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ABSTRACT

In the present paper, we address the problem of segment-
ing biological objects featuring corners. The main ingredi-
ents of our approach are automated feature-detection methods
and mechanisms for introducing kinks in parametric spline
snakes. We formulate a novel corner potential that enables
the accurate segmentation of objects exhibiting sharp tips or
acute angles. The optimization of active contours using the
proposed keypoint-based energy yields robuster segmentation
results and requires fewer parameters than traditional spline-
snake approaches for the same task. The performance of our
method is illustrated on microscopic images of two families
of Rhabditidse roundworms.

Index Terms— Segmentation, bioimage analysis, active
contours, keypoints, feature detection, roundworms.

1. INTRODUCTION

The ultimate goal of segmentation is the quantification or
tracking of objects of interest, making it is an essential step in
bioimage analysis [1, 2]. Active contours, usually referred to
as snakes [3], are tools of choice for this task. Active-contour
algorithms are traditionally composed of two key elements:
the snake model and the snake energy. Many different active-
contour models can be found in the literature [4]. We focus in
this work on the family of spline snakes [5]. While the model
defines the actual snake curve, the energy is a functional to
be minimized for the snake to properly segment the objects
of interest. Most snake energies are constructed using image-
based information (external energy) or snake-curve properties
(internal energy). While many approaches to detect features
(or keypoints) exist in the computer-vision community [6],
landmark-based segmentation approaches relying on the au-
tomated detection of interest points can hardly be found in
bioimage informatics where most methods rely instead on
points that are defined manually [7].

Our goal in this paper is to make the link between au-
tomatic feature detection and active-contour methods in a
bioimaging context. To do so, we propose a novel corner
potential in combination with the control of tangents offered
by Hermite bases [8]. These functions can indeed be used to
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construct a snake model that provides a direct control over the
tangent field of the curve. Unlike active contours that gener-
ate curves that are smooth by construction, this model has the
ability to also represent sharp angles. Hence, it is well-suited
to outline biological structures with pointy tips such as worms
or protists. Classical spline snakes are smooth by design and
require a large number of control points to approximate dis-
continuous curves. By contrast, the tangent-based snake
model is able to perfectly reproduce such features with one
control point only. To the best of our knowledge, this is the
first time an energy relying on this property is proposed. The
corner potential, which unifies automated feature-detection
methods and active contours, can be seen as an extension
of landmark-based energies. It not only relies on keypoints
to attract the snake at corner locations, but also constrains
the snake curve to create a sharp angle. Combined with other
energy terms, it promotes the robustness of the active contour.

The paper structure is as follows: First, we introduce the
tools we rely on to define the corner potential. We then for-
mulate and describe its expression. We illustrate and dis-
cuss its capabilities on synthetic images. Finally, we apply
our new feature-based energy in two bioimage segmentation
problems.

2. ACTIVE CONTOURS WITH TANGENTIAL
CONTROL

The choice of our snake model is driven by two main consid-
erations. First, we aim at segmenting bioimages, which often
feature partially elliptic objects. Relying on a contour model
that spans the space of ellipses therefore opens the possibility
to generalize the method to various kinds of bio-data. Sec-
ond, our goal is to capture sharp features, a task that smooth
parametric curves can hardly perform.

The active contour with tangential control proposed in
[8] meets both requirements as it benefits from ellipse-
reproducing capabilities and is able to generate sharp tran-
sitions. This snake model is schematically represented in
Figure 1. Formally, it is defined by an M-periodic se-
quence of anchor points {r[k]}rcz and tangent vectors
{r'[k]}kez, where r[k] = r[k + M] = r(t)|(—r and
r'lk] = [k + M] = r'(t) |;=x. The continuous-domain



Fig. 1: Spline-snake model with tangential control. The con-
tinuous curve r(t) is defined by a collection of anchor points
r[k] and their associated tangent controls r’[k].

parameterization of the contour is then expressed as
M—1
r(t) =Y (v[k] G nsper(t — k) + 1 [k] do, nr per(t — K))
k=0
ey

with t € R. As the active contour curve is closed, it relies on
the M -periodized versions of the basis functions

1,M per(t) Z ¢1,m(t — Mn),

¢2,M,per(t) = Z ¢27]w(t — MTL)

The expression of the two exponential Hermite B-splines
o1,m and ¢ ps is given in [8]. The positive integer M en-
codes the complexity of the snake shape: while small values
of M yield simpler curves, large ones grant more flexibility
and generate a richer variety of contours. Increasing the value
of M therefore allows one to approximate closed curves of
arbitrary complexity at the expense of a larger number of
parameters.

3. KEYPOINT-BASED SNAKE ENERGY

Algorithms for parametric snakes usually consist of two steps:
arough initialization of the contour followed by an automated
optimization to precisely segment its target. The optimal seg-
mentation is found as the minimizer of a cost functional called
the snake energy [9]. We now describe our main contribution,
a novel feature-based energy that relies on automatically de-
tected corner points.

3.1. Formulation

Energies attracting parametric snakes towards a set of user-
defined points can be found in the literature [7], as well as
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methods to drive contour extremities to automatically de-
tected landmarks [10]. We aim at extending this idea by not
only imposing automatically detected landmarks to attract
the contour, but also to benefit from the direct control on the
tangents granted by our snake construction to constrain the
local behavior of the curve. In particular, our goal is to de-
rive a corner potential—an energy functional that enables the
generation of controlled discontinuities at precise locations
on the curve. We propose the feature-based energy

Ny
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where

ki = argmin|[r[k] — f]°.
0<k<M

The r[k] and r'[k] are the M control points and tangent vec-
tors in (1), and f; is the i-th element of the N feature points.
Finally, || - || denotes the Euclidean norm.

The energy contribution of a given feature point f; is
hence composed of two terms: the squared distance of the
control point closest to the feature, and the length of its asso-
ciated tangent vector divided by the aforementioned distance.
In this way, the penalty imposed by the length of the tangent
increases as the point approaches the location of a feature,
forcing the curve to create a sharp corner. This second term
is weighted by M? to impose stronger constraints on the
tangents for curves with more control points and, therefore,
more degrees of freedom. In practice, a small value is added
to the denominator of the second term to avoid numerical dif-
ficulties when the feature becomes too close from the control
points.

3.2. Proof of Concept

In practice, the total energy is formulated as a linear com-
bination of independent energy contributions. We here rely
on a synthetic image to demonstrate the benefits of using the
keypoint-based energy (2). We study the segmentation of a
solid almond-shaped object. As depicted in Figure 2a, the
pointy extremities can easily be detected, for instance by a
Harris corner detector. This method identifies locations of
sudden variation of the gradient in the image. More precisely,
it relies on the eigenvalues (A1, A2) of the Hessian matrix to
obtain a corner score R for each point in the image, defined
as

R= MM — k(A1 + Aa).

The behavior of the detector can thus be tuned by acting on
three main parameters. The first one is the so-called sensi-
tivity parameter k, for which smaller values allow capturing
sharper corners. The second is a minimal value for R, which
sets a threshold on the accepted quality of corners. Finally,
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Fig. 2: Examples of synthetic image. (a) Detected features
locations in red; (b) 4-points snake initialization. Segmenta-
tion results after optimizing on (c) edge-based energy only;
(d) combination of edge- and constraint-based [7] energies;
(e) combination of (2) and edge-based energy; (f) Results us-
ing a combination of (2) and edge-based energy on the image
degraded by additive Gaussian noise.

the support of the filter used to estimate the Hessian matrix
can be tuned as well.

When the snake is not encouraged to place control points
at shape extremities, it tries to generate a discontinuity by dra-
matically increasing the length of tangents, resulting in un-
wanted loops (Figure 2c). Adding a landmark energy that
does not involve tangents, such as the one proposed in [7], is
still not sufficient (Figure 2d) as it fails to prevent the snake
from diverging at the tips of the object. However, constraining
both the location of feature points and small tangent values
allows for a precise outline of the whole shape, as pictured
in Figure 2e. Moreover, both the corner detection method
and the snake optimization are robust to noise (see Figure 2f).
Results are shown for the same initial conditions depicted in
Figure 2b in all four cases.

4. APPLICATION TO BIOIMAGES

4.1. Segmentation of Caenorhabditis Elegans

We segmented images from the C. elegans infection live/dead
image set Version 1 provided by F. Ausubel (BBBC10) and
available from the Broad Bioimage Benchmark Collection
(BBBC, [11]). The living C. elegans worms appear on these
images as elongated with pointy extremities and exhibit a va-
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riety of curved shapes. The difficulty in segmenting these data
stems from the need to have a method that is flexible enough
to accommodate the sinuous shapes of the worms while re-
taining the capability to capture sharp features. Sample re-
sults are shown in Figure 3.

In Table 1, we report a quantitative comparison of our re-
sults against the manually annotated ground truth provided
on the BBBC website!. A multiscale optimization scheme
was used to boost robustness in such potentially crowded en-
vironment. Contours are first optimized using the feature-
based energy (2) to approach the extremities of the worms,
and an edge-based energy is then used to fit the rest of the
contour. Our segmentation results are robust to initial condi-
tions provided that the initial snakes do not significantly over-
lap nearby worms.

Table 1: Jaccard index—Keypoint-driven active contours
versus ground truth.

Worm # 1 4 5 6 10 12 14
B0O7 0.79 0.83 0.79
C03 0.84 0.87 0.81 0.88 0.84

4.2. Segmentation of Heligmosomoides Polygyrus Bakeri

We also tried our approach on images of unstained Heligmo-
somoides Polygyrus Bakeri (H. bakeri) worms®. This organ-
ism, which is a natural parasite of mice and is a purely enteric
nematode, appears as translucent and is more difficult to seg-
ment than C. elegans. Moreover, as these worms are moving
very fast, their extremities appear blurred in most images, al-
though being very pointy in reality. Typical results are shown
in Figure 4. We had to initialize snakes closer to the actual
contour to get a satisfactory result because of the difficulty of
the task.

5. CONCLUSION

Our contribution in this paper is the formulation of a corner
potential for the optimization of parametric active contours
relying on automatically detected features. The proposed en-
ergy, inspired from the difficulties encountered in segment-
ing bioimages, has two main advantages. First, it reduces the
sensitivity of snake-based methods to initial conditions or un-
favorable imaging settings. Second, it allows the segmenta-
tion of objects with sharp corners using a global and flexi-
ble model with few parameters. An interesting aspect of the
method is that its robustness to noise boils down to the robust-
ness of the feature detector. Similarly, the invariance proper-
ties of the detector are inherited by the feature-based energy.

In Table 1, the nomenclature corresponds to the ground truth provided at
http://www.broadinstitute.org/bbbc/BBBCO010/.

2Images courtesy of J. Esser, Laboratory of Intestinal Immunology, Ecole
polytechnique fédérale de Lausanne (EPFL), Switzerland.



Fig. 3: Caenorhabditis elegans segmentation. Left column: regions of interest from images B07 (top) and C03 (bottom) from
the BBBC10 dataset. Center-left: detected keypoints using a Harris detector. Center-right: active-contour initialization. Right:

segmentation result after automated optimization.

Fig. 4: H. bakeri segmentation. Left column: original im-
ages. Center-left: detected keypoints using a Harris detector.
Center-right: active-contour initialization. Right: segmenta-
tion result after automated optimization.

We first demonstrated the added value of our approach with
respect to existing techniques on synthetic data and then illus-
trated its usefulness for different segmentation tasks on real
bioimages. An added benefit of our approach is that the de-
tected objects have a parameterization with landmarks match-
ing the extremities, which facilitates further shape analysis
and feature extraction.

6. REFERENCES

[1] N. Ray and S.T. Acton, “Active contours for cell tracking,” in
Proceedings of the Fifth IEEE Southwest Symposium on Image
Analysis and Interpretation, Sante Fe, NM, USA, April 7-9,
2002, pp. 274-278.

A. Dufour, V. Meas-Yedid, A. Grassart, and J.-C. Olivo-Marin,
“Automated quantification of cell endocytosis using active con-
tours and wavelets,” in Proceedings of the Ninetieth IEEE
International Conference on Pattern Recognition (ICPR’08),
Tampa, FL, USA, December 8-11, 2008, pp. 1-4.

[3] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active

(2]

547

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

contour models,” [International Journal of Computer Vision,
vol. 1, no. 4, pp. 321-331, January 1988.

S. Menet, P. Saint-Marc, and G. Medioni, “Active contour
models: Overview, implementation and applications,” in Pro-
ceedings of the IEEE International Conference on Systems,
Man and Cybernetics, Los Angeles, CA, USA, November 4-
7, 1990, pp. 194-199.

P. Brigger, J. Hoeg, and M. Unser, “B-spline snakes: A flexible
tool for parametric contour detection,” /EEE Transactions on
Image Processing, vol. 9, no. 9, pp. 1484-1496, September
2000.

T. Tuytelaars and K. Mikolajczyk, “Local invariant feature
detectors: A survey,” Foundations and Trends in Computer
Graphics and Vision, vol. 3, no. 3, pp. 177-280, January 2008.

M. Jacob, T. Blu, and M. Unser, “Efficient energies and al-
gorithms for parametric snakes,” IEEE Transactions on Image
Processing, vol. 13, no. 9, pp. 1231-1244, September 2004.

V. Uhlmann, R. Delgado-Gonzalo, C. Conti, L. Romani, and
M. Unser, “Exponential Hermite splines for the analysis of
biomedical images,” in Proceedings of the Thirty-Ninth IEEE
International Conference on Acoustics, Speech, and Signal
Processing (ICASSP’14), Firenze, Italy, May 4-9, 2014, pp.
1650-1653.

R. Delgado-Gonzalo and M. Unser, “Spline-based framework
for interactive segmentation in biomedical imaging,” /IRBM—
Ingénierie et Recherche Biomédicale / BioMedical Engineer-
ing and Research, vol. 34, no. 3, pp. 235-243, June 2013.

O. Henricsson and W. Neuenschwander, “Controlling grow-
ing snakes by using key-points,” in Proceedings of the
Twelfth IEEE International Conference on Pattern Recognition
(IAPR’94), Jerusalem, Israel, October 9-13, 1994, vol. 1, pp.
68-73.

V. Ljosa, K.L. Sokolnicki, and A.E. Carpenter, “Annotated
high-throughput microscopy image sets for validation,” Nature
Methods, vol. 9, no. 7, pp. 637, June 2012.



	MAIN MENU
	Help
	Search
	Print
	Author Index
	Keyword Index
	Program in Chronological Order


 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move up by 18.00 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20150304153030
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     675
     320
     Fixed
     Up
     18.0000
     0.0000
            
                
         Both
         1
         AllDoc
         1
              

       PDDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     4
     3
     4
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     322
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     4
     0
     1
      

   1
  

 HistoryList_V1
 qi2base



