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ABSTRACT

We investigate aspects of multi-modal image registration based on a
new criterion named mutual information (or sometimes Shannon
information). This criterion is intensity-based and requires no
landmarks; hence, its application can be automated without resorting
to segmentation. We present a form amenable to derivation with
respect to the geometric transformation parameters (here: affine
transformation). This form involves Parzen windows; we explore the
dependence of the registration accuracy on these windows and
propose that they be tuned to each resolution level in a pyramid
approach. We conduct experiments and show that both the window
width and the number of windows is relevant. In addition, we show
that it is beneficial to use a spline-based high-order interpolation
scheme for applying the geometric transformation.

1. INTRODUCTION

In a previous paper [7], we were able to show that a sub-pixel
registration method based on a coarse-to-fine multi-resolution
approach could achieve the double goal of high accuracy and
efficiency, where the optimization criterion was least-squares (LS)
and the deformation model was affine. This previous algorithm was
limited to intra-modal registration because of the properties of the LS
criterion. In this paper, rather than LS, we choose a new criterion
named Mutual Information (MI) which appears to have a much
greater potential for inter-modal registration and image fusion. This
new criterion, introduced independently in [3] and [10], has been
proposed recently in the context of medical image registration [2] as
well as of computer vision [10].

Overall, MI is a measure of statistical dependency between two data
sets [6]. In applications intended to fuse two images, this measure is
intuitively more appropriate than the previous measure of statistical
correlation offered by LS. To understand why, consider a pair of
images from different modalities that are already in perfect
alignment: at many corresponding geometric locations in the two
images, the associated gray-levels will exhibit a consistent mapping.
In other words, when correctly co-registered, it is likely that there
will exist some kind of a global relation, or mapping, between the
gray-levels of one of the images, and those of the other, whatever this
mapping may be (one-to-one, or even one-to-few or few-to-one). At
the same time, the correlation between the gray-levels may happen to
be low or even negative. Even in this case however, the statistical
dependency is strong and the MI measure still yields a high value.

Suppose now that we move out of registration by geometrically
deforming one of the images: the mapping of the gray-levels will
degrade, i.e. will become less consistent, and MI will diminish. In the
extreme case where the two images become completely independent
of one another, MI will take a zero value, a condition signifying that
there is no way to predict any part of one image from the information
stored in the other. At the extreme opposite, seeking the geometric
deformation that maximizes MI is a way to perform registration.

In this paper, we investigate the interplay of MI with our previous
registration scheme, which used an explicit continuous modeling of

the image that was based on splines, and which took advantage of the
concept of multi-resolution. For the estimation of MI itself, we also
explore techniques that tend to reduce the number of its local
maxima, with the goal of simplifying the optimization process.

2. DEFINITIONS
Let fr(X) and fR(x), OXOR", be a test and a reference image,
respectively. Let T{f(X)} = f(AXx—b) be an affine transformation
that we want to apply to the test image fr(X). Let VOR" be a
region of interest associated with f7(X). Let Ly OR and Ly OR
be a test and a reference discrete set of intensities, respectively.
Finally, let w(§) =0, 0O OR, be a Parzen window.

We proceed as follows: we compute and sample the joint Parzen
histogram, 0 OL,, Ok OLg,

h(,K)=a Yy w = fr(AX=b) w(k - fr (X)), (1)
XtV

where O is selected such that
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‘We compute the marginal histograms

hp(1) = Zh(l,K), O 0L, 3)
KLR

and

hg(K) = Zh(l,K), Ok OLg. 4)
Ly

The goal of the registration problem is to find the set of
transformation parameters {A,b} that optimizes (maximizes) the
following criterion:

S= z z h(1,K)log(

Ly KLy

h(1,K)
hp()hg (K)
This last expression (the mutual information) is valid only when the
sets Ly and Ly exclude those values | and K for which Ap(1) =0,
hg(K)=0 and A(1,k) =0, respectively. Note that they do not
contribute to the criterion S, because 1im(0* log(0*)) =0.

3. OPTIMIZATION

As is well-known [4, 7], the use of a multi-resolution scheme has at
least one important benefit: dealing with a low-resolution (coarse)
image translates into dealing with a low-resolution (smoothed)
criterion. In turn, this helps to avoid getting trapped into some local
optima (because they do not exist anymore at low resolution), and
often widens the capture area of the true optimum. A side effect is an
important improvement in speed, provided three conditions are met:
1) use of a robust algorithm at the coarsest level, 2) at intermediate
levels, avoidance of an over-accurate registration, and 3) at the finest
level, use of an optimization algorithm that is super-linear in
convergence.

). (&)

In this paper, we use the unconstrained optimization method of
Jeeves [1] in order to find iteratively the maximum of .S. It does not
require gradient estimations but solely function evaluations. Its
working principle is to explore the close neighborhood of the actual
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guess, one step at a time, in a star-fashion along the coordinate axis,
and to climb S at each opportunity. The step-size is tuned by an
adaptation mechanism based on the history of the successes and
failures encountered during the optimization procedure.

This method is an all-purpose optimization scheme that does not
capitalize on properties such as a quadratic form for the optimum. It
is generally not considered to be the most efficient one available;
however, its simplicity makes it a good candidate for the exploration
of a new criterion. A better search technique would possibly make
use of gradient information; since we introduced continuity by the
way of Parzen windowing, even though L, and Ly are discrete, the
quantity dS/{A,b}=0aS/dA is easy to compute:
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4. INTERPOLATION

The interpolation process is a crucial part of any registration scheme
because it uniquely defines the behavior of the transformation when
the samples do not fall on a grid, a condition generally true in a sub-
pixel case. In addition to this general consideration, interpolation
requires special attention in the case of MI because this process
introduces new gray-levels that may interfere with the computation of
(1). On one hand, it is desirable to have a high geometric precision;
for example, sinc (Fourier) interpolation satisfies exact reversibility
for a translation. On the other hand, one would prefer not to introduce
improper gray-levels; for example, the ringing associated with sinc
interpolation may significantly corrupt the estimation of ML

As an illustration of the potential sensitivity of MI to spurious values,
consider a 10x10 patch of data centered on a step function (2
levels). The linear interpolation of this image after a very small sub-
pixel translation across the edge introduces 10 new members for a
third gray-level. Ideally, we would like that the entropy (a pivotal
component of MI, see [6]) remains unaffected by this small
translation. However, before translation this term was H{f(X)} = 1.
After translation, we have H{T{f(X)}} =103 +0.33, the last value
being the contribution of the new gray-level (whatever it may be),
which represents only 10% of all pixels.

We present in this paper a series of experiments that tend to show that
it is beneficial to pay more attention to geometry by using higher
interpolation models, and that the corruption of the mutual
information that arises when the interpolation process artificially
creates new gray-levels is in fact immaterial. Our general procedure
for interpolation will be to fit a separable B-spline model to the data,

apply to the model whatever transformation is required, and then
resample the transformed model [8, 9].

5. MULTI-RESOLUTION

In [7] we introduced an efficient optimization scheme that used a
coarse-to-fine iterative refinement strategy. Substituting MI for LS,
our task is now to show that the new criterion is well behaved in the
context of multi-resolution. An extra twist comes from the estimation
of the joint histogram: at any resolution level [, an image of size
N, x N, contains at most le different values. In absence of any a
priori knowledge on the test and reference images, and given that the
joint histogram A(1,k) holds I? =Card(Ly XLg) independent
values, it certainly does not make sense to have I?> Nz2- This
sparsity condition imposes a reasonable upper bound to the number of
gray-levels I we may introduce at each resolution level /. On the
other hand, we have the absolute, -independent, lower bound 1>2.
We present in this paper some experimental evidence that an optimal
I, may indeed be found between these two bounds.

6. BINNING

A relevant consideration in our framework is the choice of the sets
L, or Li. While any quantization scheme is admissible, be it
regular or irregular, we prefer to consider linear quantization only,
which alleviates complications that would otherwise arise in the
application of Parzen windowing. At each level [, we determine the
extrema of f(X) and simply divide this range into I quantization
intervals. The Parzen window we select is the centered, scaled, B-
spline of order n given by w(x)=|3(”)(ax). When a =1, this
particular Parzen window has integral unity [n, and the sum of its
discrete samples is also unity, which are desirable properties for
Parzen windows.

This strategy does not preclude preprocessing of the image; for
example, it is easy to show that, in a continuous case, MI is invariant
under strictly monotonic transformations of gray-levels (e.g.,
histogram equalization). In our context, we interpret such a
transformation as a way to have L perform irregular sampling.

7. ILLUSTRATION OF MI

In Figure 1, we show the "mandrill" color image at left, and at right
the same image with respect to the cyan, yellow and black channels,
but with the magenta channel rotated around its center by 10° and
displaced by Ax =3 and Ay =5. In Figure 2, the corresponding joint
histograms of the magenta and black channels show that the
transformation smears A. Figure 3 shows the relevant individual
channels.

While the complete criterion S given in (5) includes some terms
other than (or derived from) A(1,K), image fusion based on mutual
information often tends to select the transformation that produces the
sharpest A(1,K). One can find in [5] a method that tries to directly
maximize the degree of clustering in the intensity space, without
resorting to MI.

8. EXPERIMENTS
We take as multi-modal data the magenta and black channel of the
CMYK representation of a color image (Figure 3). The benefit of this
choice is that we have knowledge of the ground-truth transformation:
identity has them in perfect registration. When a non-trivial
transformation is applied, however, we are careful to mask out the
irrelevant parts (those that would be in need of extrapolation).
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8.1. Shape and size of the Parzen window

As preliminary experiment, we look at the influence of the shape of
the Parzen window. Using a B-spline w(x) = B(”)(ax), we consider
two parameters: its order n, and its knot spacing w = 1/a. Figure 4
gives S as a function of a translation (in pixels) of the M-channel
with respect to the K-channel. As w increases, each Parzen window
covers more bins, which produces a smoothing of S. This widens the
capture area for the optimum, perhaps at the cost of a loss in accuracy
due in part to a local flattening of the curve near the optimum, and in
part to a global decrease of the dynamic range. To a lesser extent, this
is also true when the order of the spline increases: for a fixed w, a
higher-order spline generates more overlap than a lower-order spline.

After examination of Figure 4, a third order spline ( [3(3)) with natural
sampling (w = 1) seems to be an appropriate trade-off between the
avoidance of the grid effect, particularly pronounced when the
overlap is insufficient, and the loss of dynamic range experienced
when the overlap is too important. In this experiment, we used
1=16 bins, third-order interpolation and images of size 256 % 256.

8.2. Number of bins

The set of experiments we are about to present is organized around
the following procedure: 1) pick an affine transformation 7' at
random and apply it to fp while keeping f; fixed; 2) using an
iterative scheme, start with the identity as a first guess for the initial
transformation and register fi to the already transformed f%, which
yields an estimated transformation 7'; 3) compare T and T by
computing some quality measure €. Our choice for this quality
measure is the average registration error on a pixel per pixel basis; it
is given by the sum over X OV of the distance between T'(X) and
T,

Q= Gorariy 2 [roo-Too] ©

Trying to empirically determine I, the best number of bins at a
given resolution level [/, we conduct a series of 50 trials per
experiment; for each trial we generate a transformation consisting of
a random rotation with |68I<Ty36, and a random translation with
(IAxl,1Ayl) < (5,5). Note that the estimated transformation 7' is
affine in general, and may depart from a pure rotation. We compute a
resolution pyramid containing [ levels, and perform optimization on
the coarsest level only (the finest level /=1 has a size 256 X 256).
We then propagate the resulting transformation up to the finest level
where the quality measure @ is estimated. For this experiment, we
keep using natural sampling for the Parzen window, and we consider
{ =3, which corresponds to a fourfold magnification in the average
registration error. Each data point gives the raw (not scaled down)
average registration error, pooled over those of the 50 random trials
that converged close enough to the correct solution. There were very
few outliers, and those were obvious to detect; out of the 2800 trials
conducted for establishing Figures 5 and 6, we had only 216
outliers, which were primarily a result of using too few bins.

Figure 5 shows the result of these experiments when bilinear
interpolation is used for the computation of the affine transformation.
The general trend is as expected: a less than optimal result is obtained
when there are too many bins, because A(1,K) is poorly estimated,
and a bad result when there are not enough bins, because A(1,K) is
not discriminant enough. In between, an optimal number of bins I,
can be selected; according to Figure 5, we have I; =10. We note
also that a Parzen window w =B® often does better than w =p?,

which is consistent with the conclusions of the previous experiment
8.1.

Figure 6 shows the same experiment as in Figure 5, where bilinear
interpolation has been substituted by bicubic interpolation. The use of
this higher quality model results in an improvement in accuracy
(compare to Figure 5), especially when the number of bins is small.
Another benefit is a decrease in the value of the optimal number of
bins; in this case, we have I;=6. This may become a significant
factor for optimization algorithms making use of the gradient of S,
since this latter involves a triple summation over L.

9. CONCLUSIONS

In this paper, we have investigated the role of mutual information as a
new criterion for image registration. We have formulated an
expression of the criterion that is based on a discrete binning process,
but that is continuous with respect to the transformation parameters
(hence derivable) since it involves Parzen windows. We have shown
experimentally that the shape of the Parzen window, especially its
width, is a critical parameter. In the context of a multi-resolution
approach, we have developed arguments hinting at the dependence of
the number of bins on the resolution level. For a given level, we have
shown experimental evidence of the existence of such an optimum. In
addition, we have determined that it is beneficial to use high-order
interpolation schemes, even though they interfere with the estimation
of the mutual information by introducing spurious gray-levels.

The overall accuracy obtained by this new criterion is satisfying,
especially in the context of multi-modal data. Even when we
propagate to the finest resolution a transformation estimated on the
third level of a resolution pyramid, hence multiplying registration
errors by four (and at the same time using only a sixteenth of the
available data), we get an accuracy at the finest level that is still
largely sub-pixel. These encouraging results drive us now to
implement the whole multi-resolution approach, incorporating more
efficient optimization schemes along the way.
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Figure 4: Dependence of the mutual information on the Parzen

Figure 1: Color image (left) and its corrupted version (right), where window type and size.
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Figure 5: Dependence of the quality measure on the number of bins
with bilinear interpolation.
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Figure 3: Magenta (left) and black (right) channel of the "mandrill"

color image, used as test and reference image, respectively. g
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Figure 6: Dependence of the quality measure on the number of bins
with bicubic interpolation.



