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ABSTRACT

We propose a novel active contour for the analysis of filament-like
structures and boundaries—features that traditional snakes based on
closed curves have difficulties to delineate. Our method relies on a
parametric representation of an open curve involving Hermite-spline
basis functions. This allows us to impose constraints both on the
contour and on its derivatives. The proposed parameterization en-
ables tangential controls and facilitates the design of an energy term
that considers oriented features. In this way, our technique can be
used to detect edges as well as ridges. The use of the Hermite-spline
basis is well suited to a semi-interactive implementation. We de-
veloped an ImageJ plugin, and present experimental results on real
biological data.

Index Terms— Active contours, 2D, parameterization, mi-
croscopy, Hermite splines, steerable filters, orientation, segmenta-
tion, feature detection.

1. INTRODUCTION

Active contours [1], usually called snakes, are efficient tools for
the automatic analysis of biomedical images (e.g., segmentation).
Snakes consist of a curve that evolves within the image from an arbi-
trary user-defined initial position by optimizing a cost functional [2].
This cost function is problem-dependent and usually referred to as
snake energy. Several types of snakes [3, 4, 5] as well as different
formulations for the energy term [6, 7] have been proposed.

In this paper, we introduce a novel type of active contour for
the analysis of bio-images. Our snake is represented in terms of
Hermite-spline basis functions. This framework extends the snake
model based on B-splines [8, 6, 9] by incorporating tangential con-
trols (see Figure 1). Expressing the tangents of the contour explicitly
in the parametric model has several advantages: it allows one to de-
fine an open-ended curve with natural extremities, and also gives
accurate control over the snake in a Bézier-like fashion. We use a
basis composed of two generating functions to represent the contour
and its tangent field. The explicit parameterization of the tangent
field allow us to define an energy functional based on steerable fil-
ters. Depending on the type of detectors, this energy can be tuned to
be attracted either to edges or to ridges.

Our active contour is controlled using a reduced number of pa-
rameters (i.e., control points and tangent vectors). We designed
a user-friendly interface that allows the user to interact with the
snake. The contour can thereby be easily edited. This functionality
is extremely valuable in complex images where the algorithm might
need external feedback. Following our willingness to provide useful
tools for the bioimage analysis community, the proposed algorithm
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Fig. 1. Parametric representation of the Hermite snake. The vectors
r[k] represent the anchor points and the r′[k] their tangent controls.
The tangent of the curve at each anchor point is depicted as a gray
arrow.

is implemented as an open-source plugin for the free software Im-
ageJ [10]. Finally, we demonstrate the efficiency of our algorithm
with two examples of bioimage analysis.

2. HERMITE SNAKE

2.1. Snake Model

Most parametric snakes are defined as closed curves [2, 9]. Com-
paratively, there are much fewer solutions that can handle open
curves [11, 12]. Here, we introduce an active contour that is open-
ended and fully defined by the values of few anchor points and their
tangents. Our snake uses two complementary interpolation functions
that provide both point-wise and tangential control. This is achieved
by a mechanism commonly known as Hermite interpolation [13].
Therefore, we refer to our active contour model as the Hermite
snake.

The parametric description of our Hermite snake is

r(t) =

M−1∑
k=0

r[k]φ1((M − 1) t− k)

+ r′[k]φ2((M − 1) t− k), (1)

where t ∈ [0, 1]. The positive integer value M determines the num-
ber of anchor points and tangent vectors. The latter are defined by

r[k] = r(t)

∣∣∣∣
t= k

M−1

,

r′[k] =
dr

dt
(t)

∣∣∣∣
t= k

M−1

,
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respectively. We illustrate in Figure 1 the way in which these param-
eters determine the shape of a curve.

The fundamental ingredients of our model are two Hermite B-
spline basis functions [14], which are given by

φ1(t) =

{
(2 |t|+ 1) (|t| − 1)2 for 0 ≤ |t| ≤ 1
0 for |t| > 1,

φ2(t) =

{
t (|t| − 1)2 for 0 ≤ |t| ≤ 1
0 for |t| > 1.

The function φ1 interpolates the point values, while the derivative of
φ2 interpolates the tangent values. The support of these two func-
tions is within the range [−1, 1]. The properties of the basis func-
tions φ1 and φ2 that make this possible are

φ1(k) = δk, φ′1(k) = 0,

φ2(k) = 0, φ′2(k) = δk,

for integer values of k.
The proposed model gives direct control over tangents of the

curve, which is desirable in many applications. For instance, when
dealing with open curves, we can easily impose natural condi-
tions on the extremities through the control of the tangent vectors.
The fact that we are considering tangents of the curve is reminis-
cent of a Bézier parameterization. However, while Bézier curves
are constructed with local bases and demand piece-wise interpo-
lation, our Hermite snake benefits from a more global approach
where the smoothness at the joining points is automatically enforced
through (1).

2.2. Feature Detection

Once initialized, active contours are optimized by minimizing an en-
ergy functional. The definition of the energy functional depends on
the image-analysis problem. Therefore, the quality of the segmen-
tation strongly relies on the appropriate design of this term. Often,
traditional snakes use edge-based detectors to guide them and are
thus inefficient to detect ridge-like structures. We address this limi-
tation and propose an energy term using steerable filters [15].

The optimal orientation θ̂opt and response ρopt of the filter at a
given location x = (x, y) on the image are given by

θ̂opt(x) = argmax
θ̂

(f(x) ∗ h(Rθ̂x)) ,

ρopt(x) = f(x) ∗ h(Rθ̂opt
x).

The function

h(x) =

N∑
k=1

k∑
i=0

ak,i
∂k−i

∂xk−i

∂i

∂yi
g(x)

is the detection template that is tuned to a given type of feature;
g is a Gaussian window, and N is the order of the detector. Odd
values of N yield edge detectors, while even values generate ridge
detectors. Filters built with larger values of N have a higher SNR
and better localization capabilities [15]. The filter can therefore be
easily adapted to the kind and roughness of structure of interest by
simply acting on this design parameter. In our implementation, we
chose to use N = {1, 3} to detect edges and N = {2, 4} for ridges,
depending on the desired level of precision.

Fig. 2. Schematic representation of the Hermite snake r, of its
derivative in a point r′, and of its interaction with an object con-
sisting of a dark ridge. The unit vector θ̂ is the best response of the
steerable filter for ridge detection. Since an estimation of θ̂ is avail-
able for every point of the image, the inner product featured in the
snake energy therefore favors tangents aligned to the orientation of
best response.

2.3. Image Energy

We define our snake energy as

Eedge = −
1

L

ˆ
r

∣∣∣∣ 〈θ̂, r′

‖r′‖

〉 ∣∣∣∣ ρopt(r) dr, (2)

where θ̂ and ρopt are the output of the steerable filter described
in Section 2.2. The vector r(t) = (x(t), y(t)), and r′(t) =
(x′(t), y′(t)) are the position and derivative vectors, respectively.
The first term of the integrand in (2) is the absolute value of the
inner product between θ̂ and a normalized version of r′. The abso-
lute value of this product is large when the tangents of the contour
are locally aligned with the angles of maximal filter response (see
Figure 2). The second term of the integrand favors locations r where
the steerable filter’s response, and therefore ρopt(r), is large. We
normalize the line integral by the length of the curve L to obtain a
dimensionless energy. Finally, the energy is set with a minus sign
since we define the snake optimization as a minimization process.

As a properly tuned steerable filter responds strongly to all struc-
tures of interest in the image, the magnitude of the filter response is
large even at the locations where edges (or ridges) meet. The term
of the energy functional that enforces θ̂ and r′

‖r′‖ to have the same
orientation gives additional robustness in cases where patterns of in-
terest are in close contact. We illustrate in Figure 3 how the presence
of an orientation-dependent term increases the overall robustness of
the algorithm.

3. IMPLEMENTATION DETAILS

For the sake of efficiency, the basis functions are pre-computed and
stored in lookup tables. This allows for real-time response when in-
teracting with the anchor points and tangent vectors. Since our snake
is defined by a small number of parameters (M anchor points plusM
tangent vectors in 2D), we carry out the optimization in an efficient
way relying on Powell-like line-search methods [16] which require
the derivatives of the energy function with respect to the parameters
(i.e., the Hermite spline coefficients) and benefit from a quadratic
speed of convergence.

Compared to many other implicit and global parametric snake
models, our active contour involves a smaller number of control
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Fig. 3. Demonstration of the effect of the inner product between
θ̂ and r′

‖r′‖ on a synthetic image consisting of ridges. Left: initial
position of the Hermite snake. Center: optimization based only on
the integral of the steerable filter’s response. Right: optimization
according to the energy proposed in (2). Results were obtained using
N = 4 in the design of the steerable filter.

points. This eases the interaction for the end-user. We take ad-
vantage of this framework by providing an intuitive user interface
through which the position and shape of the snake can be manually
edited through manipulation of the control points and their tangents.
As a result, our method can be deployed interactively by combin-
ing steps of snake initialization, optimization, and correction. Our
snake framework has been implemented as an open-source plugin
for the multi-platform software ImageJ [10]. It is made available on
the Biomedical Imaging Group website1.

4. EXPERIMENTS

We now present two applications of our active-contour method in
microscopic images. The first dataset features edge- and the sec-
ond ridge-like structures. These examples illustrate the versatility
of our approach through its modality-dependent initialization, auto-
matic optimization, and user-friendly interface.

4.1. Segmentation of Bioimages

4.1.1. Extraction of Nerve Fiber Layer Profile

We processed optical coherence tomography (OCT) scans of the
retina. This type of medical image is commonly used to identify and
assess retinal abnormalities by measuring the thickness of the retinal
nerve fiber layer (NFL). The challenge was to extract the profile of
the NFL in a precise way, which appears as a possibly discontinu-
ous and faint edge-like structure on OCT data. For the three images
presented here, we set M = 4, M = 5, and M = 4. We manually
provided a rough initialization of the snake position along the NFL,
and run the automatic optimization process until convergence using
an edge-sensitive steerable filter withN = 3. The results in Figure 4
demonstrate that our Hermite snake is able to accurately extract the
upper profile of the NFL. The method can be used in a similar way
to extract the lower profile of the NFL, thus allowing for a precise
measurement of the thickness of the retinal nerve fiber layer by sim-
ply computing the distance between the two snakes at any point. The
optimization process only took a few seconds in each case.

1http://bigwww.epfl.ch/algorithms/openhermitesnake/

4.1.2. Detection of Anteroposterior Axis in C. Elegans

We investigated the problem of implementing a semi-supervised
method for outlining the morphology of the model organism C.
Elegans. We processed two types of microscopic image data. The
first are images of wild-type C. Elegans hermaphrodite with nuclear
staining2. The challenge there lies in the fact that the nuclei of all
cells are visible, and the organism therefore exhibits a nonuniform
gray-level pattern.

The second kind of data features C. Elegans worms express-
ing GFP in the GABA neurons3. These images contain less details
than the previous ones, but remain challenging since many interfer-
ing ridge-like structures are still present. Yet, the proposed snake
method (with M = 5, M = 3, and M = 4, respectively) is able to
accurately extract the anteroposterior axis, as shown in Figure 5. The
present method allows us to capture the longitudinal line of the worm
without having to detect the contour of the system. The optimization
process was fast enough for interactive feedback (3.75s, 0.23s, and
2.55s respectively, with N = 4 for the design of the ridge-sensitive
steerable filter).

5. CONCLUSION

Our contribution in this paper is a new model of open-ended snake.
It is built using two complementary basis functions that jointly inter-
polate the contour points and their tangents. The approach is com-
plemented with an intuitive user-interface that facilitates extensive
interaction with the contour. Our model is driven by a novel energy
term relying on steerable filters. As a consequence, our method can
adapt to different detection problems by changing the order of the
steerable filter. Our active contour model involves a few parame-
ters only. This is advantageous in terms of memory usage and com-
putational speed. We have demonstrated the suitability of the ap-
proach for real-life problems involving the detection of both edge-
and ridge-like structures in biomedical images.
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of Applied Optics, EPFL). Left column, bottom: 570×140, and right column: 570×326 (both courtesy of the Ophthalmic Photographers’
Society Inc.).

Fig. 5. Detection of the anteroposterior axis using the Hermite snake in C. Elegans with different staining methods. Left: 810×588, nuclear
staining. Center: 250×354, nuclear staining. Right: 1178×768, neuron staining.
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