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Abstract—Motivated by the fractal-like behavior of natural im-
ages, we develop a smoothing technique that uses a regulariza-
tion functional which is a fractional iterate of the Laplacian. This
type of functional was initially introduced by Duchon for the ap-
proximation of nonuniformily sampled, multidimensional data. He
proved that the general solution is a smoothing spline that is rep-
resented by a linear combination of radial basis functions (RBFs).
Unfortunately, this is tedious to implement for images because of
the poor conditioning of RBFs and their lack of decay. Here, we
present a much more efficient method for the special case of a uni-
form grid. The key idea is to express Duchon’s solution in a frac-
tional polyharmonic B-spline basis that spans the same space as the
RBFs. This allows us to derive an algorithm where the smoothing
is performed by filtering in the Fourier domain. Next, we prove
that the above smoothing spline can be optimally tuned to provide
the MMSE estimation of a fractional Brownian field corrupted by
white noise. This is a strong result that not only yields the best
linear filter (Wiener solution), but also the optimal interpolation
space, which is not bandlimited. It also suggests a way of using the
noisy data to identify the optimal parameters (order of the spline
and smoothing strength), which yields a fully automatic smoothing
procedure. We evaluate the performance of our algorithm by com-
paring it against an oracle Wiener filter, which requires the knowl-
edge of the true noiseless power spectrum of the signal. We find
that our approach performs almost as well as the oracle solution
over a wide range of conditions.

Index Terms—Fractal image model, multidimensional Wiener
filter, optimal multidimensional linear filtering, polyharmonic
smoothing splines.

I. INTRODUCTION

DENOISING algorithms are part of many image processing
systems. The methods available are quite diverse and range

from simple linear filtering (image smoothing) [1], to more com-
plex nonlinear schemes such as total variation image regular-
ization [2] or anisotropic diffusion [3], which are iterative pro-
cesses. There are also many intermediate approaches such as
wavelet denoising [4] that are nonlinear but have a direct imple-
mentation.

From a conceptual point of view, it is always better when an
algorithm can be justified based on some optimality principle.
In this respect, the three dominant paradigms are as follows:
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1) the Wiener formulation, where one minimizes the mean
square estimation error (MMSE) for a given class of sto-
chastic processes [5], [6];

2) the Bayesian framework, where one searches for the max-
imum a posteriori solution given some prior knowledge of
the statistical distribution of its parameters [7], [8];

3) the variational approach, where one minimizes an energy
functional that favors solutions with some desirable fea-
tures (eg., nonoscillating, and/or with sharp edges) [9],
[10]; formulations have been proposed for both discrete
[11] and continuously defined signals [12], [13].

The Wiener formulation typically produces a linear solution
(Wiener filter) which is simple to implement; however, it re-
quires complete knowledge of the second-order statistics of the
signal which is often not available. The Bayesian and varia-
tional formulations are more versatile and, therefore, often fa-
vored by researchers and practitioners [14], [15]. When the un-
derlying distributions (respectively, energy functionals) are non-
Gaussian (respectively, nonquadratic), they yield nonlinear es-
timators that are typically implemented iteratively. Note that
except for the context, which is either statistical or determin-
istic, both types of formulations are essentially equivalent: An
energy function can be converted into a probability density by
defining an appropriate Gibbs distribution, while the reverse
equivalence is achieved by considering the log-likelihood func-
tion of the data. The most basic variational algorithm is the
Tikhonov filter (or regularized least-squares estimator) which
constrains the solution to be smooth via a quadratic regulariza-
tion functional (e.g., energy of the gradient or Laplacian) [1],
[9]. This approach has been extended by considering a variety
of nonquadratic regularization terms; the most prominent are
total variation [2], half-quadratic regularization [16], as well as
penalized maximum-likelihood and Bayesian estimation under
the generalized Gaussian assumption [17]–[19], which also fit
the framework. Interestingly, there is also a variational formula-
tion of wavelet denoising that yields a most effective algorithm
which amounts to applying a suitable nonlinearity to the wavelet
coefficients of the signal [20].

The approach that is proposed in this paper also falls within
the variational framework. However, it departs from the tradi-
tional formulation in that we seek a function of the contin-
uous space variable that best fits the noisy samples of an
image (or multidimensional signal). This means that we are not
only attempting to recover the noise-free pixel values but also
an optimal interpolation model that can provide an image pre-
diction (or MMSE estimate) at any arbitrary location .
Since the present continuous-space estimation problem is more
involved mathematically than the classical one where the input
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and output signals are both discrete, it is justifiable in a first
stage to concentrate on the case of a quadratic cost function. Our
choice of regularization functional, however, is not arbitrary.
First, we justify it on deterministic grounds: We want a criterion
that is universal in the sense of being invariant with respect to
the viewing geometry; in particular, translations, rotations, and
scaling. This narrows it down to the energy of a fractional1 it-
erate of the Laplacian whose transfer function is [22], [23].
Second, we want to take advantage of the fractal-like behavior
of many natural images [24]. Indeed, several researchers have
observed that the power spectrum of images often follows an in-
verse power-law distribution, , which is character-
istic of fractal processes [25], [26]. Now, if we recall the clas-
sical equivalence between Wiener and regularization filters in
the case of additive white noise, this observation suggests using
a regularization operator that whitens the signal; this points,
once again, towards a fractional derivative. Of course, this argu-
ment needs to be made more rigorous because self-similar pro-
cesses are not stationary, meaning that their Wiener filter cannot
be defined in the conventional way. The processes can still be
estimated but one has to resort to alternative techniques (in par-
ticular, kriging [27]) that were developed in geostatistics for the
reconstruction of functions from their nonuniform samples. In-
terestingly, these methods happen to be closely related to splines
and radial basis functions [28], [29].

The mathematical foundation for solving our variational es-
timation problem is provided by Duchon’s general theory of

-splines [22]. Duchon considered the most general situ-
ation where the location of the measurements is arbitrary (i.e.,
nonuniform samples) and proved that the solution could be ex-
pressed as a weighted sum of radial basis functions (RBF). He
also showed how to determine the optimal weights through the
solution of a linear system of equations. However, the RBFs
are poorly conditioned, thus making this approach very deli-
cate to implement when there are many data points. In addition,
the basic method (thin-plate splines [30]) is computationally ex-
tremely expensive2 and, therefore, out of reach for image pro-
cessing applications.

Our contribution in this paper is three-fold. Our first result
is a fast computational solution to Duchon’s smoothing spline
problem that takes advantage of the fact that we are dealing with
data on a uniform grid. The key idea is to express Duchon’s
solution in a fractional polyharmonic B-spline basis. These
functions, which were first introduced by Rabut [31], are lo-
calized versions of RBFs and, thus, span the same space when
the grid is uniform. The second is a proof of the optimality of
polyharmonic smoothing splines for the estimation of fractional
Brownian fields (which are multidimensional fractal stochastic
processes). The third contribution is a practical denoising
algorithm that estimates the optimal spline parameters from the
noisy data, and the demonstration of its suitability for image
processing.

The paper is organized as follows. In Section II, we briefly re-
view the essential properties of polyharmonic B-splines. In Sec-
tion III, we use these to derive the optimal solution of Duchon’s

1The present meaning of fractional is real-valued (as opposed to integer only)
in accordance with the terminology used in the fractal literature [21].

2The complexity of the thin-plate spline method is for computing
the optimal weights ( is the total number of data points). It then requires an
additional for each evaluation of the RBF model at a given location .

smoothing spline problem which enforces a penalty on the en-
ergy of the fractional derivative of the solution. The fact that
we are working on a uniform grid yields a fast Fourier-based
filtering algorithm which is applicable in any number of dimen-
sions. In Section IV, we present an alternative stochastic deriva-
tion and show that the proposed smoothing estimator is optimal
for the class of fractal-like signals. In particular, we show that
the optimal order of the spline is directly related to the fractal
dimension of the signal (or its Hurst exponent). We also get a
closed form expression for the optimal regularization parameter.
In Section IV, we briefly review fractal models of images and
show how these can be identified in the frequency domain. In
particular, we present a robust method that estimates the fractal
parameters of our measurement model for the radially averaged
periodiogram of the noisy image. The task is formulated as a
nonlinear weighted least-squares fit using a cost function that
takes into account the bias and variance inherent to sampling and
averaging along radial annuli. Finally, in Section VI, we discuss
some practical implementation issues and present experimental
results for a wide range of signal-to-noise ratios. In particular,
we compare our method against the oracle Wiener filter, which
requires the knowledge of the true uncorrupted signal spectrum.
The remarkable fact is that our method which is parameterized
by two numbers only—the order of the spline and the regulariza-
tion parameter —essentially keeps up (within less than 2 dB)
with the oracle Wiener filter over the whole range of testing con-
ditions. Since the oracle solution is not available in a practical
denoising problem, our approach presents a viable way to get
the best linear filtering solution.

II. MATHEMATICAL PRELIMINARIES

A. Notation

• Multidimensional functions: A continuously defined
signal is a function of and is usually de-
noted as ; its Fourier transform is given by

.
• Multidimensional sequences: A discrete signal is a

sequence indexed by and is typically de-
noted as ; its discrete Fourier transform is given
by .

• The inner product for discrete domain sequences is defined
as: , and the corresponding

-norm is: .

B. Fractional Differentiation

Following Liouville’s definition of a fractional derivative
[32], the differentiation operator can be easily extended to
noninteger exponents in the Fourier domain

(1)

which is defined in the sense of distributions. Similarly, we can
define a symmetric differentiation operator as

(2)
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Fig. 1. Example of 2-D polyharmonic B-splines. Note that they are not compactly supported but decay like as . These functions
also show (slightly) negative sidelobes. (a) Order . (b) Order .

In order to extend fractional differentiation to multiple dimen-
sions, it is convenient to consider the isotropic fractional deriva-
tive, which can be interpreted as the -iterated Laplacian op-
erator:

(3)

Its discrete counterpart is the fractional finite difference operator

with the convention that
. This operator can also be represented using the

sequence

(4)

whose Fourier transform is .

C. Polyharmonic B-Splines

The multidimensional basis functions that are of interest to
us are the polyharmonic B-splines [31], [33], [34]. We denote
the function of order , which corresponds to a spline degree

, as , and specify its Fourier transform

for (5)

with . Note that the order of those
functions can be fractional (see also [35] and [36]). In Fig. 1,
we show two examples of two-dimensional (2-D) polyharmonic
B-splines.

We denote the shift-invariant signal space generated by as

(6)

This means that any function that lies in this spline space
can be expressed in terms of a polyharmonic B-spline expansion

(7)

A useful notion for our purpose is the sampled or discrete poly-
harmonic B-spline, given by

(8)

These functions naturally appear when we are calculating the
spline representation at the integers

(9)
The polyharmonic B-splines are designed so that they satisfy

, for , where denotes the -iter-
ated Laplacian operator of (3). These splines can be represented
as linear combinations of shifted radial basis functions (RBFs)
called thin plate splines (for integer orders)

(10)

where these RBFs are, in fact, the Green functions (inverse
filter) of the th-order symmetric differentiation operator ;
they are given by

(11)
where and are appropriate constants [37]

even

otherwise.

(12)
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Here,3 is Euler’s gamma function. In the case where
is not even, can be also written as

(13)

This implies that the closure of the harmonic B-splines is
spanning the same signal space as a set of RBFs positioned at
the multiintegers [31]; that is, when the grid is uniform which
is mostly the case in signal processing applications.

The polyharmonic B-splines have the following useful prop-
erties.

1) Convolution property: The polyharmonic B-splines satisfy
the convolution relation . This impor-
tant property follows directly from their definition in the
Fourier domain.

2) Differentiation property: The fractional derivative of a
polyharmonic B-splines is a spline of reduced order that
is simply given by

(14)

This formula is readily established in the Fourier domain.
3) Partition of unity: The polyharmonic B-splines satisfy the

partition of unity property, which guarantees that they re-
produce the constant

(15)

4) Decay: Unlike traditional B-splines of integer order,
Rabut’s polyharmonic B-splines are not compactly sup-
ported. However, they decay like
when . The proof is given in [31], [36].

5) Order of approximation: A polyharmonic B-spline, , has
an order of approximation . This means that they can ap-
proximate a well-behaved function to any required
accuracy by projecting it into a rescaled spline space with
step size

(16)

where the constant does not depend on . It is also easy to
see that

for (17)

6) Riesz basis: These B-splines also generate a Riesz basis,
which is equivalent to the condition

(18)

3Technically, the constants for the case where is even depend on the
interpretation given to the principal value of . Here, we selected the
form that does not add any Dirac distributions to its Fourier transform.

III. SMOOTHING SPLINE FORMULATION

We now present a deterministic algorithm for fitting noisy
image data. This algorithm solves Duchon’s smoothing
problem. In the next section, we will prove that this solution
also yields the optimal Wiener estimate for a multidimensional
fractional Brownian motion process with Hurst exponent

.
The problem is to find a continuous-space function

that approximately fits a series of noisy measurements
, where is some addi-

tive noise; is the set of sampling locations which can
be essentially arbitrary. Duchon’s smoothing formulation is
variational with a Tikhonov-like regularization [11], [22]. The
solution of the smoothing problem is specified as

(19)

where

(20)

The first component of , denoted as the data term, quanti-
fies the distance between our solution and the given measure-
ments on —the set of points at which we are observing
the signal. The second regularization term penalizes the lack of
smoothness of the solution. Here, is a regularization pa-
rameter, making a balance between the two terms: A higher
means more smoothing and less fidelity to the data, and vice
versa.

Duchon4 has shown that the solution of (19) in the general
case can be written as

(21)

where is the RBF specified by (11), is a suitable set
of coefficients, and is a polynomial of degree . The
main problem with this representation is the lack of decay of

due to the singularity of its Fourier transform at .
Note that the only difference between and
the Fourier transform (5) of the polyharmonic B-spline is the
missing localization operator in the nominator. The primary role
of this factor is to temper at the origin, making it differ-
entiable and essentially localized in the space domain.

Here, we concentrate on the special case , which will
allow us to express (21) in a polyharmonic B-spline basis that is
much better conditioned than the RBFs [cf. (18)]. Since we are
dealing with an infinite number of data points, it is important
to make sure that the criterion (20) is well defined. The regular-
ization term is obviously finite for any function (the

4In his paper, Duchon uses a more elaborate formulation of the regularizing
functional that does not require the condition . Here, we need not worry
about the fact that the null space of defined by (2) is potentially larger than
the polynomials, since we are excluding all harmonic solutions [23].
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Sobolev space5 of order ). Moreover, we can invoke the fol-
lowing proposition which ensures that the data term is bounded
as well for .

Proposition 1: For any function with , we
have , for every .

This can be established by adapting the proof of an earlier
one-dimensional (1-D) result [38, Appendix C-A].

Thanks to the uniform setting, we can now apply Fourier
techniques to find the solution. Furthermore, the polyharmonic
B-splines of order generate polynomials of degree ,
which also takes care of the second polynomial term in (21).

Theorem 1: For , the solution of the variational
problem (19), with discrete input data on a uniform grid
( ), is given by

(22)

where is a digital filter defined by its Fourier transform

(23)

Here, is the Fourier trans-
form of the discrete polyharmonic B-spline .

Proof: First, we need to prove that the global solution of
the variational problem (19), among all possible functions, lies
in

(24)

the space of polyharmonic splines of order . To this end, we
rely on the following spline energy decomposition property.

Proposition 2: Let . Then, for all , we have

(25)

where the polyharmonic spline interpolator is the
unique function of that satisfies for all

.
Proposition 2 is a variation on a standard theme in spline

theory that goes back to the work of Schoenberg [39] and
Duchon [22] (with a finite number of data points). There are
also results for an infinite number of data points on a uniform
grid; e.g., the work of Madych and Nelson [34] which covers
the polyharmonic splines of integer order , and that of Unser
and Blu [35] for fractional orders in the 1-D B-spline case. The
proofs given in these two latter papers can be extended to our
situation.

As the cost function is quadratic, the problem (19) is guaran-
teed to have a solution. Using Proposition 2, we rewrite (20) as

5The Sobolev space with -norm and order of differentiability , denoted as
, is the collection of all functions such that is bounded.

where is the polyharmonic spline interpolator of the dis-
crete signal . The left most data term is entirely determined
by the integer samples . Now, if we assume that the s
are the samples of the optimal solution, we can further minimize
the regularization part of the criterion by selecting the solution

that sets the third positive term to zero, whereas
the first two terms remain unchanged. This implies that the glob-
ally optimal solution of Problem (19) lies in and,
therefore, can be represented by its polyharmonic B-spline ex-
pansion (7).

We can now compute the solution explicitly. By substituting
(7) in (20) and using the B-spline differentiation property (14),
we obtain

(26)

(27)

where . Taking the partial derivative with respect
to and equating it to zero, we get

Due to the invertibility of (since the B-splines generate a
Riesz basis), we find

(28)

Going to the discrete Fourier domain, this yields

where is the Fourier transform of .
The Fourier domain version of (22), which will be the basis

of our implementation, is

(29)

For the case without regularization ( ), we obtain the (frac-
tional) interpolating polyharmonic B-splines, often called La-
grangean polyharmonic spline [31], [33].

The solution of (29) is a continuous one. This is useful, for
example, for getting a higher resolution version of our signal.
Note, however, that when we want to actually implement our
algorithm, we should use a discrete version of it, obtaining
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instead of . In this case, our solution in the Fourier domain
becomes

(30)

For computational purposes, we also express as the
periodized version of (using Poisson summation for-
mula)

(31)
This filter may also be regarded as the Fourier transform of the
autocorrelation sequence of . We have found an efficient way
to calculate it, by applying a two-scale relation in the Fourier
domain. The details of this calculation and complete mathemat-
ical analysis of this procedure will be published elsewhere [40].

IV. MMSE ESTIMATION

We now present a stochastic interpretation of our algorithm.
For that, we model our signal as a fractional Brownian field, and
prove that our smoothing spline algorithm yields the MMSE so-
lution. We are also able to find an expression for the regulariza-
tion parameter that achieves MMSE.

A. Stochastic Modeling of Self-Similar Processes

We model our noiseless signal, , as a multidimensional
fractional Brownian motion (fBm) [21], [41]–[43]; the multidi-
mensional extension of the classical prototype of a self-similar
process [44].

There are a number of technical difficulties with the modeling
of fBms. The main reason is that these processes are nonsta-
tionary. Therefore, their spectral power density cannot be de-
fined in the conventional sense [45], [46]. However, the -lag
increment derived process, , where

denotes our fBm process, is zero-mean and second-order
stationary.

As a result, we can characterize such a process by its vari-
ogram (see Appendix I). The variogram of a multidimensional
fBm process with parameter Hurst exponent is given by

(32)

where is a global energy factor. It is self-similar of order
in the sense that

(33)

The variance of the fBm is nonstationary and has the same func-
tional form

(34)

Proposition 3: The variogram of a multidimensional fBm can
be expressed using a polyharmonic B-spline representation of
order

(35)

where the filter is defined by its Fourier transform

(36)

with the constant in the denominator given by (12).
Proof: As the variogram of a multidimensional fBm is a

radial basis function of degree [see (32)], we can directly
use the definition of a polyharmonic B-spline (see Section II-C).

Taking the Fourier transform of from (32), and using
(11), we get

(37)

We then obtain (35) by taking the inverse Fourier transform:
The central factor, which is -periodic, represents the discrete
Fourier transform of .

If we evaluate (35) on a uniform grid, we can write it as a
discrete convolution

(38)

It is interesting to note that a fBm process, even though it is
nonstationary, has the property that (in the
sense of distributions), where is white Gaussian noise;
i.e., is the whitening operator of the process. The whitened
process has spectral power density .

B. MMSE Estimation

We now consider the problem of estimating a realization of
a multidimensional fBm process given its noisy measurements
at the integers: , where is addi-
tive white gaussian noise. The noise is zero-mean with variance
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and is assumed to be independent from the signal . The gen-
eral form of the linear estimator of at a fixed location is

(39)

We also impose the constraint

(40)

which ensures the perfect reconstruction of a constant back-
ground. Since the condition is imposed for all , it is
equivalent to the partition of unity.

Proposition 4: The best linear constrained estimation
of —an fBm process with parameter Hurst exponent

and signal energy —given
its noisy samples , where
is white noise with variance , is the smoothing spline,

, of order ,
where the filter is given by (23) with .

Proof: We need to find the regression coefficients in
(39) so that the estimator minimizes the estimation error
subject to (40). Using this constraint and the fact that the noise is
independent from the signal, we write the estimation error and
manipulate it as shown in the equation at the bottom of the page.
Observing that

we then rewrite the error in terms of the variogram (cf. Ap-
pendix I) as shown in the equation at the bottom of the page.

To minimize this expression, we take the partial derivative with
respect to and set it to zero, which yields

(41)

The key now is to recognize that this system can be rewritten as
a discrete convolution equation

(42)

where we have made use of the spline representation of the var-
iogram (38) with . We then convolve this identity
with —the convolution inverse of —whose Fourier trans-
form is . Dividing by ,
we get

(43)

We then solve this equation by applying the convolution inverse
of the filter on the left-hand side, which yields

(44)

where the frequency response of the inverse filter coincides
with the smoothing spline filter formula (23) provided that we
set . Observe that is necessarily positive
because when [cf. (13)].

Note that the first part of the above derivation [until (41)] is a
transposition to our problem of the kriging formalism pioneered
by Matheron [47], which relies on the variogram to specify the
best linear unbiased estimator of a spatial process at location

given samples at (arbitrary) positions . The
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specificity of our approach is that we are considering an infi-
nite number of measurements on a uniform grid and that we
are taking advantage of the “shift-invariant” structure of the
problem and of the existence of the polyharmonic B-splines to
derive an efficient digital filtering algorithm that has not been
reported before.

Since the MMSE property in Proposition 4 is valid for any
, our result shows that the deterministic smoothing spline

algorithm described in Section III does, in fact, provide the best
possible estimator when the underlying signal satisfies the fBm
model. The smoothing spline may, therefore, be interpreted as a
hybrid version of the classical Wiener filter6 for which the input
is discrete and the output continuous. The important point here
is that the formulation not only yields an optimal digital restora-
tion filter , but also the optimal interpolation space (polyhar-
monic splines) which is a powerful theoretical result. Of course,
as in the deterministic case, we can also obtain a purely discrete
version of the algorithm by sampling the output signal at the
integers, which is achieved by digital postfiltering with [cf.
(36)].

Another important aspect is that Proposition 4 gives the
value of the optimal regularization factor . This is very useful
and will allow us to develop a completely automatic smoothing
process where the optimal smoothing spline parameters ( and

) are estimated from the noisy data.

V. FRACTAL MODELING OF IMAGES AND IDENTIFICATION

The polyharmonic smoothing spline algorithm proposed here
is a noise filtration technique that has two parameters: the order
of the spline ( ), and the regularization factor , which
controls the smoothing strength. We have also shown in the pre-
vious section that this method is optimal for the processing of
multidimensional fBm-like processes; these are isotropic and
are fully characterized by two corresponding parameters: 1) the
signal energy , and 2) the Hurst exponent , which
is a measure of fractality.7 Even though these processes are non-
stationary, we will now argue that they provide a good model
of the correlation structure of a large class of images. We will
also indicate how the fractal-like behavior of natural images can
be identified in the frequency domain. We will then propose a
practical method for identifying the model parameters from the
noisy input data.

A. Fractal-Like Behavior of Natural Images

Natural phenomena are widely presumed to be self-similar
from a statistical perspective. As a consequence, natural images
tend to be scale invariant—seeing an object from ten yards or
one yard will result in very similar images transmitted by our
visual system [26], [48].

The notion of self-similarity is reminiscent of fractals, which
possess this property. This leads to a fractal-like model for
natural images—a spectral power density that behaves like

6Note, however, that the classical Wiener filter (either continuous or discrete)
is not defined for fBms since these processes are nonstationary.

7The fractal dimension is given by where is the topological
dimension (cf. [21]).

, where is the fractal order [25] and is linked to
the Hurst exponent as .

Here, we choose to model such signals as fBms, as described
in Section IV-A. Even though the power spectrum of a fBm
is not defined mathematically (because the process in nonsta-
tionary), the fBm has a characteristic, inverse-power-law signa-
ture in the frequency domain. Specifically, a multidimensional
fBm has the following generalized spectral representation (cf.
[46], [49], and [50])

(45)

which involves the inverse Fourier transform (in the sense of
distributions) of the random measure where
is a complex multidimensional Wiener process (or Levy
field). Intuitively, the random measure represents the Fourier
domain equivalent of a white Gaussian noise process; i.e.,

. Thus, if one excludes the in the
denominator of (45), which is there to neutralize the singularity
of and to enforce the condition , we see
that the Fourier components of the fBm are decorrelated with a
standard deviation that decays like with .
Another equivalent way of expressing this characteristic spec-
tral behavior is that the fBm process can be whitened by
application of an isotropic fractional derivative of order
whose frequency response is precisely . Concretely, this
means that one can still perform a standard spectral analysis
provided that one excludes the origin .

Example of signals that tend to behave in this way are func-
tional MRI images [51]. Note that this kind of behavior is not
limited to 2-D images, and can occur in multidimensional sig-
nals as well. Our experimental results, as well as those of others
[24], [25], indicate that many natural images fit this model well,
with being typically fractional between 1 to 1.5. This is a good
inducement for using fractional polyharmonic splines.

B. Estimation of Fractal Parameters

The final important issue we need to deal with is how to cor-
rectly identify the fractal model parameters from the input data.
There has been much research on estimating the fractal order of
a signal, e.g., [52]–[54]. However, in our case, we also need to
estimate the variance of the additive noise. Therefore, we have
to revert to a more general estimation technique.

We choose to obtain the parameters from the signal’s peri-
odogram, which is an estimation of the spectral power density of
our signal. We use an iterative optimization technique to solve
a nonlinear weighted least squares fit of our parameters. The
power spectral density of our noisy signal should essentially be-
have like

(46)

which leaves us with three parameters to estimate. Note that we
sometimes abuse the notation and use instead of ,
since we have when .
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For simplicity, we assume that we are given measurements of
a noisy signal, , on a square domain with

(47)

We then compute the periodogram of this signal, , which
is defined as the square modulus of the unitary discrete Fourier
transform over the domain

(48)

(49)

where

(assuming that is even).
The periodogram is a noisy and wiggly estimation of the

power spectral density . For a stationary Gaussian process,
we have asymptotically for large (almost surely)

(50)

where the random variables are i.i.d as (except
the estimates on the envelope which are independent and dis-
tributed like ), and [55], [56] (a more accurate
analysis is given in [57]). Note that this result is also valid for an
fBm process (except for the zero-frequency component), even
though the fBm is not second order stationary (cf. Section V-A).
The multiplicative model (50) makes the task of estimating our
parameters directly from the periodogram somewhat tricky.

To exploit the isotropic behavior of our spectral power den-
sity, we use the radial periodogram, which is a 1-D function,
and offers a great computational advantage. We compute the ra-
dial periodogram by averaging the periodogram along annuli.
Specifically, we define uniformly spaced bins, their center de-
noted as the radial frequency, . Given a periodogram, ,
the radial periodogram is computed by

(51)

where the set of discrete frequencies in each bin, , is defined
as

(52)

Following Wahba [58], we transform the multiplicative model
of (50) into an additive one by taking the , thus achieving a

less wiggly behavior of our samples. The next proposition shows
how we can build an unbiased estimate of the power spectrum
from the radial periodogram. We also make the assumption that

is large enough for (50) to hold. The proof is given in Ap-
pendix II.

Proposition 5: The radial periodogram defined for the
periodogram of a signal with an isotropic spectral power
density satisfies

and

(53)

(54)

for some (which is given in the proof). is the Psi (digamma)
function and (the derivative of ) is the trigamma function
[59, Chapter 6].

From Proposition 4, we see that averaging along annuli de-
creases the bias of the estimation. Furthermore, the variance of
each annulus depends on the number of samples in it. Therefore,
we estimate the spectral parameters of our stochastic model by a
weighted least squares approach with weights that are inversely
proportional to the variance of the component. This yields the
cost function shown in the equation at the bottom of the page,
where the parameters , , and represent the signal power,
its fractal order, and the noise variance, respectively. Robust
estimates of these quantities are obtained by minimizing this
cost function iteratively using either Levenberg–Marquardt or
Powell’s method in three dimensions. We are then ready to apply
Proposition 3, which tells us that the corresponding optimal
signal estimator is a polyharmonic smoothing spline of order

and regularization parameter .

VI. RESULTS

We have implemented two versions of the polyharmonic
spline denoising algorithm: one in Matlab for testing purposes,
and a second as a JAVA plugin for ImageJ [60]. A demonstration
applet is available at the site: http://bigwww.epfl.ch/demo/frac-
taldenoising/.

We tried our approach on many images, and demonstrate it
here on four representative ones (cf. Fig. 2). The first, a biomed-
ical image, is a slice of an MRI T2* volume, as used in func-
tional analysis of brain activity. The second image is a texture
image (Brodatz D59 [61]). The third one is a natural scenery
image which is often used as a standard test image (Goldhill).
The last is the well-known Lena image.

We first check the validity of our fractal model on both noisy
and noiseless images. In the noiseless case, the model reduces
to , for which the parameters and can
be found by a simple linear regression in a log-log scale. In
Fig. 3, we show the estimated radial spectral power density
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Fig. 2. Noiseless test images. We included images of a different nature: A medical image, a Brodatz texture, a natural scenery, and the classical “Lena” image
which we omitted from this figure. (a) MRI T2* image. (b) Brodatz D59 image. (c) Goldhill image.

Fig. 3. Fractal behavior of the noiseless test images. The estimated radial spectral power density of the original, noiseless image, with the corresponding regressed
line (on a log-log scale). (a) , ; (b) , ; (c) , ; (d) , . (a) MRI T2 image.
(b) Brodatz D59 image. (c) Goldhill image. (d) Lena image.

of the noiseless images, and the estimated fractal model (on a
log-log scale). Note that the estimated values of are within the
range of admissibility of the fBm model; i.e.,

for .
We now check the model for noisy images. In Fig. 4, we show

the estimated radial spectral power density of a noisy version
of the test images, and the estimated fractal model. The noisy
images used for Fig. 4 were created by adding white Gaussian
noise with standard deviation of around 22% of the intensity
range of the original image. We omit the results for the noisy
versions for the Goldhill and Lena images, as the results are very
similar. As discussed in Section V-A, the “optimal” value of

is chosen according to this analysis. We can see that the model
fits the spectral power density quite well in both the noiseless
and noisy cases.

We compare two different settings of our algorithm. The first
one, denoted as the theoretical solution, is the solution obtained
when estimating and from the noiseless image, and using
the known true value of . The second one, denoted as the
estimated solution, is the solution obtained when estimating the
parameters from the noisy image, and is the solution which is
feasible in practice. Finally, we also compare our results to the
best linear solution, which is denoted as the Wiener oracle. This
algorithm requires the knowledge of the power spectrum of the
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Fig. 4. Fractal model fit for the noisy test images. The estimated radial spectral power density of a noisy version of the test images, with noise standard deviation
of 22% of the range of the test image, and the fit of the fractal model (on a log-log scale). (a) Input SNR: 0.07 dB ; , , (true is
0.224). (b) Input SNR: 4.23 dB; , , (true is 0.224). (a) MRI T2 image. (b) Brodatz D59 image.

Fig. 5. Best possible SNR value vs. value of . We use the empirically optimal value of . We note the theoretical value with a square, the optimal empirical value
with an “x” and the estimated value from the noisy image with a circle. (a) Input SNR: 0.07 dB. (b) Input SNR: 4.23 dB. (a) MRI T2 image. (b) Brodatz D59 image.

original noiseless image, , and the variance of the
noise, and is computed by filtering with

(55)

We now check the results using the theoretical and estimated
prediction of the parameter . In Fig. 5, we show the best SNR
values possible vs. the values of (using brute force optimiza-
tion of the values). This is in fact an upper bound for the per-
formance of our algorithm when we use a specific value. We
mark the location of which corresponds to the fractal order
of the image that we estimate from the noiseless images (the
theoretical solution), as well as the estimated value from the
noisy image, and the optimal empirical value. The noisy images
are the same as the ones used in Fig. 4. We can conclude that
choosing in the proposed way is indeed close to optimal (it is
within 0.05 dB of the best value in all cases), and we can also
conclude that our estimation algorithm works quite well for . It
is also worth mentioning that the optimal value of is fractional
in all cases—a motivation for using fractional (polyharmonic)
splines. Here, too, we do not show the results for the last two
test images because the graphs are very similar.

Finally, we compare the overall performance for varying
values of input SNR. In Fig. 6, we show the resulting SNR
after smoothing the noisy images when using the theoretical
and estimated parameters of our algorithm. We also compare
the performance with the optimal Wiener oracle solution. We
observe that the theoretical and estimated solutions perform
almost identically. We can also see that our algorithm is always
close in performance to the Wiener oracle solution (always
within 2 dB of it), which is the optimal linear technique, but
impossible to use in practice because the noise-free spectrum
is generally unknown. In fact, it is quite surprising that an
algorithm like ours, which has only two free parameters (i.e.,
and ), can essentially keep up with the best oracle estimator
that requires the knowledge of as many parameters as there are
pixels in the image.

VII. CONCLUSION

We proposed an efficient way to solve Duchon’s multidimen-
sional smoothing spline problem when the data is located on a
uniform grid, as is mostly the case in image processing appli-
cations. The corresponding estimator is essentially a Tikhonov-
like smoothing filter that is parametrized by two quantities: the
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Fig. 6. Smoothing results of the test images. Results of smoothing for the theoretical and estimated values of parameters, and a comparison with the optimal oracle
Wiener solution for varying input SNR values. Maximum difference between the SNR obtained with the oracle Wiener solution and the smoothing splines with
estimated parameters solution: (a) 1.28 dB; (b) 1.14 dB; (c) 1.678 dB; (d) 1.616 dB. (a) MRI T2 image. (b) Brodatz D59 image. (c) Goldhill image. (d) Lena image.

order of the spline and the regularization factor that controls
the smoothing strength.

We justified the procedure statistically by proving that it pro-
vides the MMSE estimation for fractal-like signals corrupted
by additive white noise. This result is interesting conceptually
because it establishes an equivalence between multidimensional
smoothing splines and Wiener filtering. It also yields the optimal
(MMSE) parameters for the denoising algorithm, including the
optimal reconstruction space which is not bandlimited.

We proposed a practical FFT-based implementation of the
method, and introduced a viable way of estimating the best
smoothing parameters from the noisy data. We demonstrated
that the approach performs quite well for the processing of a
variety of images, which is probably due to the fact that the un-
derlying fractal model is quite successful in capturing their pri-
mary correlation structure. This is remarkable given the extreme
conciseness of the representation.

The final point that we want to make is that the proposed
method is a linear one, albeit not a conventional one because it
reconstructs a continuous-space version of the signal from a dis-
crete set of input data. Except for the special case of fractional
Brownian fields for which the procedure is provably MMSE op-
timal, we do not want to oversell the technique by claiming that
it will compete with the best nonlinear denoising methods that
were mentioned in the introduction. However, we do believe that
our algorithm can serve as a gold standard of what can realisti-
cally be achieved with a linear algorithm that is optimized for
best performance.

APPENDIX I
VARIOGRAM AND AUTOCORRELATION

The variogram is one way of characterizing the second order
statistics of a multidimensional stochastic process [47],
[62]. It is defined as

(56)

where is the expectation operator. It is easy to see that
is symmetric in and and vanishes when . The
variogram is related to the autocorrelation function of a process
through the relation

(57)

where is the variance of the
process at location .

A process is called intrinsically stationary if

(58)

(59)
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i.e., when the variogram is a function of the space lag
only.

A process is called second order stationary if

(60)

(61)

i.e., when the autocorrelation is a function of the space lag only.
In this case (57) simplifies to

(62)

and the variance is constant over space. Note that the second
order stationarity implies intrinsic stationarity, but not the re-
verse.

Finally, a process is called isotropic if .
Otherwise, if there is a dependence on the direction, the process
is anisotropic.

APPENDIX II
PROOF OF PROPOSITION 4

Starting from (51) and using (50), we get (under the assump-
tion that is large)

(63)

Here, we have a linear combination of variables. We refer
to [63] for a numerically accurate way to solve this kind of
problem, and to [64] for an overview of most known approx-
imation methods. Using the fact that the sum of random
variables is a random variable, we regroup the with

the same factor in the previous equation as

(64)

where the are independent and distributed as ;
the weights are all different and are either equal to

or for some ,
depending on whether this element was on the envelope or not.
We now use the following (very good) approximation: given a
random variable , then

where (65)

and NB stands for negative-binomial distribution [65]. Com-
bining the last two equations, we have

(66)

where the ’s are independent and distributed
as . Since

, and we are only interested in
finding the mean and the variance, we can further approximate

as

(67)

Now, it is easy to see that

(68)

Computing the second term of (68), we get

(69)

where we have used properties from [59, Chapter 6]. Finally,
plugging (69) into (68), we get (53).

We now calculate the variance. Using (67), we have

(70)

Computing the squared expected value we have

(71)

We can now calculate the variance using (69) and (71)

(72)

Finally, by plugging (72) into (70), we get (54).
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