16.2
dM 6.2 25.7 15.9

〈VQc〉 de 4.6 10.3 7.5
dw 3.3 8.2 5.7

〈VQ∆c〉 de 42.5 25.2 33.8
〈Confc〉 de 9.0 10.7 9.9

dw 7.3 11.6 9.4
dM 0.3 60.9 30.6

Table 4: Error rates of LPC-H methods.

Table 4.

The first method is 〈c〉 the long-term average of the complex LPC-H cepstrum. It

is a well known text-independent recognition method, see e. g. [39]. We compared

three distances (Euclidean de, weighted Euclidean dw and Mahalanobis dM) [18].

The second method is 〈VQc〉 the long-term average error of the vector quantization

(VQ) distortion, which is another well known text-independent recognition method

[41]. Here, the codebook size is K = 32.

The third method 〈VQ∆c〉 applies to differential complex LPC-H cepstra the VQ

distortion recognition method [41]. Here, the codebook size is again K = 32. We

observe that our results obtained using this method are very bad; preliminary exper-

iments discouraged us to attain a better success with the two other distances dw and
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LPC-R
Method

〈v〉
〈Prov〉-

-

-

Figure 7: Methods based on LPC-R.

Method Dist. ρa ρr
1
2
(ρa + ρr)

% % %
〈v〉 de 16.3 14.8 15.6

dw 14.0 18.6 16.3
dM 0.4 84.6 42.5

〈Prov〉 11.4 14.3 12.9

Table 5: Error rates of LPC-R methods.

dM . It appears then that, on our data, the 〈VQ∆c〉 method performs worse than in

the case reported in [41].

The fourth text-independent speaker recognition method 〈Confc〉 is called confor-

mity [42]. It aims at recovering the information unused by VQ distortion, by looking

specifically at the frequency of selection of the codebook entries. The compared

features correspond then to a histogram; looking at such a histogram as a vector,

the comparison is made using de, dw or dM distances. The codebook is speaker-

independent; its size is K = 128.

6 SV by LPC-R real cepstrum

We will use LPC-R in a feature called LPC-R real cepstrum. The reason for the
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    1.25

    0. 25   n

    v(n)

Figure 8: Average residue real cepstra of two speakers. Speaker A is shown with full
lines and speaker B with dashed lines.

choice of this LPC-R representation is that the original residue is primarily a time-

domain feature, but as we don’t want to consider synchronisation with pitch epochs

and simultaneously want to get rid of its phase contribution, we compute and retain

only its amplitude spectrum (which tends to be flat). Now, this intermediate feature

is meaningful only when transformed back from the frequency domain to the time

domain. Furthermore, we arbitrarily decide to introduce a logarithmic non-linearity;

it follows from these considerations that we investigate here the properties of the

LPC-R real cepstrum v as the final representation for the residue. Since the phase

information is no more present, that representation is lossy; however, it tends to

better satisfy the set of requirements given in [43]. We have tried the two recognition

methods presented in Figure 7; their results are given in Table 5.

The first method is 〈v〉 the long-term average of the LPC-R real cepstrum. It is
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illustrated in Figure 8, where one can see a set of eight samples for each of two male

speakers. It is quite apparent from the figure that speakers A and B show both a low

intra-speaker variability and a high inter-speaker variability.

The second method 〈Prov〉 is new. We call it prominence. It is an attempt at a

better use of v based on the observation that its most important feature is the presence

of a cepstral peak when faced to a voiced frame. Hence, we retain as significant data

only those test residue cepstral values which exceed the reference average residue

cepstrum for the considered component, and we weight these prominent peaks by

their variance square root. A global distance measure is then based on this kind of

clipped data. This new way of comparing two speech samples, while exacerbating

the importance of these prominent peaks, is still richer than the mere use of the

fundamental frequency because the whole range of frequencies contributes to the

comparison, and because each data frame may influence the comparison result, be it

voiced or not.

Comparing results of Table 4 with those of Table 5, one can see that our residue-

based methods are less efficient for SV than some traditional methods based on the

use of LPC-H. However, it also appears clearly that our new LPC-R methods are

still relevant to the problem, achieving an error rate of 12.9% only. In terms of rank-

order, these methods fit the middle range, coming as third (〈Prov〉) and forth (〈v〉)
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LPC-H LPC-R
1
2
(ρa + ρr) α) β) γ) δ) ε) ζ)
α) 〈VQ∆c〉 33.8
β) 〈c〉 13.8 16.2
γ) 〈Confc〉 11.6 10.5 9.4
δ) 〈VQc〉 11.6 8.2 5.3 5.7
ε) 〈Prov〉 12.2 9.4 7.0 5.7 12.9
ζ) 〈v〉 18.8 11.9 8.4 5.3 13.7 15.6

Table 6: Average error rates of combined methods.

out of the six investigated methods. The whole ranking reads, from best to worst,

〈VQc〉 < 〈Confc〉 < 〈Prov〉 < 〈v〉 < 〈c〉 < 〈VQ∆c〉.

So far, we have given a minimal bound for the performance obtained using the

residue as a stand-alone feature, and we have been able to compare that performance

estimation with that of more traditional methods. But our real aim was indeed to

make a joint use of LPC-H and LPC-R; we will see in the next section how we achieve

this goal as we experiment several combinations of methods, comparing the results

obtained using cross-features to those obtained throughout the use of a single feature.

7 Combining LPC-H and LPC-R

We combine here pairwise the best results of the six methods observed so far. Out of

these, four deal with LPC-H, namely 〈VQ∆c〉 (de), 〈c〉 (dw), 〈Confc〉 (dw) and 〈VQc〉

(dw). The other two use LPC-R as characteristic feature, namely 〈v〉 (de) and 〈Prov〉.
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LPC-H LPC-R
min(ρ1,ρ2)

ρ12
α) β) γ) δ) ε) ζ)

α) 〈VQ∆c〉 1.00
β) 〈c〉 1.17 1.00
γ) 〈Confc〉 0.81 0.90 1.00
δ) 〈VQc〉 0.49 0.70 1.08 1.00
ε) 〈Prov〉 1.06 1.37 1.34 1.00 1.00
ζ) 〈v〉 0.83 1.31 1.12 1.08 0.94 1.00

Table 7: Relative gains of combined methods.

The joint use of all these methods is obtained through a weighted sum of the distances

observed individually; the weights are chosen so that the variance contributions are

equalised within each pair. We give in Table 6 the observed results. We underlined

the entries denoting the existence of a improvement over the best individual method

of the considered pair (ρ12 ≤ min(ρ1, ρ2)). The relative value g = min(ρ1, ρ2)/ρ12 of

this gain is reported in Table 7.

We observe in these tables that complementary techniques appear most often when

combining LPC-H with LPC-R. In more details, as much as 7/8 cases are efficient in

an LPC-H–LPC-R combination, none in the pair LPC-R–LPC-R, while 2/6 cases only

are efficient in the pair LPC-H–LPC-H. These two last cases are the pair 〈c,VQ∆c〉,

which respectively emphasises long- and short-term speech behaviour, and the pair

〈VQc,Confc〉, where we benefit from the fact that these two methods address different

kinds of information.
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The next step consists in considering more than two methods together, beginning

with three. The number of possible triplets amounts then to C6
3 = 20 if one takes into

account the six available methods. Rather than examining each triplet and conducting

a separate recognition experiment for each one, we exploited the results obtained

so far and retained only those triplets of methods 〈a, b, c〉 for which simultaneously

ρab ≤ min(ρa, ρb) and ρac ≤ min(ρa, ρc) and ρbc ≤ min(ρb, ρc). Table 6 or 7 tells us

that only three cases have to be considered for efficient triplets of combined methods,

namely 〈c,VQ∆c,Prov〉, 〈VQc,Confc,v〉 and 〈VQc,Confc,Prov〉.

Now, no more methods can be further added without reducing the global success

rate; that is, no quartet, quintet or sextet of methods satisfies the condition for its

members to be mutually pairwise complementary. Letting apart 〈VQ∆c〉 the worst

individual method, and considering that 〈Prov〉 is more efficient than 〈v〉, we finally

retain as winning triplet 〈Prov〉, 〈Confc〉 (dw) and 〈VQc〉 (dw). These three methods

happen to show also eventually the best individual results on our database.

There are several ways to select weights for combining the methods together. In

the process of building Table 6, we wanted a uniform representation of the success

of the combined methods in order to compare them without bias. Hence, we used

weights which equalise the variance, this choice giving the same importance to each

method in the pair. Now, we are in a position where a given triplet has already
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been selected, and our goal is no more comparison but efficiency. The way to give

a weight in each method in the triplet is then to consider the inverse of its error

rate, still multiplied with the variance normalisation factor. Accordingly, a good

method retains relatively more significance than a worse one. With this choice of

combination weights, with a priori thresholds and in an open-test methodology, the

global verification false-acceptance and false-reject mean error rate is 4.0%.

Figures 9, 10 and 11 show the scatter diagrams associated with the considered

pairs of methods. In these diagrams, the individual ζe threshold estimations for each

representative are first subtracted from the distance values, and then the results are

globally weighted in such a way that the average of intra- and inter-speaker square root

variances take the same value whatever the SV method is. This procedure explains

the presence of negative distances and eases the comprehension of the diagrams, since

no visual artefact arises from scaling or clipping (all data points are present in each

diagram). As the shape of the clusters of points clearly differ from just a stripe, the

selected methods are truly complementary and the intra- and inter-speaker domains

are well separated.

In Figure 9, where the two methods at hand examine a feature dependent both

on LPC-H, we see that the shape of the two regions in the scatter diagram is rather

elongated, most markedly in the inter-speaker domain. This happens even though
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Figure 9: Scatter diagrams 〈VQc〉–〈Confc〉. The first diagram shows the intra-speaker
domain and the second diagram shows the inter-speaker domain. In the third and
last diagram, the size of the intra-speaker dots is made larger in order to permit the
comparison of the two domains. The distances are translated by the subtraction of the
associated thresholds, which explains the appearance of negative distances.
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Figure 10: Scatter diagrams 〈Confc〉–〈Prov〉. The disposition is the same as for
the preceding figure. Here, the domains are definitely not stripe-like, which tends to
confirm a good independence between the two considered SV methods.
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Figure 11: Scatter diagrams 〈VQc〉–〈Prov〉. The disposition is the same as for the two
preceding figures. Here, the independence shows up perceptually even better, although
it is not confirmed by Table 6 or Table 7.
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〈VQc〉 and 〈Confc〉 are supposed to address different kinds of information within the

data. By contrast, the next two figures do not exhibit the same behaviour; it is much

easier to find in them points where one method yields a short distance and the other

a big one at the same time, which tends to confirm our hypothesis stating that a

distance computed by using a feature based on LPC-H is independent of a distance

computed through LPC-R.

8 Summary, discussion and conclusions

We motivated our approach and argued that the residue, in the role of a feature

complementary to the synthesis filter, might be useful for speaker recognition. In

order to verify this claim, we conducted a large series of experiments using an open-

test methodology in a multi-session database consisting of non-constrained speech

from 22 speakers. We chose to implement a text-independent verification task, which

allows a robust estimation of the full-scale performance of the examined methods and

the relevance of the involved features.

We first compared the separate verification performances of several methods ex-

ploiting linear prediction based features, some from the synthesis filter (LPC-H) and

some others from the residue (LPC-R). The best results were observed when using

LPC-H in conjunction with vector quantization (VQ). However, methods based on
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the use of LPC-R showed also good results, being better than some other LPC-H

methods. Hence, although LPC-H produced the best available results, we observed

that methods based on LPC-R are still useful for speaker verification, even when used

alone.

We then combined pairwise the previous methods and determined their joint per-

formance. We conducted these experiments in order to compare combinations of

mixed LPC-H and LPC-R methods with combinations of methods based on the same

features. Our results pointed out that methods based on LPC-H and methods based

on LPC-R were in general complementary, while methods based on features of a

same kind were not, which confirms our hypothesis. In particular, the best available

LPC-H method and the best available LPC-R method could be combined with good

success, resulting in an overall error rate reduction from 5.7% (best separate method)

to 4.0% (best combination of three methods). Therefore, the residue is not only a

useful feature for speaker recognition on its own, but above all combines favourably

with methods based on synthesis filter, as expected.

There are however several topics which should be addressed in future work. Some

concern practical matters; for example, although our database is rather large in com-

parison to other authors, especially with respect to the number of verification tests

(12240method−1), the number of speakers involved still stays small (here: 22). Fur-
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ther, the inter-session stability of LPC-R (here: 3 consecutive days) or, from an

application point of view, the robustness of the LPC-R features with respect to noise

in the transmission channels (for example: telephone) and in the background (for

example: music or other speakers) is not addressed in this paper.

Other topics concern more fundamental matters. For example, we feel important

to investigate other representations of the residue, or to determine the optimal LPC

analysis order p with respect to SV when the residue is taken into account , or to

discover the most efficient distance (given our proposed LPC-R representation), or to

look for the best LPC-R representation (given a simple Euclidean distance). Since

it is well known that the speaker identity is spread on virtually all aspects of the

speech signal, from acoustic cues to semantic ones [23], we feel also important not to

ignore the last output of an LPC analysis, namely the gain factor LPC-G. So far,

the investigation presented in this paper and the performed experiments confirm the

expected significance of the residue for automatic speaker verification.

Annex: Comparison by prominence

Formally, if the superscripts (i) and (k) relate respectively to a test speech sample

and to a reference speech sample, and if T is the associated length, then we may
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compute the reference clipping value of the 〈Prov〉 method as

〈
v(k)
n

〉
=

1

T (k)
·
T (k)∑

t=1

v(k)
n (t) ∀n ∈ [0, N/2] (7)

Let ε(x) be the Heaviside function

ε(x) =

{
0 x ≤ 0
1 x > 0

∀x (8)

Let d(i,k)
n (t) be the positive difference between a test residue (i) at time t and the

averaged representative (k)

d(i,k)
n (t) = ε

(
v(i)
n (t)−

〈
v(k)
n

〉)
·
(
v(i)
n (t)−

〈
v(k)
n

〉)

∀n ∈ [0, N/2] ∀t ∈ [1, T (i)] (9)

Let w(i,k)
n be the ratio between the speech sample length and the number of strictly

positive occurrences of d(i,k)
n

w(i,k)
n =

1

T (i)
·
T (i)∑

t=1

ε
(
v(i)
n −

〈
v(k)
n

〉)
∀n ∈ [0, N/2] (10)

Let σ(k)
n be the square root variance of the strictly positive differences within the

reference itself

σ(k)
n =

√√√√√√√√

T (k)∑

t=1

(
d(k,k)
n

)2 − 1

T (k)w
(k,k)
n

·


T (k)∑

t=1

d(k,k)
n




2

T (k)w
(k,k)
n − 1

∀n ∈ [0, N/2] (11)
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Normalising the strictly positive difference between a test and a reference by the

square root variance previously computed, and lowering the importance of great values

by a well chosen non-linearity, one gets

p(i,k)
n =

1

T (i)w
(i,k)
n

·
T (i)∑

t=1

ln

(
1 +

d(i,k)
n

σ
(k)
n

)
∀n ∈ [0, N/2] (12)

Finally, the distance between a pre-computed reference representative (〈v(k)〉, σ(k))

and a test speech sample is given by

δ ((i), (k)) =

√√√√√
N/2∑

n=0


w

(i,k)
n p

(i,k)
n − w(k,k)

n p
(k,k)
n

w
(i,k)
n + w

(k,k)
n




2

(13)
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