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ABSTRACT

Most current imaging instruments have a spatially variant point spread function (PSF). An optimal exploitation
of these instruments requires to account for this non-stationarity. We review existing models of spatially variant
PSF with an emphasis on those which are not only accurate but also fast because getting rid of non-stationary
blur can only be done by iterative methods.
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1. INTRODUCTION

High angular resolution images are now routinely produced by astronomical telescopes thanks to adaptive optics
systems. Unless considering very narrow fields of view, these nearly diffraction-limited images are however
affected by point spread functions (PSF) which are spatially variable. For instance, Fig. 1 shows an image of
the Galactic Center obtained with PUEQO adaptive optics system at CFHT.! Clearly, the PSF near the guiding
star has a high Strehl ratio while more distant regions appear to be more blurred. Non-stationary PSF is
not restricted to high angular resolution imaging, it is a general rule rather than an exception for many current
astronomical instruments, in particular, large integral field spectrographs like MUSE.? In order to retrieve images
at the best spatial and spectral resolution from astronomical data, deblurring algorithms that work for a spatially
variant PSF must be available. Compared to the simpler deconvolution problem, dealing with a variable PSF
for deblurring astronomical images (possibly multi-spectral) however has several specific issues. First, a good
approximation of a shift-variant blur is needed to correctly estimate physical parameters such as the photometry.
Second, getting rid of a spatially variant blur is necessarily an iterative process, so applying the model of the
blur (and its adjoint) should be a fast operation. Third, practical means to calibrate a shift variant blur must
be found. In this contribution, we review existing blur models with a particular emphasis on the models which
are the most suitable for astronomy and for being used in restoration methods.

1.1 Image Formation Model

For an incoherent object, the general model for the distribution of light in the image plane of an imaging
instrument takes the form of a Fredholm equation of the first kind:

o(r) = / hr.s) f(s)ds. (1)

where 7 is the position in the image, the kernel h(r, s) is the point spread function (PSF) and f(s) is the object
brightness distribution at position s. To simplify the equations, r and s must be expressed in the same system
of coordinates. In the following, we assume that they are both angular directions. Introducing the centered PSF
k(g,s) = h(q + s,s) which is the observed distribution for a point source at an angular offset ¢ with respect to
the position s of the source, the model in Eq. (1) becomes:

g(r) = //4:(1" —s,8) f(s)ds. (2)
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Figure 1. Images of the Galactic center with PUEO adaptive optics system. The green box shows a region which is close
to the guide star and hence has a nearly perfect diffraction limited PSF while the region in the yellow box is more distant
from the guiding star and is affected by a degraded PSF. Credits: Flicker & Rigaut, 2004'

1.2 PSF Properties

The PSF h(r, s) (resp. k(g, s)) can be seen as the probability density function of the position r (resp. of the offset
q) of a detected photon conditioned to the position s of the source.® It is therefore expected that the PSF be
nonnegative and normalized in the sense that:

h(r,s) >0 (Vr,Vs) k(g,s) >0 (Vq,Vs), (3a)
/h(r, s)dr=1 (¥s) /n(q, s)dg=1 (¥s). (3b)

Preserving these properties may be of utmost importance, for instance to accurately recover the photometry
of sources in the restored image. As an illustration, Fig. 2 shows the effect of the blurring by a variable PSF
on an image of the galaxy M64, and the deblurred images assuming a shift invariant PSF and using a good
approximation of the actual blur. Clearly using an improper blur model for image restoration yields much worse
results.

1.3 Discretization

In reality, the observed distribution g(r) is sampled by the pixels of the detector and perturbed by noise. The
measurement given by the i-th pixel of the detector then writes:

d = glr) +n; = / h(rs,s) £(s) ds +n; = / k(s — 5,5) f(s)ds + ;. (4)

where r; is the angular direction seen by the i-th pixel and n; is a stochastic term due to the noise. Note that the
PSF h(r,s) and the centered PSF k(g, s) must account for the integration by the pixels for the above relations
to hold.

Deblurring involves the restoration of a crisp image which is an approximation of f(s) the brightness distri-
bution of the object. For practical reasons, a discrete representation of the sought image has to be chosen. For

instance, using Riemann sum to approximate the integral yields:

N
o) = [ hlris) f(s)ds = 3" i) (55) A
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Figure 2. Images of the galaxy M64. Left: a montage showing the galaxy at full resolution / blurred by a shift-variable
PSF. Right: a montage showing the restored images assuming a shift invariant PSF / with a shift variant model of the
blur. Credits: NASA and the Hubble Heritage Team (AURA /STScI) for the original image of M64 (http://hubblesite.
org/gallery/album/galaxy/pr2004004a/).

with {s; }j:LW’N a list of sampled source positions and As; the effective volume of integration associated to s;.
Clearly, {z; = f(s;)} j=1,...,n are the unknowns of the image deblurring problem. In general, the list of sampled
positions forms a rectangular grid and z = (z1,...,2zy)" is a simple pixelized image. Using matrix notation, the

direct model of the data writes:
d=Hz+n, (5)

where d = (dy,...,dp)" represents the data (that is the values measured by the M pixels of the detector) and
H € RM*N i5 a discrete linear operator whose coefficients are given by:

Hi,j :h(ri,sj)Asj :F&(Ti—Sj,S]')ASj. (6)
In what follows, we make use of the discrete centered PSF K € RIXYN defined by:
Ky j = r(qe, s5) Asj (7)

for some list {ge},_; _; of sampled offsets. Using the discrete centered PSF introduces some technical compli-
cations to write the direct model of the data:

N
d; = ZK@(LJ’)J T +n;, (8)

j=1

where the mapping £(7, j) yields the index such that gy, j) = r; —s;. This relation implies that the two sampling
lists, {ri};—; s and {s;},_, . correspond to the same rectangular grid with even spacing.
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1.4 Image Deblurring

Given the data d = (dy,...,dp )" and their model, e.g. Eq. (5), image deblurring amounts to finding a good
approximation of the image parameters x. This is an inverse problem™® which is customarily recast as an opti-
mization problem:* %

T =argmin{F(z) = L(z) + pR(z)}, (9)

x>0

where minimizing £(z) enforces agreement of the model with the data while minimizing R(x) imposes that
the solution be somewhat regular. The so-called hyper-parameter p > 0 is used to tune the trade-off between
over-fitting the data (and thus amplifying the noise) and over-regularizing the solution. The notation = > 0
in Eq. (9) indicates that we want to constrain the solution to be nonnegative everywhere for we known it is a
brightness distribution.

For an optimal exploitation of the measurements, the data fidelity penalty £(x) should be derived from the
co-log-likelihood of the data. Assuming Gaussian noise leads to:

1
L(x) =5 He —d|y . (10)

with Hu||%,v = ' W u the weighted squared Euclidean norm and W a positive semi-definite linear operator im-

plementing statistical weighting of the model errors. If there are no invalid or missing data, W is the inverse
of Cov(n | x) the covariance matrix of the noise conditioned to the knowledge of the parameters x. For astro-
nomical images, the true noise distribution is not Gaussian, at least because of the Poissonian distribution of
the detected photons. Nevertheless, assuming a non-homogeneous independent Gaussian noise usually provides
a good approximation and practical means to derive the noise variance from the data have been proposed.”®

The penalty R(z) is a regularization term needed to cope with the ill-conditioned nature of the deblurring
problem and to avoid, among others, artifacts due to noise amplification. In practice, R(x) should favor a regular
or simple solution. That is to say, smooth or expressed by very few significant values. Simple considerations®
lead to design a regularization R (z) which is invariant’ by simple geometrical transforms of the sought object z.
A quadratic regularization combined with the data fidelity term defined by Eq. (10) yields a closed form solution
which must nevertheless be computed by means of iterative methods and which, owing to the high contrast of
astronomical images, displays spurious ripples. A non-quadratic regularization can help avoiding these artifacts.
Total variation? (T'V) has emerged as the de facto standard in image restoration but it yields piecewise flat images
that may not be appropriate for astronomical sources and edge preserving regularizations”™ '° are probably more
suitable for resolved astronomical objects. For unresolved sources (e.g. the stars in a cluster), separable sparsity
can be favored by using the ¢; norm of the sought image.'’ Finally, it is possible to design a regularization
R(z) so as to account for a mixture of unresolved sources on top of a rather smooth background,'? this however
requires to decompose the unknown parameters in two subsets: a smooth image and a map of point-like sources.

Once chosen the terms of the penalty in Eq. (9), numerical iterative methods are needed to find the solution
Z which is unique provided F(z) be strictly convex. If F(x) is differentiable with respect to z, limited memory
implementations of constrained quasi-Newton methods'® are probably the easiest methods to use. For non-
differentiable penalties as TV or the ¢; norm, augmented Lagrangian methods'* or alternating directions of
multipliers methods!® 16 (ADMM) are very effective and quite easy to implement.

2. FAST SHIFT-VARIANT BLUR MODEL

The general image formation model with a shift-variant PSF is impractical as it requires the storage of L N PSF
coefficients and applying the model takes 2 L N numerical operations. For a N = 1000 x 1000 pixel crisp image
and centered PSFs of size L = 100 x 100, operator K requires ~ 40 Gb of storage with 32-bit floating-point values

*by opposition to the problem of deriving a proper model of the data which is termed as the direct problem
fexcept perhaps by a factor which can be compensated by adjusting u

Proc. of SPIE Vol. 9909 99097N-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 08/08/2016 Terms of Use: http://spiedigitallibrary.or g/ss'ter msofuse.aspx



Figure 3. The galaxy M64 blurred by a variable PSF. The Figure 4. The galaxy M64 blurred by a shift-invariant
optical center is located near the lower left corner where PSF. As a consequence, the blur is the same everywhere.
the blur is less severe.

and takes ~ 20 x 10° floating-point operations to be applied. Comparatively, with a shift invariant PSF, blurring
amounts to a simple discrete convolution which can be computed by means of fast Fourier transforms (FFT)
in O(N log N) floating-point operations. Because the deblurring problem (9) can only be solved by iterative
methods, it is important to implement fast computation of the blurring while preserving a good approximation
of the real blur.

In order to compare the different approximations of a variable blur, we have simulated the effect of shift-
variant blur of NACO (SWAN)!7 on a crisp image of M64 galaxy from Hubble Space Telescope (source: http:
//hubblesite.org/gallery/album/galaxy/pr2004004a/, Credits: NASA and The Hubble Heritage Team
(AURA/STScI)). This image has structures at many different spatial scales and is thus useful to illustrate
the difference between blur models. Fig. 2) shows the original color image aside with a blurred version and
reconstructions with different blur models. Figure 3 shows the brightness distribution of the galaxy as if ob-
served by the HST assuming the optical center is located near the lower left corner where the blur is less severe.
Subsequent figures will show the blurred images under various approximations using the same colormap.

2.1 Shift-invariant Approximation

The most obvious and simple approach consists in assuming that the PSF is stationary (shift-invariant) and thus
take h(r,s) = k(r — s) or, equivalently, x(g, s) = x(q) where x(q) is, for instance, the PSF for a given direction
s or the mean PSF across the field of view. This amounts to neglecting the PSF variations and only provides a
good approximation in the so-called isoplanatic domain. Under this approximation, the image formation model
becomes a simple convolution:

or) = [ nlr =) f(5)ds = (e 1)), (1)
where ® denotes angular convolution. The amount of memory is only that of a single PSF and, as said before,
the computational burden is that of a full size discrete convolution that is O(N log N).

Figure 4 displays the image of the galaxy M64 blurred with a shift invariant PSF (assumed to be the one at
the center of the field of view), compared to the effects of the actual PSF (¢f. Fig. 3), the approximation is only
good in the center of the image (the blur is too strong in the lower left part and insufficient in the upper right
part).
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Figure 5. The galaxy M64 blurred by a PSF which is Figure 6. The galaxy M64 blurred by a variable PSF fol-
shift invariant by block. The artifacts at the edges of the lowing Nagy & O’Leary?° with a grid of 4 x 4 PSF.
blocks are obvious.

2.2 Piecewise Approximation

In order to exploit fast convolution by means of FFT, many authors (e.g. Ciliegi et al.!® for a recent example)
were content to carve the field of view in small regions where they assumed the PSF to be stationary. Each
region is blurred by its respective PSF and the blurred regions are assembled to form a large image. Given
{ek}ty=1,  p the positions at the center of the P regions, such an approximation of the blur by a variable PSF
can be formally expressed as:

K

K
o) ~ 3 ) / R —s,00) fs)ds = 3 wa(r) (e @ 1)), (12)

k=1 k=1

where ¢(r) € {0,1} is the indicative function of the k-th region (which is equal to 1 inside the region and 0
elsewhere) and iy (q) = k(g cx) is the PSF for the k-th region. From the above expression it is immediately
deduced that the computational cost is O(N log(N/P)) floating point operations if the sizes of PSFs are small
compared to the sizes of the regions. Note that Eq. (12) amounts to assuming that:

K K

h(r,s) = Z e(r)k(r —s,cr) = Z te(r) ki (r —s), (13)

k=1 k=1

which is a piecewise constant approximation of the variable PSF. There is no simple expression for the equivalent
centered PSF, (g, s), however see Denis et al.'® As shown by the artifacts at the boundaries of the regions shown
in Fig. 5, the main issue of this rather crude approximation is the lack of continuity in the direct model of the
blur.

2.3 Improvement by Interpolating the Piecewise Approximation

A progressive blending of the regions blurred by different PSFs provides an ad-hoc method to smooth out the
boundary artifacts. This is essentially the model of a shift variant blur proposed by Nagy & O’Leary?® which
writes:

g(r) ~

K
oulr) [ wr=s.e0) f(s)ds = > on(r) (ox  1)(r), (14)
k=1

-
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where ¢ (r) € [0,1] is a chosen continuous interpolation function. For instance, taking ¢ (r) = A(r — ¢x) with
A(q) the separable triangle function yields bilinear interpolation. The corresponding PSF is given by:

K
~ Zqﬁk(r) K(r — s, ck) Z Or(r) Kp(r —s). (15)
k=1

The formal similarity with Eq. (12) and (13) is apparent: ¢ (r) has just been replaced by ¢ (r). If the inter-
polating functions have a finite support, not all PSFs have an incidence on a given image position r and the
approximation reduces to:

Z i (r) kr(r —s), (16)

kes(r)

where S(r) is the set of indexes k of the PSFs which have to taken into account for computing the blur at position
r. To benefit from the blending, the blurred regions have to overlap. In 2D, each position typically requires to
compute a convolution by 2 x 2 PSFs, hence Card(S(r)) = 4 and the computational burden is O(4 N log(N/P))
floating point operations. Figure 6 shows that this model of blur yields acceptable results, at least much better
than the piecewise approximation. This model is however not as good as the two which follow.

2.4 Modal PSF Approximation

It can be observed that the centered PSF k(q, s) has less variations in s than the non-centered PSF h(r, s) (cf.
Table 1 in Denis et al.!?). As proposed by Flicker & Rigaut,?! it seems then natural to decompose the PSF in a
limited number of modes to form the following approximation:

P

H(Q) S) ~ Zpk(Q) wk(s) ) (17)

k=1

where {pr(¢)},_; p and {wi(s)},_; p are the so-called left and right modes of the decomposition. With
such an approximation, the image formation model becomes:

P P
T)z/<];pk(7"5)wk ) dS*Z/PkT*S (wi ® f)(s ;Pk@) (we @ f))(r),  (18)

where ® denote componentwise multiplication, i.e. (w; ® f)(s) = wg(s) f(s), and ® denotes angular convolu-
tion. The final expression in Eq. (18) makes clear that this approximation amounts to weighting the incoming
distribution f(s) by the right modes wy(s) before convolving with the left modes py(s).

In practice, the singular value decomposition?*2? (SVD) yields the left and right PSF modes. The SVD of
the discrete centered PSF K is given by:

min(L,N)
K=UxV'= Zokukvk, (19)

where U and V' are unitary matrices whose respective columns (denoted as ug and v above) are the so-called left
and right singular vectors while X is a, possibly rectangular, diagonal matrix whose diagonal coefficients (denoted
as oy, above) are the so-called singular values. The singular values are nonnegative and, by convention, sorted

in descending order; furthermore o) = 0 for any k > rank(K) < min(L, N). Eckard-Young-Mirsky theorem?? 24
demonstrates that the truncated singular value decomposition (TSVD):
P
K%K(P):Zakukvz (20)

with P < min(L, N) is the best approximation of rank P of the matrix K in the least squares sense. The
approximation is unique if op11 < op and the approximation is exact if P > rank(K).
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Introducing the decomposition of Eq (17), the discrete centered PSF defined in Eq. (7) writes:

P

Koy = (g 55) Dsy = Y pilae) wi(s;) Asy = K
k=1

where the last equality holds if the sampled PSF modes are chosen as follows:

pr(qe) = (ok /o) Urk (21a)
wi(s;) = (ow/As;) Vi, (21b)

where the ay are arbitray factors (provided that ay # 0, Vk). One issue is the size of the matrix to which
apply the SVD, this may be alleviated by subsampling the PSF k(g, s) with respect to the input position s (i.e.
assuming that is varies slowly with s). Another more critical issue is that if the PSF varies significantly across
the field of view many modes will be needed to correctly mimic the PSF. Finally, the PSF modes have no physical
meanings and it is likely that properties like nonnegativity or flux conservation will not hold everywhere for the
truncated mode approximation. The computational burden of applying the modal PSF approximation is that of
P full size discrete convolutions hence O(P N log N) operations.

2.5 PSF Interpolation

Let us assume that the centered PSF (g, s) is known for a set of P calibration sources at positions {cx},_;  p;
then, considering the continuity of the variation of the centered PSF with respect to the source position s, we
have proposed to approximate the PSF at a given position by interpolating the nearby calibrated PSF:2°

rlas)~ Y euls)rlg.cr), (22)

keK(s)

where K(s) denotes the set of indexes k of the calibration PSFs which have to taken into account to interpolate
the blur at position s and {¢r(s)},_,; p are the chosen interpolating functions.?¢ Usually, although this is not
required, the interpolating functions are shifted versions of the same function: ¢K(s) = p(s—ck). The comparison
of Eq. (22) with Eq. (17) readily shows that PSF interpolation corresponds to a modal decomposition with a
specific choice for the left and right modes:

pr(a) = k(q, ck) (23a)
wi(s) = (s — cx), (23Db)

up to some arbitrary factors as for Eqs. (21a)-(21b). Based on computational considerations Hirsh et al.?” have
proposed an expression of the spatially variant blur which amounts to our model.

In spite of the close formal resemblance of the modal decomposition provided by TSVD and the approximation
by PSF interpolation, they have different practical properties. For the same number P of modes and of calibrated
PSF, TSVD is guaranteed to provide the best approximation (in the least squares sense) of the true PSF but it
does not impose any constraints on the modes. The PSF interpolation approximation can, quite easily, preserve
properties such as nonnegativity and normalization provided they hold for the calibrated PSF k(q,cx). We
have shown that other properties such as symmetries or invariances can also be preserved by interpolating the
PSF.'° Furthermore, the interpolating model can be greatly improved by fitting the calibration PSFs and the
interpolation weights.'?2% Although it impacts the computational burden, refining the grid of calibrated PSF’s
is another way to improve the accuracy as the interpolated PSF model converges to the actual shift variant PSF
as the calibration PSFs become closer and closer. The model of Nagy & O’Leary?° does not have such property
neither it preserves the flux. Finally, another advantage of the interpolating model is that its computational time
remains modest. In the limit of recentered PSF with small support, applying the shift variant blur operator H
(or its adjoint H') takes 4 times the time of a simple convolution.
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Figure 7. The galaxy M64 blurred by Flicker & Rigaut?! Figure 8. The galaxy M64 blurred by the proposed vari-
modal PSF with 16 modes. able PSF model interpolated on a grid of 4 x 4 calibration
PSF.

3. DISCUSSION AND PERSPECTIVES

We have reviewed a number of proposed models of shift variant PSFs and shown that the interpolating model%:2%:27
yields a good approximation which preserves properties of the PSF while being also very fast to apply. Maalouf
et al.2® have proposed to deblur an image affected by a shift-variant PSF by interpolating between the results
of deconvolving with different PSFs. We however expect that optimal results can be obtained by using the
proposed shift variant PSF in an iterative method for solving inverse problems. Such algorithms require to apply
the operator H (and its adjoint H') many times and it is important that the blur model provides not only good
but also fast approximation.

Perhaps the most important next step is to develop means to calibrate shift variant PSF especially when
it depends on the observing conditions as it is the case in astronomy and microscopy. In that context, self-
calibration methods which yield at the same time the deblurred image an the instrumental response are the most
appealing ones even though they pose additional difficulties. There have been some very encouraging results on
both empirical or synthetic images?” and with physical models of the PSF accounting for Fresnel propagation in
the instrument.3°

ACKNOWLEDGMENTS

The research leading to these results has received funding from the French Agence Nationale pour la Recherche
(ANR) under grant agreement number ANR DEFI 09-EMER-008-01 (MiTiV project http://mitiv.univ-1lyoni.
fr).

REFERENCES

[1] Flicker, R. and Rigaut, F., “New method for deconvolving adaptive optics images,” in [ Workshop on Adaptive Optics
PSF Reconstruction], Herzberg Institute of Astrophysics, National Research Council of Canada (2004).

[2] Soulez, F., Thiébaut, E., and Denis, L., “Restoration of hyperspectral astronomical data with spectrally varying
blur,” New Astronomy Review 59, 403-416 (2013).

[3] Richardson, W. H., “Bayesian-based iterative method of image restauration,” J. Opt. Soc. America 62(1), 55-59
(1972).

i

Proc. of SPIE Vol. 9909 99097N-9

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 08/08/2016 Terms of Use: http://spiedigitallibrary.or g/ss'ter msofuse.aspx



[4] Titterington, D. M., “General structure of regularization procedures in image reconstruction,” Astron. Astro-
phys. 144, 381-387 (1985).

[5] Thiébaut, E., “Introduction to image reconstruction and inverse problems,” in [Optics in Astrophysics], Foy, R. and
Foy, F.-C., eds., NATO ASI 198, 397-422, Springer, Amsterdam (2005).

[6] Thiébaut, E., “Principles of image reconstruction in interferometry,” EAS Publications Series 59, 157-187 (2013).

[7] Mugnier, L. M., Fusco, T., and Conan, J.-M., “MISTRAL: a myopic edge-preserving image restoration method, with
application to astronomical adaptive-optics-corrected long-exposure images,” J. Opt. Soc. America A 21, 1841-1854
(Oct. 2004).

[8] Foi, A., Trimeche, M., Katkovnik, V., and Egiazarian, K., “Practical poissonian-gaussian noise modeling and fitting
for single-image raw-data,” IEEE Transactions on Image Processing 17, 1737-1754 (2008).

[9] Rudin, L., Osher, S., and Fatemi, E., “Nonlinear total variation based noise removal algorithms,” Physica D 60,
259-268 (1992).

[10] Charbonnier, P., Blanc-Féraud, L., Aubert, G., and Barlaud, M., “Deterministic edge-preserving regularization in
computed imaging,” IEEE Trans. Image Process. 6, 298-311 (feb 1997).

[11] Donoho, D., “For most large underdetermined systems of linear equations, the minimal ell-1 norm near-solution
approximates the sparsest near-solution,” Communications on Pure and Applied Mathematics 59(7), 907-934 (2006).

[12] Giovannelli, J.-F. and Coulais, A., “Positive deconvolution for superimposed extended source and point sources,”
Astron. Astrophys. 439, 401-412 (Aug. 2005).

[13] Thiébaut, E., “Optimization issues in blind deconvolution algorithms,” in [Astronomical Data Analysis II], Starck,
J.-L. and Murtagh, F. D, eds., 4847, 174-183, SPIE (2002).

[14] Bertsekas, D. P., [Nonlinear programming], Athena Scientific (1999).

5] Gabay, D. and Mercier, B., “A dual algorithm for the solution of nonlinear variational problems via finite element

approximation,” Computers & Mathematics with Applications 2(1), 17-40 (1976).

[16] Boyd, S., Parikh, N.; Chu, E., Peleato, B., and Eckstein, J., “Distributed optimization and statistical learning via
the alternating direction method of multipliers,” Foundations and Trends in Machine Learning 3, 1-122 (2010).

[17] Cresci, G., Davies, R., Baker, A., and Lehnert, M., “Accounting for the anisoplanatic point spread function in deep
wide-field adaptive optics images,” A&A 438, 757-767 (2005).

[18] Ciliegi, P., Camera, A. L., Schreiber, L., Bellazzini, M., Bertero, M., Boccacci, P., Diolaiti, E., Foppiani, I., Lombini,
M., Massari, D., Montegriffo, P., and Talia, M., “Image restoration with spatially variable PSF,” in [Adaptive Optics
Systems IV], Marchetti, E., Close, L. M., and Véran, J.-P., eds., SPIE-Intl Soc Optical Eng (aug 2014).

[19] Denis, L., Thiébaut, E., Soulez, F., Becker, J.-M., and Mourya, R., “Fast approximations of shift-variant blur,”
International Journal of Computer Vision 115(3), 253-278 (2015).

[20] Nagy, J. and O’Leary, D., “Restoring images degraded by spatially variant blur,” SIAM J. Sci. Comp. 19, 1063
(1998).

[21] Flicker, R. and Rigaut, F. J., “Anisoplanatic deconvolution of adaptive optics images,” J Opt Soc Am A 22, 504-513
(Mar 2005).

[22] Eckart, C. and Young, G., “A principal axis transformation for non-hermitian matrices,” Bulletin of the American

Mathematical Society 45(2), 118-121 (1939).

3] Mirsky, L., “Symmetric gauge functions and unitarily invariant norms,” Quarterly J. Math. 11, 50-59 (1960).

[24] Eckart, C. and Young, G., “The approximation of one matrix by another of lower rank,” Psychometrika 1(3), 211-218
(1936).

[25] Denis, L., Thiébaut, E., and Soulez, F., “Fast model of space-variant blurring and its application to deconvolution
in astronomy,” in [18th IEEE Int. Conf. Image Process.], (2011).

[26] Thévenaz, P., Blu, T., and Unser, M., “Interpolation revisited,” IEEE Trans. Medical Imag. 19, 739-758 (July 2000).

| Hirsch, M., Sra, S., Scholkopf, B., and Harmeling, S., “Efficient filter flow for space-variant multiframe blind decon-

volution,” in [IEEE Comp. Vis. Pattern Recogn.], 607—614 (2010).

[28] Maalouf, E., Colicchio, B., and Dieterlen, A., “Fast deconvolution with non-invariant psf for 3-d fluorescence mi-
croscopy,” in [Photonics Europe], 70001K-70001K, International Society for Optics and Photonics (2008).

[29] Mourya, R. K., Contributions to Image Restoration: From Numerical Optimization Strategies to Blind Deconvolution
and Shift-variant Deblurring, PhD thesis, Université Jean Monnet, Saint-Etienne (2016).

[30] Soulez, F., Courbin, F., and Unser, M., “Back-propagating the light of field stars to probe telescope mirrors aberra-
tions,” in [SPIE Conf. on Astronomical Telescopes & Instrumentation]|, 9912, 264, SPIE Proc. (2016).

Proc. of SPIE Vol. 9909 99097N-10

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 08/08/2016 Terms of Use: http://spiedigitallibrary.or g/ss'ter msofuse.aspx



