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ABSTRACT

Motivated by the fractal-like behavior of natural images, we
propose a new smoothing technique that uses a regulariza-
tion functional which is a fractional iterate of the Laplacian.
This type of functional has previously been introduced by
Duchon in the context of radial basis functions (RBFs) for
the approximation of non-uniform data. Here, we introduce
a new solution to Duchon’s smoothing problem in multiple
dimensions using non-separable fractional polyharmonic B-
splines. The smoothing is performed in the Fourier domain
by filtering, thereby making the algorithm fast enough for
most multi-dimensional real-time applications.

1. INTRODUCTION

In many signal processing systems, denoising algorithms
are applied. Denoising, or smoothing, which are qualita-
tively the same thing, can be done in many ways. Tra-
ditionally, there have been two communities dealing with
this problem: the signal processing community and the
statistics community. The first one deploys popular algo-
rithms such as filtering (e.g., Wiener filtering) and wavelet
thresholding with its variations [1]. The statistics commu-
nity, which frequently uses non-uniform grids, adheres to
Bayesian restoration (e.g. [2]) and smoothing splines [3]
(particularly thin-plate splines [4]).

In fact, one can think about denoising as taking some in-
formation out of a signal. The information we want to take
out depends on a-priori information or assumptions about
the noiseless signal. A common assumption is that the en-
ergy proportion of the signal is most important in the low
frequencies, while the high-frequency components contain
mainly noise.

Multi-dimensional data, such as images, usually have
high local correlation in all directions. Finding a suitable
smoothing algorithm that uses this fact is challenging. The
simplest method is to apply a separable algorithm (e.g. by
using tensor product functions), which does not address this

correlation. However, their implementation tends to be fast,
and the mathematics are straightforward.

Another idea is to use RBFs, such as Duchon’s (m, s)
splines [5], providing us with a span of isotropic power
functions. The problem is formulated in variational terms
with a Tikhonov-like regularizer. However, the RBFs are
poorly conditioned, thus making it very difficult to imple-
ment when there are many data points as is typical in signal
processing. In addition, the method is computationally very
expensive.

Under the Gaussian assumption, there is a well-
known equivalence between the Bayesian formulation and
regularization techniques. The appropriate regulariza-
tion for fractal-like signals—signals with a spectra like
O(1/ ‖ω‖τ )—is a fractional iterate of the Laplacian which
whitens the signal. In fact, it has recently been demonstrated
that many natural images have this kind of spectral behav-
ior [6, 7].

Here, we propose a new algorithm to solve Duchon’s
problem on a uniform grid using non-separable fractional
polyharmonic B-splines basis functions. These functions
are localized versions of RBFs, and thus span the same
space. We work out the solution for the fractional case, ob-
taining a suitable algorithm for fractal-like signals.

The fact that we are dealing with a uniform grid allows
us to develop a fast Fourier-based filtering algorithm. In
addition, our algorithm can work in any number of dimen-
sions without any special modifications. Thus, we are able
to solve the statistics formulation (Duchon’s splines) with
signal-processing techniques (Fourier filtering), achieving a
fast algorithm.

2. MATHEMATICAL PRELIMINARIES

2.1. Polyharmonic B-Splines

Our multi-dimensional basis functions are the polyharmonic
B-splines [8–10]. We denote this function of order α as
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Fig. 1. Example of Polyharmonic B-splines in 2D. Note that they are not compactly supported and decay like

O
(
‖x‖−d−2

)
.

βα (x), and specify its Fourier transform:

F {βα (x)} = β̂α (ω) =
‖sin (ω/2)‖α

‖ω/2‖α , for α >
d

2
, (1)

with ω = (ω1, · · · , ωd) ∈ R
d, where sin (ω/2) =

(sin (ω1/2) , · · · , sin (ωd/2)). Note that the order of those
functions can also be fractional (see also [11]). Figure 1
shows an example of two polyharmonic B-splines in 2D.

An important property of these B-splines is the convo-
lution relation βα1 ∗ βα2 = βα1+α2 , which follows directly
from their definition in the Fourier domain.

2.2. Fractional Differentiation

In multiple dimensions, it is convenient to consider the
isotropic fractional differential operator:

∂s
∗f (x) ←→ ‖ω‖s

f̂ (ω) , (2)

which is defined in the sense of distributions. The discrete
counterpart is the (Laplacian-like) finite difference operator:

�s
∗ ←→ ‖2 sin (ω/2)‖s = 2s

(
d∑

i=1

sin (ωi/2)2
)s/2

. (3)

It is easy to prove the following formula that allows us to
easily differentiate polyharmonic B-splines:

∂s
∗βα (x) = �s

∗βα−s (x) . (4)

3. SMOOTHING FORMULATION

Duchon’s smoothing formulation is variational with a
Tikhonov-like regularization [5]. The solution of

the smoothing operator, f̃ , is defined by: f̃ =
arg minf∈L2

{
ε2s

}
where:

ε2s =
∑
xi∈S

(g (xi) − f (xi))
2 + λ ‖∂s

∗f (x)‖2
L2

. (5)

The first, signal term quantifies the distance between our so-
lution and the given measurements g (xi), on S — a discrete
localization of the continuous space, i.e. the discrete points
at which we are observing the signal. The second, smooth-
ness term penalizes the lack of smoothness of the solution.
λ is a regularization parameter, making a balance between
the two terms — higher λ means more smoothing and less
fidelity to the data, and vice versa.

Duchon has shown that the solution of (5) in the general
case is:

f (x) =
∑
xi∈S

akρ (x − xi) + polynomial, (6)

where ρ(x) is the Green function of ∂2s
∗ : ∂2s

∗ ρ(x) = δ(x).
In the Fourier domain, this leads to: ρ(x) ←→ ρ̂(ω) =

1
‖ω‖2s . One problem with ρ̂(ω) is its singularity at zero fre-
quency. In the frequency domain, this function looks very
similar to the polyharmonic B-splines (except for the sin
term). By adding the sin term, the function is tempered at
zero.

We can show that these functions span the same space
iff xi ∈ Z

d, which is mostly the case in signal pro-

cessing applications (It is easy to see that ‖sin(ω/2)‖2s

‖ω/2‖2s =∑
k∈Zd d (k) ρ (x − k)). This assumption also allows us

to use fast Fourier techniques. Furthermore, the polyhar-
monic B-splines of order 2s reproduce polynomials of de-
gree �2s�−1, which allows us to also take care of the second
polynomial term in (6).
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We can now solve Eq. (5) using a spline representation
for our signals:

f (x) =
∑
k∈Zd

c (k) β2s (x − k) . (7)

It can be proven that this choice of order of spline gives
a globally optimal solution among all possible function
spaces. The proof is a generalization of the one in [11].

By substituting (7) in (5) and using the differentiation
property of the splines (4) we obtain:

ε2s = 〈g, g〉 − 2〈g, β2s ∗ c〉 + 〈β2s ∗ c, β2s ∗ c〉
+λ〈�s

∗ ∗ c,�s
∗ ∗ c ∗ β2s〉. (8)

Taking the partial derivative with respect to c (partial deriva-
tive of a vector) and equating it to zero, we get:(

(β2s)
′ ∗ g

)
(x) =

(
(β2s)

′ ∗ (β2s) ∗ c
)
(x)

+
(
λ (�s

∗)
′ ∗ �s

∗ ∗ (β2s)
′ ∗ c

)
(x) (9)

Going to the Fourier domain, we find the solution:

f̂ (ω) =
B2s

(
ejω)

B2s (ejω) + λ ‖2 sin (ω/2)‖2s ĝ (ω) , (10)

where the polyharmonic B-spline periodization sequence
B2s(ejω) is the Fourier transform of a sampled polyhar-
monic spline. It can be expressed as the periodized version
of β̂2s (ω) (using Poisson summation formula):

B2s

(
ejω)

=
∑
k∈Zd

β̂2s (ω + 2πk)

=
∑
k∈Zd

‖sin (ω/2 + πk)‖2s

‖ω/2 + πk‖2s . (11)

This sequence can be also regarded as the autocorrelation
sequence of βs. We have found an efficient way to calculate
it, by applying a two-scale relation in the Fourier domain.
(More details about this will be published in a future paper).

4. FRACTAL-LIKE BEHAVIOR OF NATURAL
IMAGES

Natural phenomena are widely presumed to be self-similar
from a statistical perspective. As a consequence, natural im-
ages tend to be scale invariant — seeing an object from two
yards or one yard will result in very similar images trans-
mitted by our visual system [7].

The notion of self-similarity is reminiscent of fractals,
which possess this property. This leads to a fractal-like
model for natural images — a spectral density function that
behaves like O (1/‖ω‖τ ), where τ is the fractal order [6].

Experimental results show that most natural images fit well
to this model, with τ being usually between 1 to 1.5.

Assuming that our prior signal model is fractal, we can
then apply a fractional derivative of power s = τ to whiten
this signal. This suggests that choosing s according to the
fractal power of a signal should yield better results.

This value is calculated by taking the radial frequency
response of the image, transforming it into log-log coordi-
nates and fitting a straight line, whose slope yields τ . Since
experimental results show that this value is usually frac-
tional, it is a good inducement for using fractional splines.

5. RESULTS

We demonstrate our approach on a slice of an MRI T2* vol-
ume, as used in functional analysis of brain activity (this
image is in fact the brain of one of the former Ph.D students
of our group). The original image is given in Fig. 2(a). In
Fig. 2(c), we show the results of smoothing the noisy image
of Fig. 2(b). In this case, s was estimated from the spectrum
of the image, and we chose the value of λ that achieves the
best SNR.

There are known methods for selecting the value of λ,
but it is beyond the scope of this paper. Note that, when λ is
small, the result fits the observation more closely, and edges
are preserved better; however, this comes at the expense of
more residual noise. On the other hand, when λ is too large,
the image is over smoothed, and edges are not well pre-
served; however, we suppress most of the noise. The right
balance will depend on the particular application.

Figure 3(a) shows the radial frequency response of the
image in Fig. 2, and the regressed fractal model (on a log-
log scale). Note that the value of s for the smoothing was
chosen according to this analysis. In Fig. 3(b), we show that
this way of selecting s is indeed optimal.

6. CONCLUSIONS

We proposed a multi-dimensional smoothing algorithm us-
ing non-separable fractional polyharmonic B-splines. This
method is a solution of Duchon’s smoothing formula-
tion, and combines the statistics community’s methods
with the signal processing community’s tools, allowing for
fast smoothing of multi-dimensional signals using Fourier-
based filtering. This is only possible because we are work-
ing on a uniform grid and because we found a fast algorithm
to compute (11).

Secondly, we use the fact that natural images behave in a
fractal-like way with respect to their radial spectrum, which
in turn allows us to tune the value of s — the fractional
derivative order in the variational smoothing formulation.
Additionally, preliminary experimental results confirm that
this choice is optimal. Our approach is especially suitable
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(a) Original image (b) Noisy image (c) Optimal least squares smoothing

Fig. 2. Smoothing results. SNR: (b) 14.7804 (c) 22.4707, with λ = 3.07, s = 1.46633.
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Fig. 3. Fractal-like properties. (a) The radial frequency behavior of the image, with the corresponding regressed line (on a
log-log scale). (b) The effect of choosing the correct value of s on the optimal denoising SNR.

for fractal-like signals as well as real world images thanks
to our fractional extension of smoothing splines.

7. REFERENCES

[1] D. L. Donoho, “De-noising by soft thresholding,” IEEE
Trans. Inform. Theory, vol. 41, no. 3, pp. 613–627, 1995.

[2] S. Geman and D. Geman, “Stochastic relaxation, Gibbs dis-
tributions, and the Bayesian restoration of images,” IEEE
Trans. on PAMI, vol. 6, pp. 721–741, 1984.

[3] M. Unser, A. Aldroubi, and M. Eden, “B-Spline signal pro-
cessing: Part I—Theory,” IEEE Trans. Signal Processing,
vol. 41, no. 2, pp. 821–833, February 1993.

[4] G. Wahba, Spline Models for Observational Data, vol. 59 of
CBMS-NSF Reg. Conf. Series in Appl. Math., SIAM, 1990.

[5] J. Duchon, “Splines minimizing rotation-invariant semi-
norms in Sobolev spaces,” in Multivariate Approxima-

tion Theory, W. Schempp and K. Zeller, Eds., pp. 85–100.
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