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ABSTRACT
We decompose 2D and 3D invertible affine transformations into a series
of elementary shears and skews along the coordinate axis. These ele-
mentary operations are one-dimensional, which disposes of the need for
non-separable interpolation methods and allows higher-quality ap-
proaches for a given processing time. We propose a framework where
the transformed function is projected on the original function space in a
least-squares sense, which ensures optimal anti-aliasing filters.

1. INTRODUCTION
The Paeth algorithm [1] introduced a separable approach to the rotation
of an image, which has several benefits. First, data can be processed one
line at a time, which is economical in terms of memory requirements,
especially for very large images [2]. Also, this is well adapted to off-
the-shelf DSP architectures [3]. Second, 1D processing is inexpensive
compared to non-separable processing in higher dimensions [4].
Therefore, it is possible to achieve faster results for a given quality, or
better results within a given computation time [5].

In this paper, we extend the Paeth algorithm in a new way that allows us
to perform general affine transformations, not only in 2D but also in 3D,
while using 1D operations only. Volumetric imaging is particularly rel-
evant to biomedical applications, where the amount of data available in
any single acquisition can be considerable; the benefit of using separa-
ble transformations is even more pronounced there than in 2D.

The 1D transformation   ƒ(a x + b)  is an essential operation in our
framework. To achieve high quality, we perform this operation in the
least-squares sense developed in [6]. An important element of this
methodology is an expansion kernel that can be pre-computed for each
scaling factor   a . We show how this pre-computation is best performed
in the Fourier domain, an approach that was not pursued before.
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Figure 1: Example of an 2D two-pass affine transformation.
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2. FACTORIZATION
We present several ways to decompose an affine transformation into 1D
operations. One important aspect is the number of elementary operations
involved. In 2D, we show that selecting from two-pass and three-pass
approaches is sufficient to decompose any invertible affine trans-
formation matrix. In 3D, we need to select from three-pass and four-
pass decompositions to achieve the same result.

2.1. Affine decomposition in 2D

The Paeth algorithm is restricted to the decomposition of a pure rotation
matrix into a series of separable operations along the rows and columns
of an image. General affine transformations can be decomposed in a
similar way. The simplest case involves a series of two operations only,
one along the rows, and one along the columns, as can be seen in Figure
1. The sequence order is arbitrary, and this freedom of choice results in
two different solutions, one of which has been presented in [7]. The two
solutions are
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In order to understand the basic operation, it is enough to consider any
one of the elementary operations. We decide to take as example

    

α2 β2
0 1






x
y





 + ε2

0




 = α2 x + β2 y + ε2

y






. (3)

For this particular elementary transformation, it happens that the image
can be processed row by row since the   y  coordinate is invariant. The
basic operation is then to transform a particular row   ƒ(x)  into

  ƒ(ax + b) . In our example, we have     a = α2  and     b = β2 y + ε2 . Note
that the scaling factor   a  does not depend on the coordinate   y , although
the translation   b  does.

The relative magnitude of the quantities   a  and   d  are critical because
they appear as denominators in the solutions. If they are small compared
to the determinant of the affine transformation, the elementary trans-
formations will introduce a substantial scaling. The worst case is

    a = d = 0 , for which there is no two-pass decomposition. In addition,
when applied to a rotation matrix, the two-pass decomposition has the
disadvantage that some unnecessary aliasing is introduced [8], essential-
ly because the diagonal terms   αi  and   δi  are not unity. Disregarding
translation for the moment, we propose the following two solutions to
these problems, at the cost of one additional (1D) transformation
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These two solutions are under-determined because each one has two ex-
tra coefficients that provide two additional degrees of freedom. The
limit to this freedom can be summarized by the necessary constraint

    ad − bc = ′′α1 δ1 ′α1 = ′′δ2 α2 ′δ2 , (5)
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where the arbitrary selection of a pair of coefficients determines the
third one. For example, a natural choice in the case of a rotation leads to

  ′′α1 = δ1 = ′α1 = 1 or to   ′′δ2 = α2 = ′δ2 = 1, which corresponds to the
Paeth algorithm. We propose to use either one of the following two
strategies to satisfy the constraint (5): distribute the determinant evenly,
in a cubic root fashion (best accuracy); alternatively, set two diagonal
coefficients to a unit value, and load the only remaining coefficient with
the full weight of the determinant (best speed). Once the diagonal coef-
ficients have been selected, the remaining coefficients are fully con-
strained. For example,     ′β1 = ′α1 d − δ1( ) c ,     ′′β1 = a− ′α1 ′′α1( ) c  and

    γ 1 = c ′α1 . The value of these coefficients does not change if translation
is brought back into play.

As announced, the decomposition (4) deals gracefully with the case

    a = d = 0 , and a rotation matrix can be decomposed without any scal-
ing. In return, the case     b = c = 0  does not lend itself to a three-pass de-
composition, which means that an affine transformation close to identity
(or essentially diagonal) leads to an unstable three-pass decomposition.
If the transformation is a small rotation, the stability is recovered be-
cause trigonometric relations ensure that   ′β1  and   ′′β1  tend toward zero
when the rotation angle vanishes. This is not the case for a general
affine transformation. Therefore, we prefer to use a two-pass decompo-
sition when the transformation is close enough to identity, because the
aliasing is negligible in this case. Finally, a completely general affine
transformation includes translation as well. It is trivial to incorporate
this translation into the two last elementary operations. Alternatively,
one may express the transformation as an 3x3 homogenous matrix [7]
and use the results of the next Section.

2.2 Affine decomposition in 3D

In 3D, a general affine transformation can be decomposed as a three-
pass operation (six solutions) or a four-pass operation (six solutions,
too). Qualitatively, the behavior is very similar to the 2D case: again, it
is enough to apply a series of 1D affine transformations to each row (or
column, or z-line) of the volume; also, the scaling is the same for all
rows, while the translation differs from row to row. Similarly to the 2D
two-pass scheme, the 3D three-pass decomposition introduces some un-
necessary aliasing, but it is stable when the transformation is nearly
identity, or nearly diagonal. It is fully constrained. The 3D four-pass de-
composition is unstable near the identity, but does not introduce extra
intermediate scaling when the determinant is unity. It offers three de-
grees of freedom that pertain to the diagonal coefficients, whose product
must equal the determinant of the transformation. Also, in 3D as in 2D,
there are special invalid cases, but we can show that at least one out of
the twelve solutions is stable if the affine transform to decompose is in-
vertible. We give these twelve solutions in the Appendix.

We conjecture that, in a space of dimension   N , it is possible to decom-
pose any full-rank affine transformation in either   N  or     N + 1 separa-
ble passes, with   N ! solutions each.

3. LEAST-SQUARES INTERPOLATION
We must complete each pass of a decomposition before we can proceed
with the next pass. Because of this sequential aspect, we need to per-
form each operation with the greatest accuracy to minimize the propa-
gation of errors. We present below a way to perform optimal 1D affine
transformations in an optimal least-squares sense.

3.1. Affine Algorithm in 1D

We use the methodology presented in [6] for computing

  g(x) = ƒ(ax + b) . It uses a B-spline representation of signals and per-
forms the least-squares projection of   ƒ(ax + b)  on   V

(n) , the space of
polynomial splines of degree   n. In contrast with simple interpolation,
this approach ensures that the optimal anti-aliasing filter is used. A brief

description of the algorithm follows (see [9] for implementation details
and further explanations).

I) Given a scaling factor   a , pre-compute the expansion kernel
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t
. (6)

This first step is data-independent, and needs to be performed only once
for the whole set of rows of the image or volume for which   a  is con-
stant

II) Given a sequence of signal samples   ƒ(k) , find its B-spline coeffi-
cients   c(k) . This is achieved by applying to   ƒ(k)  a filter     1 B

(n) (z)  and
satisfies
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where the recursive digital filter of degree   n is
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III) Given a translation   b , compute the coefficients   d(l) . This new se-
quence incorporates the change of rate expected under scaling
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(n) (ak− l − b)
k=−∞

+∞
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IV) Finally, reconstruct the signal by applying a digital post-filter

    B
(n) (z) B(2n+1)(z)  to   d(l) .

g( l)d(l )c(k)ƒ(k)
ξa

1
B(n) (z)

B(n) (z)

B(2n+1) (z)

Figure 2: Overview of the 1D least-squares rescaling algorithm.

In this algorithm, all the kernels have a finite-support, which ensures
that there is a way to perform the computations in an exact fashion (the
sums involve a finite number of terms if   ƒ(x)  is finite-support).
Moreover, the zeroes of the recursive filters being real, the filtering op-
erations can be implemented in a very efficient way. The only difficult
step is to get a closed form for the expansion kernel   ξa

(n) (x) , which is
built of many polynomial regions that do not coincide with the grid of
integers. In [6], we proposed a Gaussian approximation to this kernel.
Here, we pursue a different approach.

3.2. Kernel computation

The kernel   ξa
(n) (x)  given in (6) can be rewritten as the convolution of a

B-spline and a scaled B-spline, because   β
(n)  is a symmetric function. In

the Fourier domain, this amounts to multiply together two sinc func-
tions, a canonical one and a stretched one. Hence, the closed form of
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(n) (ω)  is easy to obtain
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(n) (ω) = sinc(ω 2)sinc(ω 2a)( )n+1 a . (10)

This function has an infinite frequency support that decays as fast as

    ω
−2n−2 .

In this paper, we use an   m -point IDFT (inverse discrete Fourier trans-
form) to recover   

÷ξa
(n) (k ∆x) , which gives us a discrete approximation of

the expansion kernel. To determine the spatial sampling step   ∆x , we
first note that the support of   ξa

(n) (x)  is finite, given by

    

support ξa
(n) (x){ } = support β(n) (x){ } + support β(n) (ax){ }

= n + 1( ) 1+ 1 a( )
. (11)

Once   m  is selected, the spatial resolution can be no better than

    ∆x ≥ n + 1( ) 1+ a( ) ma  without introducing spatial aliasing or over-
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lap. In turn, this spatial resolution determines the bandwidth of the dis-
crete approximation.

4. ERROR ANALYSIS
The IDFT introduces two types of error in the computation of the ker-
nel. First, the finiteness of the set of samples requires one to approxi-
mate the kernel by a band-limited version. Second, the discreteness of
the set requires one to interpolate the expansion kernel itself. We ana-
lyze below the influence of these two types of approximation.

4.1. Band-limited kernel

We compute the amount of energy that is ignored when band-limiting
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Since   sin(θ) ≤ 1, this error is bounded as in
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Selecting a critical frequency sampling ∆ω  such that there is no spatial
aliasing leads to
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The cases where the scaling factor   a  takes a value significantly differ-
ent from unity are rare in practice. Finally, the error of approximation
due to band-limiting is essentially dependent on the term     m

−2n−3 2 ,
which is consistent with the decay of   

öξa
(n) (ω) .

4.2. Kernel re-sampling and interpolation

Our procedure yields a kernel given by a set of samples. Since we have
to evaluate this kernel for a continuous argument   x = ak− l − b, we
need to introduce interpolation for recovering the values between the
samples. For convenience purposes, we fit through the samples a B-
spline model of degree   p , where   p  can be chosen independently from

  n.

Intuitively, the use of a small number   m  of samples for the representa-
tion of   

÷ξa
(n) (x)  calls for a high interpolation degree   p  if one desires to

reach the best quality results for a given computational cost.
Conversely, a large number of samples can compensate for a low-order
interpolation scheme. The trade-off between   p  and   m  will depend on
the amount of data because it determines how many times one needs to
interpolate the expansion kernel, while the time needed for computing
the IDFT is spent but once. For images and volumes, we typically use
nearest neighbor interpolation, for which we have     p = 0 .

An expression similar to (15) bounds the re-sampling and interpolation
error   γ a

(p)  [10]. As expected, this second type of error depends essen-
tially on     1m , with some proportional constant   Cγ  that incorporates the
norm of the     (p+ 1)-th derivatives of   ξa

(n) (x)

    γ a
(p) ≤Cγ m

−p−1. (16)

4.3. Overall error

By a triangular inequality argument, the total kernel error is bounded by
the sum   εa

(p) + γ a
(p) . The comparison of (15) and (16) shows that the

driving term is the interpolation degree   p  rather than band-limiting, be-
cause the constants   Cε  and   Cγ  play no role in the comparison when

    1m  is sufficiently small.

It is important to remember that the present Section deals with errors in
the kernel approximation. The analysis of their influence on the overall
data least-squares interpolation process is more difficult. Qualitatively,
the kernel   ξa

(n) (x)  is a very smooth function, even though it is not band-
limited. Hence, we expect the constant   Cγ  to be small and the influence
of   p  to be minor, because we can choose to perform an IDFT with a
sufficiently large number of points for the error in the kernel approxi-
mation to be negligible. Therefore, we can be arbitrarily close to the true
least-squares projection of   ƒ(ax + b)  on   V

(n) . In short, we have re-
placed the problem of interpolating an unknown, possibly agitated
function ƒ  by the problem of interpolating a known, smooth kernel ξ .
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d12 = r22 − λ2 − b23r32
b21

d13 =
r33 − λ3( )λ4
r31

a12 = r11r33 − r13r31 − λ1λ3λ4
b21λ3λ4

a13 = r11 − λ1λ4 − a12r21
r31























(23)

    

R =
λ1 a12 a13
0 1 0
0 0 1













1 0 0
0 1 0
b31 b32 λ2













1 0 0
c21 λ3 c23
0 0 1













λ4 d12 d13
0 1 0
0 0 1













λ1λ2λ3λ4 = Det(R)

b31 = r31r22 − r32r21
λ3λ4

b32 = r31 − b31λ4
r21

c21 = r21
λ4

c23 = r21λ2 + r23r31 − r21r33
b31λ4

d12 =
r22 − λ3( )λ4
r21

d13 = r33 − λ2 − b32r23
b31

a12 = r11 − λ1λ4 − a13r31
r21

a13 = r11r22 − r12r21 − λ1λ3λ4
b31λ3λ4























(24)

    

R =
1 0 0
a21 λ1 a23
0 0 1













λ2 b12 b13
0 1 0
0 0 1













1 0 0
0 1 0
c31 c32 λ3













1 0 0
d21 λ4 d23
0 0 1













λ1λ2λ3λ4 = Det(R)

b12 = r12r33 − r13r32
λ3λ4

b13 = r12 − b12λ4
r32

c31 = r32λ2 + r12r31 − r11r32
b12λ4

c32 = r32
λ4

d21 = r11 − λ2 − b13r31
b12

d23 =
r33 − λ3( )λ4
r32

a21 = r22r33 − r23r32 − λ1λ3λ4
b12λ3λ4

a23 = r22 − λ1λ4 − a21r12
r32























(25)

    

R =
1 0 0
a21 λ1 a23
0 0 1













1 0 0
0 1 0
b31 b32 λ2













λ3 c12 c13
0 1 0
0 0 1













1 0 0
d21 λ4 d23
0 0 1













λ1λ2λ3λ4 = Det(R)

b31 = r32 − b32λ4
r12

b32 = r11r32 − r12r31
λ3λ4

c12 = r12
λ4

c13 = r12λ2 + r13r32 − r12r33
b32λ4

d21 =
r11 − λ3( )λ4
r12

d23 = r33 − λ2 − b31r13
b32

a21 = r22 − λ1λ4 − a23r32
r12

a23 = r11r22 − r12r21 − λ1λ3λ4
b32λ3λ4























(26)

    

R =
1 0 0
0 1 0
a31 a32 λ1













λ2 b12 b13
0 1 0
0 0 1













1 0 0
c21 λ3 c23
0 0 1













1 0 0
0 1 0
d31 d32 λ4













λ1λ2λ3λ4 = Det(R)

b12 = r13 − b13λ4
r23

b13 = r13r22 − r12r23
λ3λ4

c21 = r23λ2 + r13r21 − r11r23
b13λ4

c23 = r23
λ4

d31 = r11 − λ2 − b12r21
b13

d32 =
r22 − λ3( )λ4
r23

a31 = r22r33 − r23r32 − λ1λ3λ4
b13λ3λ4

a32 = r33 − λ1λ4 − a31r13
r23























(27)

    

R =
1 0 0
0 1 0
a31 a32 λ1













1 0 0
b21 λ2 b23
0 0 1













λ3 c12 c13
0 1 0
0 0 1













1 0 0
0 1 0
d31 d32 λ4













λ1λ2λ3λ4 = Det(R)

b21 = r23 − b23λ4
r13

b23 = r11r23 − r13r21
λ3λ4

c12 = r13λ2 + r12r23 − r13r22
b23λ4

c13 = r13
λ4

d31 =
r11 − λ3( )λ4
r13

d32 = r22 − λ2 − b21r12
b23

a31 = r33 − λ1λ4 − a32r23
r13

a32 = r11r33 − r13r31 − λ1λ3λ4
b23λ3λ4























(28)
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