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Abstract

The problem of identifying the outline of objects in images can be approached from
two starting points, either by considering localized features (landmarks, keypoints
or regions), or by searching for global contours. Features are regions or points
of interest and usually include a description of the local properties of the image
around them. The definition of a feature is flexible. Most often, it consists of a list
of desirable properties inspired by the application at hand. Algorithms are then
designed to robustly detect occurrences of the feature in the image under the effect
of various geometrical transformations. Contours, on the other hand, are (portions
of) curves that can be delineated using deformable models, for instance relying
on spline curves. Splines are in particular at the core of a large family of such
models called spline-based active contours, or designer snakes. These methods can
be customized and adapted to outline a large variety of objects in many types of
images.

In this thesis, we aim at unifying these two strategies by bridging automated
feature detection and spline-based active contour segmentation for bioimage anal-
ysis. Our work proceeds in three steps. First, we introduce and characterize the
Hermite spline interpolation framework, a model that allows incorporating local
information at each node in the spline curve. Then, we study the design of custom
feature detectors based on the steerable filters formalism. With these two ingre-
dients, we propose a semiautomated segmentation algorithm called the landmark
snake, which is defined relying on Hermite interpolation and evolves a curve in the
image to outline objects of interest using information provided by steerable features
detectors. The Hermite spline formalism allows for a direct correspondence between
control points on the spline curve and landmarks, simplifying the algorithm design
and allowing for user-friendly interactions. The approach is generic enough to be
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used in a wide variety of data, as will be illustrated through real bioimage analysis
problems in the context of collaborative work with external laboratories.

Keywords: Bioimage analysis, segmentation, contour detection, outlining, fea-
ture detectors, keypoint detectors, active contours, parametric models, Hermite
interpolation, spline-based methods, steerable filters.



Résumé

Lorsqu’il s’agit de délimiter le pourtour des objets dans des images, deux points de
départs peuvent être identifiés. Le premier consiste à considérer des zones d’intérêt
locales (région, point clé ou repère), le second à chercher des contours généraux.
Les zones d’intérêt sont des régions ou des points et sont habituellement dotées
d’information fournissant une description des spécificités de l’image dans leur voi-
sinage proche. Leur définition est flexible. Le plus souvent, elle consiste en une liste
de propriétés dépendant de l’application pratique considérée. Des algorithmes sont
ensuite conçus pour identifier où de telles zones d’intérêt, possiblement sujettes à
diverses transformations géométriques, se retrouvent dans l’image. Les contours,
d’autre part, sont des (portions de) courbes qui peuvent être identifiés en utili-
sant des modèles déformables, par exemple construits à partir de courbes splines.
Les splines sont notamment au cœur d’une grande famille de tels modèles, que
l’on appelle parfois snakes (i.e.,“serpents”). Ces méthodes sont très modulaires et
peuvent être facilement adaptées pour segmenter une grande variété d’objets dans
de nombreux types de données d’imagerie.

Dans cette thèse, nous aspirons à unifier ces deux stratégies en rapprochant
la détection automatique de zones d’intérêt et la segmentation à base de modèles
déformables utilisant des splines, le tout dans un contexte d’analyse d’images bio-
logiques. Notre travail se déploie en trois étapes. Dans un premier temps, nous
posons le cadre théorique de l’interpolation hermitienne, un modèle permettant de
construire des courbes splines avec des contraintes locales à chaque nœuds. Ensuite,
nous étudions la conception de détecteurs personnalisables de zones d’intérêts en
se basant sur le formalisme des filtres dits orientables. Avec ces deux ingrédients
en main, nous proposons un algorithme semi-automatique pour la segmentation
d’images. Il s’agit d’un modèle déformable construit par interpolation hermitienne
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qui évolue dans l’image pour trouver le contour des objets en utilisant de l’infor-
mation provenant de détecteurs orientables de zones d’intérêt. L’interpolation her-
mitienne offre une correspondance directe entre les points de contrôle sur la courbe
spline et les zones d’intérêt sur l’image, simplifiant la structure de l’algorithme
et offrant à l’utilisateur la possibilité d’interagir avec la courbe de façon intui-
tive. Notre approche est suffisamment générale pour être utilisée avec de nombreux
types de données. Nous l’illustrerons au travers de plusieurs problèmes d’analyse
d’images biologiques émanant de travaux collaboratifs avec d’autres laboratoires de
recherche.

Mots clefs : Analyse d’images biologiques, segmentation, détection de contours,
délimitation, détecteurs de zones d’intérêt, détecteurs de points clés, contours ac-
tifs, modèles paramétriques, interpolation hermitienne, méthodes à base de splines,
filtres orientables.



Ce sont des chercheurs,
alors ils cherchent

et parfois ils trouvent.

Y. Pradeau, Algèbre
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Chapter 1

Introductory Notes

1.1 The Bioimage Analysis Era

Observing, understanding and measuring biological phenomenons is at the heart
of biological and medical research. Since a few decades, the constant advances
achieved in the development of imaging methods keep pushing forward our abilities
to obtain quantitative microscropy data of cellular and molecular processes [1]. It
is nowadays possible to analyze both the spatial organization of complex systems
as well as their spatiotemporal behavior [2, 3]. Modern techniques in microscopy
go as far as enabling the time-lapse imaging of in vivo cells and of single molecules
in a very precise manner [4]. As a consequence, measurements outputted from
biological experiments take the form of images and videos in most of the cases.

In order to make statistically relevant observations, large amounts of quanti-
tative measurements are required. This led to technological achievements such as
high-throughput microscopy [5], which automatize the acquisition of gigantic image
sets corresponding to various experimental conditions and duplicates thereof. As
a direct consequence, the size and complexity of image data has kept on increas-
ing. With nowadays digital storing capabilities and acquisition speed, terabytes
of images can easily be obtained in a time frame of days. Experiments involving
time-lapse data commonly generate hundreds to thousands of images, each possibly
containing multiple objects to be analyzed. In this ocean of data, the analysis step
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2 Introductory Notes

itself stands out as a strict bottleneck. It is an unavoidable step to draw any con-
clusion from the data, but cannot, in the vast majority of cases, be performed by
the experimenter because of time and resources constraints. This situation moti-
vates the development of automated solutions for image analysis, which articulates
around three different needs:

1. gaining time or, more modestly, making the analysis feasible by bringing down
the time it requires to be performed to human time scales;

2. ensuring reproducibility by obviating unpredictable and inconsistent human
mistakes;

3. enhancing objectivity by relying on precise and deterministic computer-based
criteria and measurements, thus avoiding experimenter’s bias.

These requirements have been driving the development of image analysis softwares
and tools for many years. Unfortunately, coming up with computer-based solutions
to extract quantitative information out of the rapidly expanding amount of acquired
data remains a major challenge. The growing community of researchers working in
this field made it evolve into a new area or research, referred to as bioimage infor-
matics [6, 7, 8]. Research efforts have there led to tools that are now widespread
among the neighboring community of biologist users, such as ImageJ [9], Fiji [10],
ICY [11], CellProfiler [12], and Ilastik [13].

The approach followed in bioimage analysis could be summarized as thinking
about what is happening when humans see. Although performed by all of us con-
tinuously through the day and without efforts, visual perception has kept neuro-
scientists, psychologists, image processing researchers and computer scientists busy
for a long time [14]. Understanding and reproducing human performances is highly
non-trivial and leads to many scientific and philosophic interrogations. The whole
challenge of image analysis is to get enough comprehension of the process leading
from simple visual inputs to complex scene understanding in order to subsequently
reproduce it in a machine.

1.2 The Segmentation Problem

Segmentation is one of the standard problems arising when trying to design algo-
rithms that reproduce visual perception [15]. It consists in identifying elements in
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a scene (e.g., video, picture) or, more precisely, in managing to identify which parts
of the scene belong to either the elements or the background. This usually boils
down to finding boundaries of objects, or transition zones.

The main aspect making segmentation a challenge is the discrete, pixelized na-
ture of images. Image data are “seen” by computers as arrays of values, without
any global view. While humans rely on the “big picture” to understand images,
computers only have access to local pixel information, as illustrated in Figure 1.1.
It makes everything more difficult: since global context is lacking, the sensitivity to
noise, or small perturbations in pixel values, is enhanced. Segmentation algorithms
try to introduce or mimic some amount of global perspective on the scene being
analyzed. To do so, they rely on a mixture of image-based and prior information.
Understanding this problem gives all the elements required to explain why segmen-
tation remains an area of open research: since local pixel information is generally
not sufficient to understand the image, prior information on the nature of the ele-
ments being searched is incorporated in algorithms. This makes it very challenging
to design all-purpose approaches that would remain flexible enough to perform seg-
mentation of every possible object in every possible image. In fact, what allows
our visual system to solve the segmentation problem so efficiently and with such
amount of generality is more our processing capabilities (i.e., the visual cortex in
the brain) than the visual inputs we get. Our experience from the physics of the
real world and the many examples of scenes we encountered during our lives allow
us to swiftly perform segmentation in virtually any image. Keeping this in mind,
it comes at no surprise that learning-based approaches for segmentation foster a
lot of attention and start to produce impressive results that are slowly approaching
human performances [16].

An ambivalent aspect of the segmentation problem must however be kept in
mind. What is considered as a good segmentation result is often dependent on the
interests of the observer. Given a scene, several segmentations might be considered
as correct depending on what the observer is interested in. This further wards off
the possibility for a unique, global segmentation approach as it is neither easy to
design nor necessarily desirable in practice.

To conclude, it is worth mentioning that segmentation is not a research area
that is specific to bioimage informatics. This problem is common to different re-
search domains, including computer vision. Although the initial task is similar,
the resulting challenges in these two fields differ significantly. In the standard com-
puter vision setting, the elements to be segmented are often very specific (e.g., cars,
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(a) (b)

Figure 1.1: Comparison of computer- and human-based views of images. (a) The
computer view, which consists in a collection of local pixel values (i.e., color or grey
level) without context. (b) The human view, which consists in a global consideration
of the scene, complemented by additional prior experience of the real world. The
area shown in (a) is indicated with a red square.

pedestrian, roads, houses). Lots of prior information can thus be incorporated in
order to discriminate objects against background elements, and physical constraints
can provide further help. As an example, in the same scene of road traffic, it is
unlikely to have cars with wheels facing the road and wheels facing the sky. Once
objects have been identified, individual characteristics can be extracted to discrimi-
nate them from each other (e.g., car paint color, pedestrian clothes). These specific
features provide important clues to solve cases of temporary occlusion for instance.
In bioimage informatics, the objects of interest are most often all very similar (e.g.,
cells, bacteria, white lab mice) up to some small biological diversity. Scenes are
most commonly observed from above, reducing the possibility to rely on physics
of the 3D world. Most importantly, the research problem often aims at identifying
small deviations from the natural biological diversity, further narrowing down the
amount of constraints that can be incorporated into the algorithms (e.g., maximal
and minimal sizes or average shape). Additional challenges appear from the micro-
scopic nature of the objects and the physics of light in the optical settings being
used. The general formulation of the segmentation problem is therefore at the same
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time shared among different fields, and very specific to the field being considered
in the particular challenges it poses.

1.3 Roadmap of the Thesis

This thesis tells the story of the construction of a bioimage analysis method bringing
together curve-based (global) and point-based (local) approaches. As curve-based
approach, we consider continuous curve interpolation and, in particular, a type of
spline construction called Hermite splines. By point-based approaches, we refer
to keypoints or feature detectors. In this work, we focus on feature detectors
designed from (possibly multiscale) steerable filters. From these two ingredients, we
construct the landmark active contour. It consists in a curve modeled using Hermite
splines, which evolves from an initial position in the image to fit the boundaries of
objects of interest by minimizing a cost function, or energy, built from the output
of feature detectors. This model is then used to segment bioimages. Every part
of the thesis is an element of this global story. As a consequence, the content
navigates through multiple research domains: approximation and spline theory,
steerable filters, wavelets, active contours, and bioimage analysis. A global view
of the different “modules” composing this work and of their interconnections is
illustrated in Figure 1.2.

Each module is the subject of a dedicated chapter, in which we explore its topic
in more details. In Chapter 2, we introduce the points-and-curves paradigm that
inspires the development of the landmark snake. We also review state-of-the-art
approaches that are relevant to it. Then, we first focus on curves and present our
work in spline and approximation theory related to the Hermite spline construction
(Chapter 3). We continue by discussing points, or feature, detection and study the
design of multiscale steerable filters to achieve this task (Chapter 4). Our investi-
gations in the two separate worlds of points and curves merge in Chapter 5, where
we introduce the construction of the landmark snake. In Chapter 6, we present
several bioimage analysis problems which benefited from the tools we developed.
Finally, concluding remarks are provided in Chapter 7.

Although the content of all chapters are interconnected in the global story,
many aspects in each of them can be understood individually. Our work on splines
and on steerable filters can be appreciated independently from each other. The
construction of our active contour model then uses these spline model and steerable
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“Points”“Curves”

Bioimage Analysis

Landmark Active Contour

Feature DetectorsSplines
Steerable FiltersHermite Splines

Segmentation

EnergyModel

Applications

Figure 1.2: The content of the thesis in a nutshell. We propose the landmark active
contour, a method that aims at bringing together curve-based (e.g., splines) and
point-based (e.g., feature detectors) methods for segmenting objects in bioimages.

filters construction to bring together point- and curve-based approaches for object
identification and segmentation. The bioimage analysis results are finally obtained
from either one or several elements among the spline model, steerable filters, and
active contour we designed. A possible walk through the thesis depending on the
reader’s interest could be as follows.

Theory-oriented tour focusing on the details of the more “formal” contributions.
Start first by a walk through Chapter 3 to review the basics of Hermite
spline interpolation (3.1) before moving on to novel results (3.2, 3.3 and 3.4).
Then, head to Chapter 4 and (re)discover the theory of steerable filters (4.1).
Continue to the new contributions in the design of feature detectors using
steerable filters (4.2 and 4.3) and get a taste of future research directions
(4.4). Finish with a visit to Chapter 5 (5.1 and 5.2) to see the landmark
active contour construction resulting from the earlier theoretical wanderings.

Application-oriented tour focusing on the details of contributions targeted to-
wards particular applications. Move directly to Chapter 5 and quickly throw a
glance at the construction of the landmark active contour (5.1 and 5.2). Walk
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then through the practical aspects of the approach (5.3 and 5.4) and see il-
lustrative examples of practical use. If curiosity calls, a small hike around the
theoretical hills of Hermite splines (Chapter 3, essentially 3.1) and steerable
filters (Chapter 4, essentially 4.1) can be of interest. Move then to Chapter 6
to get detailed examples of practical bioimage analysis problems solved with
the proposed method, involving the analysis of fly motion (6.1), the tracking
of mycobacteria (6.2), and the study of C. elegans nematodes dynamics (6.3).

Story-oriented tour focusing on the overall “points and curves” story. Begin the
tour with Chapter 2 to get a sense of the motivation of the thesis. Pass by
Chapters 3 (3.1) and Chapters 4 (4.1) to get a quick view of the two main
theoretical ingredients on which our main contribution relies. Wander through
Chapter 5 to discover the theoretical (5.1 and 5.2) and practical (5.3 and 5.4)
aspects of landmark active contours based on Hermite interpolation. Finally,
stroll around the introductory and results sections of Chapter 6 (6.1.2, 6.2.2
and 6.3.2) to get examples of practical use of the method through several
successful collaborative projects in bioimage analysis.

All tours can be completed by the concluding remarks in Chapter 7, which sum-
marize the work and discuss possible directions for further investigation.

1.4 Main Contributions in a Nutshell

Formally, the main goal of this work is to revisit the standard formulation of spline-
based active contours using Hermite interpolation and to exploit the possibilities
it opens to connect spline-based algorithms with feature detectors for bioimage
segmentation. To motivate this objective, get a proper understanding of the tools
we use, and formally describe the solution we propose, we provide the results of
personal reflections on the related research topics, interpretations of existing results,
outputs from collaborative efforts with other researchers, and individual work. In
all chapters, we explicitly mention the name of collaborators in footnotes or directly
in the text. In order to help the reader untangle the novelties from reinterpretations
of existing material, we hereafter provide a short summary of our main scientific
contributions.

Hermite splines: The formulation of the Hermite interpolation problem and of
the corresponding basis functions in all generality is the work of I. J. Schoen-
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berg in the 70’s. However, the explicit connection of first order Hermite
splines with classical B-spline models and Bézier representations had not yet
been explicitly formulated. Similarly, the study of approximation error and
optimality properties, as well as the derivation of exponential Hermite splines,
are novel contributions.

Feature detectors: The multiscale steerable filters formalism was previously in-
troduced by N. Chenouard and M. Unser. The design of steerable filters
by either tuning the angular profile or by searching for optimally localized
radial profiles are however both novel studies that have been performed in
collaboration with other members of the Biomedical Imaging Group.

Landmark snake: The entire landmark snake algorithm is our most significant
contribution, as both the formulation of the snake model and the presented
energy terms have been developed in the context of this thesis.

Practical bioimage analysis problems: All considered practical problems are
the fruits of collaborative efforts with biologists and computer science re-
searchers from EPFL and elsewhere, and are thus original results.

Through our work, we commit ourselves to releasing working versions of the
algorithms we propose as plugins for free, open-sources softwares widely used by
the biology community such as ImageJ or Icy. As our various contributions get
introduced, we indicate in footnotes the websites where the companion source code
or compiled binaries can be found. These computational tools are also contributions
on their own.



Chapter 2

Rambling Through Points
and Curves

In this chapter, we introduce the main motivation for this thesis. We first formulate
the problem we want to address, then review state-of-the-art approaches that are
relevant to it, and finally enunciate our research plan to address it.

2.1 Synopsis

When segmenting images (i.e., separating background from foreground, see Chap-
ter 1), an important step is outlining the objects. Another essential aspect is the
identification of features that characterize the objects of interest. Identifying fea-
tures is required to distinguish actual objects from artifacts, to discern different
instances of objects of interest, or to extract quantitative measurements from the
object (e.g., local orientation, head and tail location), among others. In most cases,
neither the outline nor the location of feature elements are the final output of the
analysis process. They rather are pieces of information that further get combined
to extract other metrics for quantification purpose (e.g., objects size, orientation,
shape). Therefore, in order to characterize objects of interest from image-based
information, both contours and features usually matter as they bring knowledge of
different kind. One can formulate two different paradigms, which then shape the

9
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development of image analysis pipelines.

1. Identification of features: we identify localized salient points or regions
in the image. From this, we then search for the associated objects outlines,
e.g. by finding portions of curves linking the points. The initial step in this
setting is the detection of a collection of specific interest points, landmarks
or regions in the image, which is carried out by feature detectors.

2. Tracing of contours: we generally search for all contours (i.e., portions of
lines or curves) in the image. To distinguish which of them are relevant for
the objects of interest, we then walk along them or investigate the portion
of the image they enclose and look for features. It here all starts with the
identification of meaningful outlines, which can efficiently be achieved for
instance by methods based on deformable models.

In the following, we describe more precisely existing methods that can be used
as starting point of each of these two paradigms and that pave the road to the
research carried out in this thesis. We then formulate a unification proposal, which
motivates and orients the research carried out in the rest of our work.

2.2 First Paradigm: Identifying Salient Points

Methods for identifying salient points in an image first have to deal with defining
what a salient point is. Often referred to as landmarks, keypoints, or local features,
they are distinctive location in the image, loosely defined as image patterns which
differs from their immediate neighborhood [17]. This distinctiveness can be ex-
pressed in terms of intensity, color1 or texture. The nature of the landmark itself is
not so precisely defined. They can be points, segments, superpixels, small patches
or regions of the image, representing blobs, portion of edges or corners, among oth-
ers. The term “point” is therefore to be understood in a wide sense and does not
necessarily mean “pixel”. Features can thus range from very specific patterns or
objects to very general image content such as edges or ridges. A complete salient
point identification algorithm usually return the location as well as a description of
each detected feature, indicating for instance how strongly the portion of the image
where the feature is located resembles it, how the feature is oriented, or how its

1Although, in this work, we will focus on grayscale images.
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close neighborhood looks like. In addition, it is desirable for landmark identification
algorithms to be robust under some set of transformations. The most common ones
are translations, rotations and scaling. Detectors are usually tailored to match the
properties of the application at hand.

Keypoints are very widely used in computer vision as they provide a small set
of well-localized anchors that can then be used for matching points between dif-
ferent images. Typical applications are stereo matching, camera calibration or 3D
reconstruction, where similar scenes are observed under different point of views. In
such cases, the most important property that keypoints must satisfy is distinctive-
ness. This means that a particular keypoint should always be detected and properly
identified (if possible uniquely, in the sense that each particular keypoint should
be identified unambiguously) across images, even if the scene appears as distorted
under the effect of perspective, rotation, scaling, or more complex geometrical trans-
formations. Keypoints are usually not directly employed for segmentation, but as
additional help. They provide discriminative clues so as to whether identified com-
ponents correspond to objects of interest in the image or not, and provide seeds
to initiate and guide the segmentation process. In such cases, what matters is
the specificity of the keypoint, usually rather referred to as a feature. Few points
should be detected in “uninteresting” parts of the image, while no “interesting”
parts should be missed. The detection process should also be robust to slight vari-
ations, rotation and scaling of the features. We propose to group existing methods
in two categories depending on whether they produce a set of unspecific but very
distinctive points, or they specifically detect points falling into a particular category
of similar features. Although the boundary between these two categories is loose,
it allows capturing important differences and similarities between approaches. We
give an illustrative example of each category in Figure 2.1.

2.2.1 Distinctive Points

Extensive research has been carried out on keypoint detectors in the field of com-
puter vision [17]. Here, we provide a brief overview of the main trends by giving
a few particular examples. In general, keypoint detection algorithms are built in
a two-step fashion. First, the identification of salient points is carried out by a
so-called detector which, as its name implies, indicates possible keypoint locations
in the image. This detection step has to be robust under some set of transforma-
tions, such as scaling and rotation. It should also be robust against noise. Once a
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(a) (b) (c)

Figure 2.1: Illustration of different approaches for identifying salient points. (a) In-
put image. (b) Output of a detector providing a set of distinctive points (SIFT). It
consists in a discrete list of points locations, scale and main orientation. Here, they
are overlaid as circles on the input image, with the circle size depicting the scale
and a radius inside it depicting the main orientation. One notices that keypoints
are unspecific, e.g., they are found both on corners and edges. (c) Output of a de-
tector providing a set of points with common properties (Harris corner detector). It
yields a magnitude map, which contains at each location on the image an measure
of how much the desired feature is present. Here, the brighter an area, the more
“corner-like” it is.
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keypoint is identified, a descriptor is constructed to characterize the point and its
immediate neighborhood. The descriptor can be composed of information on, e.g.,
the distribution of pixel intensities, the local orientation around the point, or both.
Considering that applications involving matching are targeted, the descriptors are
often quite complex in order to decrease risks of ambiguity. In general, the overall
performance depends on the combination of detector and descriptor . Keypoint al-
gorithms can be seen as “super filtering” algorithms in the sense that they highlight
some features and provide descriptive information about them. However, compared
to filtering which usually highlights the presence of a particular feature in the im-
age, these methods return a list of possibly very differently-looking keypoints in the
form of a list of coordinates and descriptors.

The most famous keypoint detector method is called SIFT [18, 19] for Scale In-
variant Feature Transform, and was found to be very efficient for many applications.
In a nutshell, the algorithm steps are as follows.

Detector: First, intensity extrema are detected in a scale-space representation of
the image built using an approximation of a Laplacian of Gaussian pyramid
(difference of Gaussian). Extrema detected across several scales are consid-
ered as keypoint candidates. Keypoint location, scale and ratio of principal
curvatures (computed based on the eigenvalues of the Hessian matrix) are
extracted in order to reject poorly localized extrema and points with too low
contrast. Finally, a local orientation value is assigned to each keypoint.

Descriptor: Gradient magnitude and orientation are computed at the scale of the
keypoint based on finite-differences between pixels. An histogram is then
made from the gradient orientations in a region around the keypoint and
peaks are identified, corresponding to dominant orientations. The descriptor
itself is obtained as follows. The local gradient vectors of pixels in a neighbor-
hood around the keypoint is computed. To do so, pixel values are weighted
by a Gaussian window and aggregated into four orientation histograms corre-
sponding to each region of the neighborhood (top left, top right, bottom left,
bottom right).

SIFT inspired the design of many variants aiming at improving the speed of the
algorithm (SURF [20]) or its distinctiveness (GLOH [21]).

The development of most recent methods was mostly influenced by the need for
fast computations. To achieve this goal, detectors such as FAST [22] have been pro-
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posed. There, keypoints are simply identified by evaluating and thresholding image
intensity values, possibly relying on classifiers to recognize keypoint-like intensity
patterns. A lot of effort has been put in the construction of binary descriptors,
which further reduce the computational load and open the possibility for real-time
matching. Such keypoint descriptors are built as binary strings formed by compar-
ing image intensities between pair of pixels in a neighborhood around the keypoint.
The question is then to establish how one selects the collection of pixel pairs. In
BRIEF [23] and ORB [24], locations of the elements composing each pair are se-
lected by randomly sampling a Gaussian around the keypoint. In BRISK [25], a
circular pattern composed of concentric circles around the keypoint is used. Further
efforts in this direction have been explored in FREAK [26], where circular patterns
are designed in inspiration from the animal retinal system, in a way that the density
of comparison points decreases exponentially as one gets away from the keypoint.

2.2.2 Points with Common Properties

We categorize now methods that allow identifying locations of the image where
a specific common element is present. This is the core aspect that distinguishes
them from methods of the first category. In keypoint algorithms for matching ap-
plications, the emphasis is put on invariance between sets of detected keypoints.
It implies that, within the set of keypoints, elements can correspond to portions
of the image of different nature. However, this set must be robust against defor-
mations. In the present category, the emphasis is put on invariance within the set
of keypoints in the sense that all detected points composing the set correspond to
locations where the same specific image feature is found. Good feature detectors
are usually filters designed or tuned to respond well to a particular pattern. The
output of the detector can be a map of the same dimensions as the input image,
since every point in the image generates a filter response. Compared to keypoint
detectors, low-dimensional descriptors are often sufficient since the identification
of landmark locations is generally the final goal. The descriptor part then takes
the form of a measure indicating how much the specific feature is present, possibly
containing some scale and orientation information in addition.

The Harris corner detector [27] is probably the most famous feature detector. It
identifies corner points in the image relying on the eigenvalues of the structure ten-
sor, or second moment matrix, which is derived from the gradient of the image. This
matrix describes the distribution of the gradient in a local neighborhood of a point.
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A measure of “cornerness” is assigned to each location in the image by estimating
how the local gradient magnitude is split across its two othogonal components. The
Harris corner detector is sometimes also considered as an example of naive keypoint
detector, although it lacks a descriptor part. In fact, most early keypoint detector
methods rely on the Harris corner detector and add some built-in descriptor on
top of it [28, 29], further thinning the boundary between the two categories we
consider. Targeting another type of features, the Laplacian of Gaussian [30] allows
detecting blobs as extrema in the result of the convolution of the image with a
mexican-hat-shaped filter. A computationally less intensive approximation of this
method is used in the detection part of SIFT. Neither the Harris corner detector
nor the Laplacian of Gaussian provide scale and orientation information per se.
It is however possible to detect corners in a rotation-covariant way2 for instance
by running the Harris corner detector on a set of rotated version of the original
image. Multiscale detection can be achieved relying on pyramids made of versions
of the image that have been downsampled at different rate. Rotating or building
the pyramid however introduces discretization artifacts yielding to detection errors,
which call for the use of steerable filters to address the rotation-covariant part, and
wavelets for the multiscale aspect. Steerable filters [31] are very appealing solutions
for feature detection as they hold the potential for being tuned to detect various
kind of features of interest with the same formalism. Although not multiscale in
their usual formulation, they can be continuously rotated, avoiding most of the
discretization artifacts, and provide smoothing by construction, making them more
robust to noise. The local orientation estimation through the histogram binning
step of SIFT can in fact be seen as an approximated version of steerable gradient
filtering3. A formal introduction of the steerable filter framework is provided in the
first part of Chapter 4.

2A rotation-covariant detector tuned to a specific feature has the following property. If the
feature is subjected to a rotation by a given angle θ0, detection can be performed using a version of
the detector rotated by the same angle θ0. The final detection result is then equivalent regardless
of the value of θ0.

3Binning the gradient response at different orientations into an histogram and searching for
peaks indeed amounts to steering the gradient in a discrete fashion.
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2.3 Second Paradigm: Capturing Contours

A family of algorithms called deformable models can provide a representation of
meaningful contours in an image. It is the topic of our review paper [32]. De-
formable models have gained popularity in segmentation applications since they
provide an excellent trade-off between flexibility and efficiency [33]. Within this
category, active contours (or snakes) [34, 32] are very popular methods. These
algorithms consist in a curve evolving in the image from an initial position to fit
the boundaries of the object of interest in such a way as to minimize an energy.
Segmentation with snakes is therefore performed in two steps. An initial configura-
tion of the contour is given, and the snake is optimized from this initial condition
by minimizing a cost functional. Two aspects of the active contour thus play a sig-
nificant role: the snake model, which describes the nature of the deformable curve;
and the energy functional, referred to as snake energy, an appropriately defined
cost function that dictates the evolution of the curve. The success of active contour
in practice can be attributed to their combination of effectiveness and versatility.
As we will see, these methods can easily be tuned to the particular characteristics
of a given segmentation task. The choice and design of both the model and en-
ergy of the snake is thus highly dependent on the considered application and image
modality.

Many different snake algorithms exist. They are usually grouped in three main
categories, namely point-based, level sets and parametric snakes.

Point-based snakes [34] are historically the first active contours that have been
proposed. They are constructed from the most elementary representation of
discrete curves: an ordered collection of neighboring points within a grid [34].
We show in Figure 2.2a an example of 2D point-based snake overlaid on the
grid associated to a discrete image model. The discrete curve, displayed as
shaded pixels, here satisfies an 8-neighbor connectivity. The main drawback
of this representation is that it relies on many parameters, even when encod-
ing simple shapes. This impacts the robustness of the overall segmentation
algorithm and results in a high computational complexity. Manual deforma-
tion of such curve is possible by simply updating the set of points composing
it.

Level sets or geodesic snakes [35, 36] have been very popular in computer vi-
sion over the past decade [37, 38, 39, 40, 41, 42]. There, the curve is repre-
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(a) (b) (c)

Figure 2.2: Depiction of the three main active-contour families. (a) Point-based
snakes, defined as a discrete curve over the grid associated to a discrete image
model. (b) Geodesic snakes, defined as a continuous curves corresponding to the
zero level-set Φ−1(0) of a scalar function Φ. (c) Parametric snakes, defined as
continuous curve from a basis function, here a spline. The snake contour is shown
as a solid line enclosing a shaded region, while the ‘+’ elements are the control
points. The corresponding parametric coordinate functions are displayed in solid
lines, and the dashed lines indicate the weighted basis functions.
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sented implicitly, described as the zero level-set of a higher-dimensional man-
ifold. In the usual formalism, the snake contour is given by Φ−1(0) = {p ∈
Rn|Φ(p) = 0}, where Φ is a scalar function defined over the image domain. A
unique characteristic of geodesic methods is that they can be extended to any
number of dimensions. In Figure 2.2b, we represent a set of curves generated
as the result of computing Φ−1(0). This approach originates from the work
of Osher and Sethian, who aimed at modeling the propagation of solid-liquid
interfaces with curvature-dependent speeds [43]. In this framework, the inter-
face (or front) is represented as a closed, nonintersecting hypersurface flowing
along its gradient field with either constant or curvature-dependent speed.
Applying motion to it then amounts to solving a Hamilton-Jacobi-type equa-
tion written for a function in which the interface is a particular level-set.
This type of active contour holds the interesting property of being partic-
ularly flexible in terms of topology. A single geodesic snake subject to the
appropriate energy functional is indeed able to split freely in order to segment
disconnected objects within an image. This plasticity is especially convenient
when segmenting complex shapes (e.g., involving significant protrusions) and
when no prior assumption about the topology of the object is available. Use-
ful geodesic models, however, have many degrees of freedom, which makes it
difficult to constrain shapes and often leads to overfitting in practice. An-
other drawback of geodesic approaches is their very expensive computational
needs, mainly due to the fact that they rely on the evolution of a manifold
with a higher number of dimensions than the actual contour to segment. In
summary, geodesic snakes based on level-sets are convenient when the shapes
of the objects to segment exhibit high variability. When segmenting known
shapes, geodesic snakes however tend to be suboptimal.

Parametric snakes [44, 45] are described by a discrete set of coefficients and
a continuous parameter. Parametric snakes are usually built in a way that
ensures continuity and smoothness. The continuous definition of parametric
snakes implies that the segmentation task can be conducted at arbitrary res-
olution, hence enabling subpixel accuracy. The strength of parametric snakes
comes from the fact that they are (i) composed of only a few parameters, (ii)
very flexible, (iii) amenable to easy manual edits, and (iv) formed from con-
tinuously defined curves that permit refined data analysis. Since they require
much fewer coefficients, they result in faster optimization schemes compared
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to point-based or geodesic snakes. Point-based snakes can in fact be seen as a
sampled version of parametric snakes. User interaction is achieved by allowing
the user to specify anchor points for the curve to go through [34]. Smooth-
ness and shape constraints can easily be introduced [46], and are particularly
suitable when the objects to segment have a reproducible shape that can be
naturally encoded within the parameterization. The downside of parametric
snakes is that the topology of the curve is imposed by the parameterization.
Parametric snakes are thus less suitable than geodesic ones for accommodat-
ing changes of topology during optimization, although solutions have been
proposed for specific cases [47]. For the interested reader, an extensive liter-
ature on parametric snakes has been published, both regarding snake model
variants [48, 49, 50, 51] and associated snake energies [45, 52, 53, 54].

Spline-snakes are a subcategory of parametric snakes. They also benefit from
a continuous-domain representation and are easy to handle analytically thanks to
the spline formalism, which offers local control over the curve. Spline-snakes are
also well-suited for semi-automated analysis pipelines and therefore hold a strong
potential for the design of user-friendly segmentation frameworks. While remaining
mostly automated, they allow for extensive user interaction in term of feedback and
manual correction. This aspect plays an important role in their success for image
segmentation in biological applications [55, 56]. They are the type of algorithms
that are the most relevant to our work.

In the case of spline-snakes, the snake model generates a continuously-defined
curve using one or several spline generator as basis function that interpolate a
collection of discrete control points in the image. The snake energy which, upon
minimization, drives the deformation of the snake curve to fit object boundaries, is
generally composed of external and internal forces which attract the curve towards
prominent image features (data fidelity) while constraining its rigidity (regular-
ization). Out of these two aspects (i.e., snake model and energy), a whole zoo
of spline-snakes with different properties can be elaborated. In this way, spline-
snakes can yield both multi-purpose segmentation methods as well as approaches
specifically tuned to match the characteristics of particular problems. Hereafter, we
give the generic expression of spline-snake models and illustrate different possible
constructions through examples of basis functions and of energy terms.



20 Rambling Through Points and Curves

2.3.1 Snake Models

Formally, the parameterization of spline-snakes is expressed as a curve r(t) on the
plane. This curve corresponds to a pair of Cartesian coordinate functions r1(t)
and r2(t), where t ∈ R is a continuous parameter. The one-dimensional functions
r1(t) and r2(t) are efficiently parameterized by linear combinations of a compactly-
supported spline generator φ : R 7→ R. The parametric representation of the active
contour can be expressed as the vectorial equation

r(t) =

(
r1(t)
r2(t)

)
=
∑
k∈Z

c[k]φ(t− k), (2.1)

with

{c[k]}k∈Z =

{(
c1[k]
c2[k]

)}
k∈Z

(2.2)

a sequence of control points. The number M of control points determines the
number of degrees of freedom in the model. Small numbers lead to constrained
shapes; large numbers offer additional flexibility and yield more complex shapes.
The choice of the basis function φ is dictated by the specific shapes the snake should
be able to adopt and the amount of smoothness it should conserve. In this setting,
fast and stable interpolation algorithms can be used to compute the curve [57].

In the parametric representation, snakes made of closed curves can be described
with a periodic sequence of control points. In this case, both r1(t) and r2(t) are
periodic with the same period. When normalized to unity such that r(t) = r(t+ 1)
for all t ∈ R and divided into M segments, the collection of control points is
expressed as {c[k]}k∈Z with c[k] = c[k + M ] and r(t) can be expressed as a finite
summation as

r(t) =
∑
k∈Z

c[k]φ(Mt− k) =

M−1∑
k=0

∑
n∈Z

c[k + nM ]φ(Mt− (k + nM)) (2.3)

=

M−1∑
k=0

c[k]
∑
n∈Z

φ(Mt−Mn− k) =

M−1∑
k=0

c[k]φper(Mt− k), (2.4)

where φper(t) =
∑
n∈Z φ(t −Mn). In practice, parametric snakes are most com-

monly defined as closed curves (see [58] for a review), although models handling
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open curves for the segmentation of lines or boundaries also exist [59, 60, 61, 62, 63].
In the open curve case, the snake is obtained by considering a finite sequence of
control points {c[k]}k∈Z with c[k] = 0 for all k < 0 and k ≥M and expressed as

r(t) =

M−1∑
k=0

c[k]φ(Mt− k). (2.5)

Example of Snake Models

We here illustrate different models that can be obtained by varying the spline gen-
erator φ, and how this choice affects the resulting snake properties. In Figure 2.3,
we show three curves constructed using the same set of M = 4 control points along
with their two coordinate functions. The first one (Figure 2.3a) is generated using
the linear B-spline φ(t) = β1(t) = tri(t). The resulting curve is piecewise-linear and
of C0 continuity at the knots, meaning that it is a continuous function, but none
of its derivatives are continuous. It is said to interpolate the control points, mean-
ing that the curve goes through them. By increasing the smoothness of the basis
function and taking for instance the quadratic B-spline φ(t) = β2(t) as generator,
the resulting curve is now piecewise-quadratic (C1 continuity at the knots, mean-
ing that it is a continuous function with continuous first derivative) and loses the
interpolation property (Figure 2.3b). B-spline generators thus generate piecewise-
polynomial curves with different degrees of smoothness. A possible variation on
this theme is to build curves that span other function spaces. One can for instance
aim at representing ellipses or circles, which calls for basis that reproduce complex
exponentials4. The third example (Figure 2.3c) is obtained from φ(t) = βE(t), an
exponential spline [64]. The resulting curve is very similar to the one obtained with
quadratic B-spline and has in fact the same continuity (C1 at the knots), but is
fundamentally different as it is piecewise-trigonometric. In this way, the choice of
the generator can be adapted depending on the desired curve properties in terms
of smoothness, approximation, reproduction or refinability properties.

4The reproduction of functions of the form e±jθt allows obtaining sines and cosines, which are
the building blocks for representing ellipses and circles.
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(a)

(b)

(c)

Figure 2.3: Comparison of curves generated by three different basis functions φ(t)
from the same set of control points. (a) Linear B-spline, (b) quadratic B-spline,
(c) minimum-support ellipse-reproducing spline [64].
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2.3.2 Snake Energies

The evolution of the snake curve to fit object boundaries is formulated as an energy-
minimization problem. The quality of the result is thus largely determined by the
choice of the energy terms. Specific image energies therefore need to be defined
according to the particularities of the image analysis problem. Kass et al. [34]
originally formulated the snake energy as a linear combination of three terms:

• the image energy, Eimage, which guides the snake towards the boundary of
interest and is purely data driven;

• the internal energy, Einternal, which imposes prior shape information, such as
ensuring that the segmented region has smooth boundaries, and serves as a
regularizer;

• the constraint energy, Econstraint, which incorporates strict external conditions
imposed by the user.

Let us consider the curve representation Θ which is, in the case of parametric
snakes, entirely determined by the the set of control points {c[k]}k=0,...,M−1. A
snake curve C(Θ) is thus parameterized by r : R → C, where r is given by (2.1).
The total energy of the snake is written as

Esnake(Θ) = Eimage(Θ) + Einternal(Θ) + Econstraint(Θ), (2.6)

where Θ is the curve representation. The optimal snake Θopt is formally obtained
as

Θopt = arg min
Θ

Esnake(Θ). (2.7)

Energy minimization is an optimization procedure where the snake representation
is iteratively updated so as to reach the minimum of the energy function from its ini-
tial position. This starting position, or initialization, is usually specified by the user,
although many application-dependent techniques exist to automatically provide a
first estimate of the position of the target. Many methods exist to minimize the
energy functional (e.g., gradient descent, partial differential equations approaches,
dynamic programming), and each optimization scheme is usually linked to a par-
ticular snake representation. The optimization requires to iteratively update the
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position of the control points, which is, in the case of spline-snakes, such a low
dimensional problem that any minimizer is appropriate. In practice, the fastest
approaches are usually gradient-based methods. There, the optimizing process re-
lies on the computation of the partial derivatives of the energy with respect to the
control points, ∂Esnake

∂c[k] .

Example of Snake Energies

We here provide examples of different spline-snake energies belonging to the image,
internal and constraints categories.

Image energies incorporate image information to guide the snake to the object
of interest. They can be classified into the subfamilies of contour- and region-based
energies.

• Contour-based energies rely on edge or ridge maps derived from the image [34,
46, 65]. It for instance uses gradient magnitude only, such as in

Eedge(Θ) = −
∮
C(Θ)

|∇f(r)|dr, (2.8)

where f is the input image, ∇I(r) =
(
∂I(r)
∂r1

, ∂I(r)
∂r2

)
is the gradient of the image

at position (r1, r2) and C is the snake curve determined by {c[k]}k=0,...,M−1.
Alternatively, it can rely on both components of the gradient vector following

Eedge(Θ) = −
∮
C(Θ)

〈∇I(r),nr〉dr, (2.9)

where nr denotes the inward-pointing unit normal to the curve at (r1, r2).
These edge-based energies can provide a good localization of the contour of the
object. However, they have a narrow basin of attraction, making their success
strongly dependent on the quality of the snake initialization. Several authors
have developed alternative solutions to this lack of robustness. The most
important ones are the introduction of balloon forces [66], the use of gradient
vector-fields defined everywhere in the image domain [67], or multiresolution
approaches [44, 68].
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• Region-based energies aim at maximizing the difference of statistical proper-
ties between the inside of the snake and an outside shell [45, 69, 70]. Formally,
they are expressed as

Eregion(Θ) =

∫ ∫
Ω(Θ)

g(x, y)dxdy − λ
∫ ∫

Ωµ(Θ)\Ω(Θ)

g(x, y)dxdy, (2.10)

where g is a (possibly filtered) version of the input image, Ω is the region
enclosed by the snake curve, Ωµ is the region enclosed by a shell (with µ > 1
a dilation parameter), which corresponds to a dilated version of the snake
curve, and λ > 0 is a weighting parameter. Region-based energies have a
larger basin of attraction and allow convergence even if explicit edges are not
present [71]. However, they provide poor localization compared to edge-based
image energies.

Internal energies are responsible for regularizing the snake optimization proce-
dure. Internal energy terms incorporate the desired smoothness or shape properties
that the curve must satisfy.

• General regularization energies promote smoothness, for instance as in [34]
with

Einternal(Θ) = L(Θ) + λ

∮
C(Θ)

|κ(r)|2dr, (2.11)

where L is the length of the curve, κ its curvature, and λ > 0 a weighting
parameter. Other ones ensure that the control points distribute evenly along
the curve by enforcing curvilinear reparameterization [65] following

Einternal(Θ) = L(Θ) + λ

∮
C(Θ)

(‖r′‖ − L)2dr. (2.12)

The optimization process can also sometimes lead to self-intersecting snakes.
This phenomenon arises mostly when the image energy forces some control
points to move faster than others during the iterative optimization process.
An extensive body of research on the intersection problem can be found, with
numerous articles presenting different approaches to prevent the intersection
of freeform curves and surfaces [72]. When a self-intersection is detected,
some authors split their shape descriptor in a way that new smaller snakes
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are born [47]. Others preserve the topology by introducing self-repulsive
forces [73] or stop the optimization routine and ask for user assistance [70].
As the likelihood and type of self-intersections is strongly dependent on the
snake curve model at hand, there is no general strategy for preventing these
events. The best strategy therefore remains to experiment and identify which
solution performs the best for the considered snake curve.

• Prior-shape energies incorporate prior knowledge as shape constraints in the
energy. They then prevent the snake from diverging too much from a set
of given geometrical transformations of a reference shape [32]. They are ex-
pressed as

Eshape(Θ) = ‖r− rp‖2L2
, (2.13)

where rp is the projection of the snake curve onto the space generated by
the set of allowed transformations of the reference shape and ‖ · ‖L2 is the
continuous L2 norm.

Constraint energies consist in a set of strict external restrictions that are in-
corporated as hard constraints in the optimization procedure [70].

In practice, snake energies are composed of a combination of several energy
terms belonging to each of these categories. The design of the energy functional is
therefore not a straightforward task. It is inspired by the considered image analysis
task. The parameters regulating each of the different term composing the energy
and the trade-off between them are also fine-tuned to the particular application
at hand. In automated pipelines, good parameter values can be searched for by
training the full segmentation algorithm on real images for a particular application.
This provides a range of acceptable values that guarantee robustness and accuracy
in the overall segmentation algorithm.

2.4 A Unification Proposal

We propose to unify the two paradigms presented in Sections 2.2 and 2.3 by design-
ing an image analysis approach that jointly incorporates salient points identification
and contour detection. To do so, we need two building blocks:

1. Hermite splines (Chapter 3), which are generators yielding curve models
that can easily incorporate local modifications;
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2. Steerable wavelet filters (Chapter 4), which is a family of feature detectors
providing multiscale orientation and location information, and which can be
tuned to detect specific patterns of interest.

We incorporate these two elements into the landmark active contour (Chapter 5), a
novel spline-snake algorithm which allows us to bridge the search for object contour
and the extraction of feature-based information through the optimization of the
snake energy.

On one hand, active contours are efficient in modeling contours in general. On
the other hand, features give a sense of important locations in the image and of
the properties of their local surroundings. It is thus tempting to bring these two
approaches together in a unified algorithm. Features information could in fact
be incorporated into other spline-snake algorithms, but the Hermite construction
allows for a direct correspondence between control points and landmarks. As we
will see, each control point of the landmark snake can be assigned to a landmark:
it can be placed at salient locations to ensure that the contour goes through them
and then adapt the local behavior of the curve by varying its local tangent. This
in turns calls for landmark detection algorithms that provide a measure of how
much landmark features are present at each image location and, when present,
how they look like. By exploring the design of custom feature detectors using
steerable filters and relying on Hermite splines, our landmark snake thus brings
together features and contour extraction in a unified, flexible and robust algorithm
for object detection.
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Chapter 3

Taming the Hermite Splines

In this chapter, we present the Hermite spline interpolation scheme, which is the
first building block of our approach mixing points and curves. Hermite interpolation
was characterized by I. J. Schoenberg [74, 75]. The problem is stated as that of
interpolating a function from samples at integer locations of its derivatives up to
a given order. The existence and regularity of the resulting interpolant have been
studied in all generality in these seminal papers.

In the following, we revisit the Hermite splines covered by the theory of Schoen-
berg and go beyond by introducing novel results uncovering some of their proper-
ties1. We first review the formulation of first-order Hermite interpolation, as it is
the most relevant for our final application. This leads us to the definition of cu-
bic Hermite splines, two functions with very particular properties. Given a spline
scheme, a whole collection of characteristics in terms of approximation, optimality,
or families of basis can be derived. Here, we provide some of these elements for
the particular case of cubic Hermite splines. We study the approximation power,
smoothness properties and minimum mean square error (MMSE) optimality of this
interpolation scheme. Finally, we briefly propose an higher-level interpretation and
discuss alternative families of Hermite splines in a spirit analogous to the general
framework of L-splines proposed in [78, 79, 80].

1This chapter is composed of a mixture of published material and manuscripts under prepara-
tion. Published results include the content of Section 3.1, adapted from [76], and of Section 3.3,
adapted from [77]

29
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Through the chapter, we shall often use the notation f(t) for the continuous
function f with t ∈ R and x[k] for the discrete sequence {x[k]}k∈Z. In addition,
the sequence of samples of a continuous function f at the integers is denoted by
f(k) = f(t)|t=k. For typesetting reasons, we write column vectors in the text as
vcol = (v1, . . . , vN ). In equations, they appear as true column vectors. Therefore,

vcol = (v1, . . . , vN ) =

 v1

...
vN

 .
In contrast, row vectors are denoted by vrow =

[
v1 . . . vN

]
both in equations

and in the text. Also, given a function f(t) with t ∈ R, we denote its continuous-

time Fourier transform by f̂(ω) with ω ∈ R. For a discrete sequence x[k] with
k ∈ Z, we refer to its discrete-time Fourier transform as X(ejω), with j =

√
−1 and

ω ∈ R. We indicate the standard vector scalar product and associated norm as 〈·, ·〉
and ‖ · ‖, respectively. Inner products and norms on function spaces are denoted in
a similar way, with the function space indicated as a subscript. For instance, the
classical L2 inner product and associated norm are designated as 〈·, ·〉L2

and ‖ ·‖L2
,

respectively. The conjugate of complex numbers and functions is denoted by a star
exponent as ·∗.

We recall that splines are generally defined as piecewise polynomial functions
with some amount of regularity at their knots. The knots correspond to the joining
points where the polynomial pieces meet. Unless stated otherwise, we always remain
in a uniform cardinal spline interpolation setting, meaning firstly that the spline
basis are constructed as integer shifts of a single generator and, secondly, that knots
are located either at the integers or at multiples of a fixed integer value.

3.1 Definition

In its most basic formulation, Hermite interpolation generates a continuously dif-
ferentiable function from two discrete sequences that correspond to samples of a
function and its derivative, respectively. The discrete sequences are continuously
interpolated with Hermite-spline basis functions. Here, we first state the mathe-
matical definition of Hermite interpolation and then discuss important properties
of the resulting spline basis.
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Formally, Schoenberg [74, 75] defines the cardinal cubic Hermite interpolation
problem as follows. Knowing the discrete sequences of numbers c[k] and d[k], k ∈ Z,
we look for a continuously defined function fHer(t), t ∈ R, satisfying fHer(k) = c[k],
f ′Her(k) = d[k] for all k ∈ Z, such that fHer is piecewise polynomial of degree at most
3 and once differentiable with continuous derivative at the integers. The existence
and uniqueness of the solution is guaranteed [74, Theorem 1] provided that c[k]
and d[k] are in S′(Z), which denotes the space of sequences of slow growth2. In
addition, the spline function fHer, which is the unique solution of the first-order
cardinal Hermite interpolation problem, is explicitly given [74] by

fHer(t) =
∑
k∈Z

(c[k]φ1(t− k) + d[k]φ2(t− k))

=
∑
k∈Z

(fHer(k)φ1(t− k) + f ′Her(k)φ2(t− k)) . (3.1)

The analytical expressions of the two cubic Hermite splines φ1, φ2 are found in [75,
81] as

φ1(t) =

{
(2 |t|+ 1) (|t| − 1)2 for 0 ≤ |t| ≤ 1
0 for |t| > 1,

(3.2)

φ2(t) =

{
t (|t| − 1)2 for 0 ≤ |t| ≤ 1
0 for |t| > 1.

(3.3)

It is worth emphasizing that the existence of φ1 and φ2 is in itself a remarkable
and non-trivial result. In addition to their fairly simple analytical expression, the
cubic Hermite splines have other important properties. First, they are of finite
support3, being restricted to the [−1, 1] interval. A very fundamental property of
this construction is that the generating functions φ1, φ2 and their derivatives φ′1,
φ′2 satisfy the joint interpolation conditions

φ1(k) = δ[k], φ′2(k) = δ[k], φ′1(k) = 0, φ2(k) = 0, (3.4)

for all k ∈ Z, where δ[k] is the discrete unit impulse. The functions and their first
derivative are depicted in Figure 3.1, where the interpolation properties can easily

2We say that a sequence {x[k]}k∈Z is in S′(Z) if there exist two real constants N and C such
that |x[k]| ≤ C(|k|N + 1) for all k ∈ Z.

3The support of a function is here defined as the smallest closed interval outside of which the
function is equal to zero.
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be observed. The functions φ1 and φ2 are deeply intricated. In (3.1), φ1 interpolates
points of the sequence c while the first derivative of φ2 interpolates points of the
sequence d. Considering c[k] = f(k) and d[k] = f ′(k) for an input function f , fHer is
the solution to the problem of interpolating f and its first derivative at the integers,
as exposed in [74]. Note that φ1 and φ2 are cubic polynomials in [−1, 0] and [0, 1]
and, by extension, in each interval [k, k + 1] for k ∈ Z, which is the motivation for
referring to them as cubic Hermite splines. They are differentiable with continuous
derivatives at the knots points t = k (i.e., at the integers).

The space of functions generated by Hermite splines is defined as{∑
k∈Z

(c[k]φ1(· − k) + d[k]φ2(· − k)) =
∑
k∈Z

[
c[k]
d[k]

]T
φ(t− k) : c[k], d[k] ∈ S′(Z)

}
,

(3.5)

with φ = (φ1, φ2). Due to the Hermite interpolation conditions, the expansion
coefficients c[k] and d[k] in (3.5) coincide with f(k), f ′(k), the samples of the func-
tion to be interpolated and its first derivative on the integer grid. The space (3.5)
contains splines of degree 3 with regularity C1 at the knots, which can also be inter-
preted as a space of cubic splines that can accommodate quadratic transitions. The
generated functions are thus C1-continuous piecewise-cubic polynomials with knots
at integer locations. Such functions can also be represented by cubic B-splines with
double knots at the integers. The effect of the double knot is to reduce by one the
continuity (C2) of the cubic B-splines. Note that, in the literature, the condition
c, d ∈ l2(Z) is more commonly found. However, there is no conceptual difficulty
in considering c, d ∈ S′(Z) since the cubic Hermite basis functions φ1 and φ2 are
compactly supported. Sequences in S′(Z) are actually required in order to make
the link with classical B-splines, as shown hereafter.

3.1.1 Connection with Classical Cubic and Quadratic
B-Splines

In order to better understand the properties of cubic Hermite-splines, we highlight
their connections to classical cubic and quadratic B-splines. As a reminder, B-spline
interpolation generates piecewise-polynomial functions with Cn−1 continuity, where
n is the degree of the B-spline. The B-spline of degree n is defined as

βn(t) = (βn−1 ∗ β0)(t) = (β0 ∗ . . . ∗ β0)(t), (3.6)
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Figure 3.1: Cubic Hermite splines φ1 and φ2. The two functions and their deriva-
tives are vanishing at the integers with the exception of φ1(0) = 1 and φ′2(0) = 1
(interpolation conditions). They are supported in [−1, 1].
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with

β0(t) =

{
1 t ∈

[
− 1

2 ,
1
2

]
,

0 otherwise.
(3.7)

The causal B-spline of degree n, denoted as βn+, is obtained as βn+(t) = βn
(
t− n+1

2

)
.

A detailed review of the properties of B-splines can be found in [82, 83].
We establish the link between Hermite and B-splines through the Fourier trans-

forms of the Hermite spline generators. This yields

φ̂(ω) =

[
φ̂1(ω)

φ̂2(ω)

]
=

[
− 12(ω sinω+2 cosω−2)

ω4

− 4j(2ω−3 sinω+ω cosω)
ω4

]
. (3.8)

One remarks that the zero of the denominator is compensated by the numerator
at ω = 0. Therefore, φ̂(0) is well-defined. These equations can be rewritten in
matrix-vector form as

φ̂(ω) = R̂(ejω) ρ̂(ω), (3.9)

with

ρ̂(ω) =

[
ρ̂1(ω)
ρ̂2(ω)

]
=

[
1

(jω)4
1

(jω)3

]
, (3.10)

and

R̂(ejω) =

[
24− 12e−jω − 12ejω −6e−jω + 6ejω

−6e−jω + 6ejω −8− 2e−jω − 2ejω

]
. (3.11)

The vector ρ = (ρ1, ρ2), which is the inverse Fourier transform of ρ̂, contains

the Green’s functions of the operators L1 = D4 = d4

dt4 and L2 = D3 = d3

dt3 . The
operators L1 and L2 generate the classical cubic and quadratic B-splines, respec-
tively. Relying on the link between the Green’s function of an operator and its
associated spline [84], we state the relation between the Hermite spline generators
φ = (φ1, φ2) and ρ = (ρD4 , ρD3), which are the Green’s functions of D4 and D3.
Their explicit expressions are

ρD4(t) = F−1

{
1

(j·)4

}
(t) =

1

12
t3sgn(t), (3.12)
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ρD3(t) = F−1

{
1

(j·)3

}
(t) =

1

4
t2sgn(t). (3.13)

By inverting the 2× 2 Fourier matrix R̂(ejω) from (3.11), we find that

ρ̂(ω) = R̂(ejω)−1 φ̂(ω). (3.14)

From the rules of matrix inversion, the entries of R̂(ejω)−1 = Ŝ(ejω) are ratios
of trigonometric polynomials. Consequently, each of these entries can be reduced
through partial fraction decomposition. Because it is composed of weighted sums
of simple fractions, the discrete-time inverse Fourier transform of Ŝ is well-defined.
It is also guaranteed to yield a unique sequence of matrices

S[k] =
1

2π

∫ +π

−π
Ŝ(ejω) ejωk dω (3.15)

of slow growth. Hence, we conclude that

ρ(t) =
∑
k∈Z

S[k]φ(t− k), (3.16)

which proves that the Green’s functions ρD4 and ρD3 , as well as their integer shifts,
can be reproduced by {φ(· − k)}k∈Z. The specific form of (3.16) follows from the
interpolation property of the generators,

s(t) =
∑
k∈Z

(
s(k)φ1(t− k) + s′(k)φ2(t− k)

)
, (3.17)

which is valid for any function in the span of the cubic Hermite splines. In partic-
ular, we have that

ρD4(t) =
1

12
t3sgn(t) =

∑
k∈Z

(
1

12
k3sgn(k)φ1(t− k) +

1

4
k2sgn(k)φ2(t− k)

)
. (3.18)

The expansion (3.18) motivates our choice to consider sequences c, d ∈ S′(Z) instead
of l2(Z).

It is known [85, Chapter 6] that cubic B-splines admit a unique stable expansion
of the type

s(t) =
∑
k∈Z

a[k]ρD4(t− k), (3.19)
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where a is a sequence of coefficients of slow growth. This in turn implies that the
space of cubic Hermite splines includes the space of cubic splines as a subspace.
The same holds true for the quadratic splines generated by {ρD3(·−k)}k∈Z. Based
on (3.9), we express φ1 as

φ1 = 12∆2
+ρD4 + 6∆+ρD3 , (3.20)

where ∆2
+ is the second-order finite-difference operator with ∆+f(t) = f(t)− f(t−

1). The expression of φ2 in terms of ρD4 and ρD3 is obtained through an analogous
calculation:

φ2 = 6∆+ρD4 + 2(∆2
+ρD3 − 6ρD3). (3.21)

The Hermite spline space can thus be seen as the union of the cubic and quadratic
spline spaces.

Causal cubic B-splines can be written in the two following equivalent ways

β3
+(t) = ∆4

+ρD4(t) (3.22)

= 1
6φ1(t− 1) + 4

6φ1(t− 2) + 1
6φ1(t− 3) + 1

2φ2(t− 1)− 1
2φ2(t− 2), (3.23)

where ∆4
+ is the 4th-order finite-difference operator with ∆+ defined as above.

Similarly, the Hermite interpolation property (3.17) can be used to obtain the
corresponding expression for causal quadratic B-splines as

β2
+(t) = ∆3

+ρD3(t) = 1
2φ1(t− 1) + 1

2φ1(t− 2) + φ2(t− 1)− φ2(t− 2). (3.24)

As cubic and quadratic B-splines can be expressed in terms of φ1 and φ2, it implies
that they are included in the family of Hermite splines. The above expressions
help understanding another remarkable property of the Hermite spline space. In
the case of cubic splines, a compactly supported basis function (i.e., a B-spline) is
constructed by applying the discrete version ∆4

+ of the operator D4 to its Green’s
function ρD4 , as described in (3.22). Quadratic B-splines are constructed in the
same way by applying the discrete version ∆3

+ of the operator D3 to the Green’s
function ρD3 . Either of the functions ∆2

+ρD4 and ∆+ρD3 is only partially local-
ized and still includes a linear trend. However, the combination of both in (3.20)
and (3.21) results in the cancellation of all residual polynomial components outside
of the [−1, 1] interval. As a consequence, the cubic Hermite basis functions have a
support of size 2 which, remarkably, is shorter than that of cubic B-splines.
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Finally, since cubic B-splines reproduce polynomials of degree up to 3, this
property automatically extends to the Hermite spline space, yielding

tm =
∑
k∈Z

(
kmφ1(t− k) +mkm−1φ2(t− k)

)
(3.25)

for m = 0, 1, 2, 3.

3.1.2 Uniqueness and Stability of the Representation

Uniqueness and stability of the interpolation result are guaranteed by the so-called
Riesz-basis conditions for the generator φ. By definition (see for instance [85,
Section 6.2.3]), the vector function φ = (φ1, φ2) generates a Riesz basis if and only
if there exist two constants 0 < A ≤ B < +∞ such that

A‖a‖`2 ≤

∥∥∥∥∥∑
k∈Z

a[k]Tφ(· − k)

∥∥∥∥∥
L2

≤ B‖a‖`2 , (3.26)

for all a[k] = (c[k], d[k]), with c[k], d[k] ∈ `2(Z). As a reminder, the `2 norm of a vec-

tor of sequences is defined as ‖a[k]‖2`2 =
∑N
i=1 ‖ai[k]‖2`2 for a[k] = (a1[k], . . . , aN [k]).

The Riesz basis property is easier to verify in the Fourier domain. To that end,
we first compute the Fourier Gram matrix of the basis, which is given by

Ĝ(ejω) =
∑
k∈Z φ̂(ω + 2πk)φ̂(ω + 2πk)∗T

=


∑
k∈Z
〈φ1, φ1(· − k)〉L2

e−jωk
∑
k∈Z
〈φ1, φ2(· − k)〉L2

e−jωk

∑
k∈Z
〈φ2, φ1(· − k)〉L2

e−jωk
∑
k∈Z
〈φ2, φ2(· − k)〉L2

e−jωk



=

[
26
35 + 9e−jω

70 + 9ejω

70 − 13e−jω

420 + 13ejω

420
13e−jω

420 − 13ejω

420
2

105 −
e−jω

140 −
ejω

140

]
.

(3.27)

The Gram matrix Ĝ(ejω) is Hermitian symmetric for every ω and is 2π-periodic in
ω. Next, we recall that the Fourier equivalent of the Riesz-basis requirement (3.26)
is

0 < A2 = min
ω∈[0,2π]

λmin(ejω) ≤ max
ω∈[0,2π]

λmax(ejω) = B2 < +∞, (3.28)
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where λmax(ejω) and λmin(ejω) denote the maximum and minimum eigenvalues of

Ĝ(ejω) at frequency ω, respectively. Interestingly, the constants A and B obtained
from (3.28) are the optimal ones. This result is classical in the case of a single
generator ϕ (see for instance [86, 87]). In this situation, we have λmin(ejω) =
λmax(ejω) =

∑
k∈Z|ϕ̂(ω+2πk)|2. The case of multiple generators, which is required

in the Hermite scenario, is covered by [88, Theorem 2.1]. Knowing the Gram matrix
(3.27), we simply compute the minimum and maximum eigenvalues and take the
supremum and infimum among ω ∈ [0, 2π]. This calculation yields the exact values
of the Riesz bounds, namely

(A,B) = (210−
1
2 , 1), (3.29)

with the worst case of (3.28) obtained for ω = 0.

3.1.3 Connection with Bézier Representations

The presence of explicit derivatives in the Hermite representation is reminiscent of
Bézier curves, which are popular tools in computer graphics. The Hermite spline
representation can in fact easily be converted to Bézier curves, but the converse is
not true in general. Bézier curves can have different left and right derivative values
by construction. They therefore have more degrees of freedom, but are also less
regular. The additional smoothness granted by the Hermite spline representation
is especially useful for practical applications, as it implies that less parameters have
to be optimized. It also provides additional intrinsic regularity. In [76], we show
how these two representations relate to each other through Bernstein polynomials.
We also provide the expression of Hermite splines in terms of Bézier curves.

3.2 Approximation Error

Reconstruction using sequences of samples plays an essential role in communica-
tions and signal processing as it creates a bridge between discrete and analog signals.
One of the fundamental results of this field is Shannon’s sampling theorem, reviewed
and extensively discussed in [57], which demonstrates that perfect reconstruction is
possible for sampled bandlimited signals. In its initial formulation, Shannon’s the-
ory involves uniform samples of the original continuous-time signal. Papoulis [89]
proposed an extension of this framework referred to as generalized sampling. The
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underlying idea is as follows. A signal can be fully characterized, and thus recon-
structed, with many different kind of data, uniform samples being only one of them.
In its initial formulation, the sampling problem is designed for bandlimited signals
and involves ideal filters, making it mostly unusable in practice although theo-
retically beautiful [90]. Alternatively, extensions without bandlimited constraints
relying on spline-based models for signal representation have been proposed [91].
The considered problem is then the reconstruction of a square-integrable function
(possibly not bandlimited) from the outputs of M linear shift-invariant systems
sampled at 1/M of the reconstruction rate. The reconstruction subspace is speci-
fied such that the final output corresponds to a bandlimited function, a spline, or
a wavelet expansion. Another interesting aspect of this extensions is that approxi-
mation is considered in a broader sense, i.e., not necessarily perfect but consistent,
in the sense that it produces the same set of measurement as the original input of
the system.

Here, we discuss4 the performance of Hermite interpolation and compare it
against other existing approximation schemes. The difference between a reference
curve and its cubic Hermite spline interpolation defines the quality of the approxi-
mation. More precisely, we are interested in the rate at which the error decreases
when approximating any smooth enough function f from φ = (φ1, φ2) and its
integer shifts, possibly as a function of the smoothness of f . As shown in (3.22)
and (3.24), one can perfectly reproduce both quadratic and cubic B-splines with
cubic Hermite splines. It means, in particular, that the approximation power of the
Hermite spline space is at least as good as that of the space of cubic B-splines. It
can actually be shown that the Hermite spline space corresponds to the direct sum
of the cubic and quadratic B-spline spaces. The multifunction analysis from [92,
Theorem 1] can then be applied to Hermite basis functions. By doing so, the cubic
Hermite splines can be shown to have the same asymptotic approximation order
as cubic B-splines. In the following, we derive such asymptotic constants assessing
the quality of approximation results. The analysis we provide is both qualitative
and quantitative—qualitative as it highlights the particularities that are inherent
to each scheme, and quantitative as it provides the asymptotic form of the ap-
proximation error. Our goal is to put Hermite splines in the broader context of
approaches approximating both a function and its first derivative from sequences

4This work was realized in close collaboration with J. Fageot, Biomedical Imaging Group,
EPFL, Switzerland.
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of their samples.

3.2.1 Generalized Signal Approximation Scheme

In order to obtain an approximation of a continuous signal from a collection of its
samples in a generalized sampling scheme, the two following elements are needed.

1. A collection of sampling functions ϕ̃ = (ϕ̃1, . . . , ϕ̃N ) which are possibly gen-
eralized functions in S′(R) and which describe how the samples are drawn
from the input signal,

2. a collection of interpolation functions ϕ = (ϕ1, . . . , ϕN ) which belong to
L2(R) and which are used to reconstruct a continuous curve connecting the
sample points,

with N the number of different pairs of sampling and interpolation functions being
considered. The reason why sampling is said to be generalized lies in the fact that
the sampling functions can yield sequences that are more complex than direct values
of the signal at the sampling points. This set of pairs of sampling and interpolation
functions fully characterize an approximation scheme.

The sampling and reconstruction problem is then formally defined as follows.
The continuous-time input f(t), t ∈ R is sampled through a collection of N filters
with impulse responses ϕ̃i(−·) for i = 1, ..., N , yielding the discrete measurements
(i.e., generalized samples) vector g[k] = (g1[k], . . . , gN [k]). Each component of the
measurement vector can be expressed as gi[k] = 〈f, ϕ̃i(· − Nk)〉L2 , where ϕ̃i(t) is
the ith sampling function. When considering N sampling functions, the samples
are picked at every integer multiple of N . In the following, we shall only consider
functions f such that the inner product between f and ϕ̃i(· −Nk) is well-defined
for i = 1, . . . , N and k ∈ Z. This implies that the smoothness constraints imposed
on f depend on the regularity of the sampling functions. For instance, if N = 1
and ϕ̃ = δ′, f should typically be differentiable with a continuous derivative. For
simplicity, we choose not to discuss this aspect further and always assume that f is
selected to be regular enough. With a slight abuse of notation, we keep the L2 inner
product subscript since the functions f we study will in particular live in L2(R),
although being much smoother in practice to compensate for ϕ5. Each resulting

5The notation 〈·, ·〉L2 applies to functions in L2 and is formally not correct when considering
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measurement sequence must be well-defined in the l2 sense, or, in other words,
g ∈ (l2(Z))N . Measurements are then combined to reconstruct the approximation
f̃ of f onto the subspace

V (ϕ) =

{
N∑
i=1

∑
k∈Z

ci[k]ϕi(x−Nk) : c[k] ∈ (l2(Z))N

}
(3.30)

with the collection of interpolation functions ϕ. The approximation is not necessar-
ily perfect as f might not belong to the span of V (ϕ). The reconstruction scheme
is usually at least required to be consistent, meaning that one should recover the
original measurements {gi[k]}i=1,...,N,k∈Z from f when sampling the approximation

f̃ . This is formally expressed as

〈f̃ , ϕ̃i(· −Nk)〉L2
= 〈f, ϕ̃i(· −Nk)〉L2

= gi[k] (3.31)

for k ∈ Z and i = 1, ..., N . The approximation f̃ is given by

f̃(t) =

N∑
i=1

∑
k∈Z
〈f, ϕ̃i(· −Nk)〉L2

ϕi(x−Nk) =

N∑
i=1

∑
k∈Z

gi[k]ϕi(x−Nk). (3.32)

The best approximation is obtained when the pairs of sampling and interpolation
functions are properly chosen such that f̃ is the orthogonal projection of f onto
V (ϕ). In general, it is worth noting that, for N = 1 and ϕ̃ = δ, one gets back to a
classical interpolation problem since f̃(t) =

∑
k∈Z f(k)ϕ (t− k). For more details,

we refer the interested reader to [91, 93]. We now provide some concrete examples
of generalized sampling schemes.

Sampling and Reconstruction with Cubic B-splines

Reconstruction with cubic B-splines is the simplest case and provides a good in-
troductory example [84]. In this setting, N = 1 and only one pair of sampling and
interpolation functions is thus considered. The cubic B-spline reconstruction of a

sampling functions that belong to other function spaces. In cases where a ϕ̃ /∈ L2 is considered,
〈f, ϕ̃〉L2

should be understood only for functions f that are smooth enough. For instance, if
ϕ̃ ∈ S′, then only functions f ∈ S are allowed.
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signal f is expressed as

f̃(t) =
∑
k∈Z

〈
f,
∑
n∈Z

(b3)−1[n]δ(· − n)

〉
L2

β3(t− k), (3.33)

where (b31)−1 is the direct B-spline filter [84]. It is better expressed in the Z-
transform-domain as

1

B3
1(z)

=
6

z + 4 + z−1
. (3.34)

Therefore, the sampling function corresponds to

ϕ̃ =
∑
k∈Z

(b3)−1[k]δ(· − k), (3.35)

and the interpolation function is β3, the cubic B-spline.

Generalized Sampling Framework without Band-Limited Constraints

A generalized sampling framework without band-limited constraints is proposed
in [91]. Defined as an extension of Papoulis’ generalized sampling theory, it can be
used in particular for approximating a function relying on its samples and samples
of its first derivative, although the proposed framework is more general. It is of
special interest for us as it offers a sensible candidate to compare against Hermite
interpolation.

The basic ingredients are a collection of N sampling functions ϕ̃ and a single
generating function ϕG. The interpolation functions are constructed from ϕG fol-
lowing (3.36). Under proper assumptions on the ϕ̃i for i = 0, . . . , N and ϕG [91,
Theorem 1], one can approximate a smooth enough function f from its measure-
ments gi. The best approximation is expressed as (3.32). The collection of N
interpolation functions ϕi is constructed from ϕG as

ϕi(t) =
∑
k∈Z

qi[k]ϕG(t− k) for i = 1, ..., N. (3.36)

Since (3.36) is a discrete convolution, it can be computed in Fourier domain as
ϕ̂i(ω) = ϕ̂G(ω)Qi(e

jω). The elements of the sequences qi are given in the Z-
transform-domain by

[ Q1(z) . . . QN (z) ] = [ 1 z−1 . . . z−N−1 ]Â−1
ϕ̃ϕG

(zN ), (3.37)
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with Aϕ̃ϕG [k] an N ×N matrix which entries are equal to

[Aϕ̃ϕG ]i,j [k] = 〈ϕ̃i(· −Nk), ϕG(· − j + 1)〉L2
, (3.38)

where ϕ̃i is the ith sampling function. The approximation f̃ is the orthogonal
projection of f onto V (ϕG), the space generated by linear combinations of translates
of ϕG, built like (3.30). Therefore, perfect reconstruction (i.e., f = f̃) is achieved
for all f that are included in V (ϕG).

In the particular case of reconstruction from samples of a function f and of
its first derivative f ′, we set N = 2, ϕ̃1(t) = δ(t) and ϕ̃2(t) = δ′(t − 1

2 ). This
particular case is referred to as interlaced derivative sampling [91, VI.B]. Therefore,
g1[k] = f(2k) and g2[k] = f ′(2k + 1). We choose ϕG(t) to be the cubic B-spline to
allow for a fair comparison with cubic Hermite splines. We obtain

Âϕ̃ϕG(z) =

[
2
3

z+1
6z

0 z−1
2z

]
, (3.39)

and [
Q1(z) Q2(z)

]
=
[

3
2

(z−4)z+1
2−2z2

]
. (3.40)

The interpolation functions are obtained as

ϕ̂1(ω) =
3e−2jω

(
−1 + ejω

)4
2ω4

, (3.41)

ϕ̂2(ω) =
e−2jω

(
−1 + ejω

)4 (
1 + ejω

(
−4 + ejω

))
(2− 2e2jω)ω4

. (3.42)

Their expression is given in Fourier domain because ϕ1 and ϕ2 appear not to have
a closed-form expression in the spatial domain. Upon inverting their Fourier trans-
forms, one notices that these two functions are not of finite support. In addition,
we have that ϕ1(k) = ϕ′2(2k + 1) = δ[k], and ϕ′1(2k + 1) = ϕ2(k) = 0 for all k ∈ Z.
This is reminiscent of the joint interpolation conditions (3.4) in the Hermite case.

Generalized Sampling using Hermite Splines

Hermite interpolation is also an instance of Papoulis’ generalization without band
limited constraints. In this framework, N = 2 and the sampling functions cor-
respond to ϕ̃1(t) = δ(t) and ϕ̃2(t) = δ′(t). The interpolation functions are the
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cubic Hermite splines ϕ1(t) = φ1( t2 ) and ϕ2(t) = 2φ2( t2 ) given by (3.2) and (3.3),
respectively. A function f is approximated from its measurements g1 and g2 as

f̃(t) =

2∑
i=1

∑
k∈Z

gi[k]ϕi(t− 2k) =
∑
k∈Z

f(2k)φ1

(
t− 2k

2

)
+ 2f ′(2k)φ2

(
t− 2k

2

)
.

(3.43)

3.2.2 Definition and Characterization of the Approximation
Error

Now that we understand how to build an approximation scheme, we focus on how
to evaluate and compare different ones. Any suitable pair of sampling and inter-
polation functions generates an approximation scheme. However, it comes at no
surprise that some choices of pairs are better than others. The quality of the ap-
proximation is evaluated in terms of approximation error which, for a function f ,
is computed as the L2 norm of the difference between the function and its approx-
imation. As discussed in 3.2.1, we only consider functions f that are sufficiently
regular such that 〈f, ϕ̃i〉L2

is properly defined for i = 1, . . . , N .
In all generality, let us consider N sampling functions ϕ̃ = (ϕ̃1, . . . , ϕ̃N ) ∈

(S′(R))
N

and interpolation functions ϕ = (ϕ1, . . . , ϕN ) ∈ (L2(R))
N

. As mentioned
above, the sampling functions specify the measurements we have on a given function
f . We consider the approximation space V (ϕ) as in (3.30). The approximation of
the function f is given by the projection

Qf =

N∑
i=1

∑
k∈Z
〈f, ϕ̃i (· −Nk)〉L2

ϕi (· −Nk) . (3.44)

Since V (ϕ) is a vector space, one can define the orthogonal projector which min-
imizes the approximation error. The weights yielding the least-square solution
are obtained by imposing a particular condition [94] on the sampling functions ϕ̃,
namely that

ϕ̃ = ϕd =

ϕ1,d

...
ϕN,d

 = Gϕ(ω)−1ϕ, (3.45)
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where Gϕ is the Gram matrix associated to ϕ, which is given by

Gϕ(ω) =
∑
k∈Z
ϕ̂(ω + 2kπ)ϕ̂∗T (ω + 2kπ) (3.46)

=

(∑
k∈Z ϕ̂1(ω + 2kπ)ϕ̂∗1(ω + 2kπ)

∑
k∈Z ϕ̂1(ω + 2kπ)ϕ̂∗2(ω + 2kπ)∑

k∈Z ϕ̂2(ω + 2kπ)ϕ̂∗1(ω + 2kπ)
∑
k∈Z ϕ̂2(ω + 2kπ)ϕ̂∗2(ω + 2kπ)

)
.

(3.47)

This particular collection of sampling functions are called the dual functions associ-
ated to ϕ and are denoted by ϕd. When ϕ̃ = ϕd, the operator Q is the orthogonal
projector over V (ϕ), and is denoted as P. In this situation, the approximation of
the function f is expressed as

Pf =

N∑
i=1

∑
k∈Z
〈f, ϕi,d (· −Nk)〉L2ϕi (· −Nk) . (3.48)

We now have all the tools needed to formally define the approximation error. For
a general pair of ϕ̃ and ϕ, it is expressed as

Eϕ̃
ϕ(f) = ‖f −Qf‖L2

(3.49)

and, for the particular case of the orthogonal projector, as

Eϕ(f) = ‖f − Pf‖L2 . (3.50)

This means that Eϕ(f) = Eϕd
ϕ (f). We also have that Eϕ(f) ≤ Eϕ̃

ϕ(f), and the
equality is only reached when ϕ̃ = ϕd.

We introduce an additional important parameter, the sampling step T , which
defines a step size on the uniform sampling grid. Up to now, our approximation
schemes were relying on (generalized) samples taken on the integer grid, corre-
sponding to T = 1. Changing the sampling step T modifies the coarseness of the
approximation. In particular, we expect reduced T to yield better approximation
as the input function gets sampled more and more finely. At the limit case where
T goes to zero, we expect the error to converge to zero for functions that are
sufficiently smooth. We reformulate the approximation space for T > 0 as

VT (ϕ) =

{
N∑
i=1

∑
k∈Z

ci[k]ϕi

( ·
T
−Nk

)
: c[k] ∈ (`2(Z))N

}
(3.51)
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and the approximation of f from ϕ̃ and ϕ as

QT f =

N∑
i=1

∑
k∈Z

〈
f,

1

T
ϕ̃i

( ·
T
−Nk

)〉
L2

ϕi

( ·
T
−Nk

)
. (3.52)

Similarly, the orthogonal projector is redefined as

PT f =

N∑
i=1

∑
k∈Z

〈
f,

1

T
ϕi,d

( ·
T
−Nk

)〉
L2

ϕi

( ·
T
−Nk

)
(3.53)

where the ϕi,d are given by (3.45). The errors become

Eϕ̃
ϕ(f, T ) = ‖f −QT f‖L2

, (3.54)

Eϕ(f, T ) = ‖f − PT f‖L2
. (3.55)

Given an approximation scheme, the first question is whether or not the approx-
imation error Eϕ̃

ϕ(f, T ) actually decreases to zero as T → 0. This is ensured by
imposing specific conditions on ϕ and ϕ̃ [94] that we specify below. Assuming
that the error goes to zero as the sampling step vanishes, additional conditions can
be formulated to ensure that the error Eϕ̃

ϕ(f, T ) decreases following Cϕ̃
ϕ (f)TL. We

refer to the parameter L ≥ 1 as the rate of decay, while the constant Cϕ̃
ϕ (f) is called

the asymptotic constant of the approximation error. The asymptotic constant must
be different than zero. It is quantified knowing the rate of decay L as

Cϕ̃
ϕ (f) = lim

T→0
T−LEϕ̃

ϕ(f, T ). (3.56)

These different concepts are more easily understood visually. To do so, we con-
sider the following simple experiment. Given a collection of M samples of a function
f observed over the finite [0, 1] interval, we construct two different approximations.
The first one is the cubic B-spline interpolation of f from {f(k)}k=1,...,M . The
second one is the cubic Hermite interpolation of f from {f(2k), f ′(2k)}k=1,...,M2

.

Note that considering only samples at even locations for the Hermite case allows
having a comparable amount of information in the two schemes. We let T , the
sampling step, reduce to 0. For each value of T , we compute the approximation
error ‖f − QT f‖L2

. Results are shown in log-log scale in Figure 3.2 for three in-
teresting cases. The first one illustrates the error when approximating a function
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that is neither in the span of the cubic B-splines, nor in that of the cubic Hermite
splines. The two approximation errors behave in a similar way and are indistin-
guishable. In the second case, a cubic polynomial function is approximated. Since
such a function lives in the space generated by both the cubic B-splines and cubic
Hermite splines, the approximation is perfect straight from the start. Finally, the
third case shows the approximation error when considering a quadratic polynomial
that is of C1 but not C2 regularity. More precisely, we consider

f(t) =

{
(t− 0.5)2 t ≥ 0.5,

0 elsewhere.
(3.57)

The function (3.57) is therefore in the span of the cubic Hermite splines, but not
in that of the cubic B-splines. Provided that the sampling rate is reasonable (i.e.,
that the function is not undersampled), it is immediately perfectly reconstructed
with Hermite splines and the error remains null. Conversely, the error of the cubic
B-spline approximation decreases to zero as T diminishes. The rate of decay of the
approximation error can be read as the slope of the decreasing curve in the plots.
Here, we are dealing with cubic B-splines and therefore observe a rate of decay
of L = 4 [92]. The asymptotic constant corresponds to the value at the origin,
obtained by extending the approximation error line to the left until it crosses the
y-axis.

We now make a list of desired hypotheses on the interpolation functions ϕ and
the sampling functions ϕ̃ to study the errors Eϕ(f, T ) and Eϕ̃

ϕ(f, T ) in terms of
rate of decay and asymptotic constant. Such an analysis is provided in the case of a
single pair of sampling and interpolation functions in [92], and in [94] for the general
case of N ≥ 1. While [92] is targeted towards a signal processing audience, [94] is
written for approximation theorists and is thus more technical. In the following, we
use the notations of [92] and reformulate the results of [94] for the sake of readability.
We formally enunciate each of them and describe why they are of interest.

1. Sensible approximation scheme. First, VT (ϕ) (given by (3.51)) should be
a well-defined subspace of L2(R). Each function belonging to this space must
have a unique and stable representation, in the sense that there exists a unique
sequence of coefficients describing it. This is guaranteed if we hypothesize that
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(a) (b)

(c)

Figure 3.2: Illustration of the order of approximation. Approximation error of
cubic B-splines and cubic Hermite splines for decreasing sampling step size when
considering (a) a trigonometric function, which does not belong to the span of any
of the considered approximation functions; (b) a cubic polynomial function, which
belongs to the span of both the cubic B-splines and cubic Hermite splines; (c) a
function of C1 but not C2 regularity, which belongs to the span of the cubic Hermite
splines but not of the cubic B-splines. Note that 10−16 corresponds to the machine
precision and should therefore be understood as zero. Large jumps in the curves
are imputed to rounding errors for values that are close to the machine precision.
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the interpolation functions ϕ are in L2(R) and satisfy the Riesz condition

A

N∑
i=1

∑
k∈Z
|ci[k]|2 ≤

∥∥∥∥∥
N∑
i=1

∑
k∈Z

ci[k]ϕi(· −Nk)

∥∥∥∥∥
2

L2

≤ B
N∑
i=1

∑
k∈Z
|ci[k]|2 (3.58)

for any ci[k] ∈ l2(Z) with i = 1, . . . , N and 0 < A ≤ B <∞.

2. Rate of decay of the minimal error (PT f , orthogonal projector).
Now, assuming that the representation is stable, the approximation error
should vanish as T goes to zero. For this, the optimal error (i.e., the error
obtained with the orthogonal projector PT ) must at least have a rate of decay
of L = 1. This is guaranteed if the so-called Strang and Fix condition of order
1 is satisfied [95]. More generally, the synthesis functions are at least of order
L if and only if they satisfy the Strang and Fix condition of order L. The
optimal error then decreases with at least an Lth-order decay.

Proposition 1 (Reformulation of [94, Lemma 1] using the notations of [92,
II.D]). Let ϕ be such that {ϕi(· − Nk)}i=1,...,N,k∈Z is a Riesz basis. Then,
for L ≥ 1, the two following conditions are equivalent:

• Eϕ(f, T ) = O(TL),

• One can reproduce polynomial functions up to order L− 1, i.e.,

t` =

N∑
i=1

∑
k∈Z

ci,`[k]ϕi(t−Nk) for ` = 0, . . . , L− 1. (3.59)

The first condition sets an upper bound on the optimal error using the or-
thogonal projector Eϕ(f, T ). It implies that the error decays at least as TL,
although it can be faster. The second condition is the definition of synthesis
functions ϕ of order L, and corresponds to the Strang and Fix condition of
order L. It states that a set of synthesis function of order L allows repro-
ducing polynomials of degree up to L − 1. The Strang and Fix condition
of order 1 therefore translates to the reproduction of constants, also known
as partition-of-unity condition. An important consequence is that synthesis
functions of order L are also of order L−1, L−2, . . . , 1. The maximal value of
L for which the synthesis functions still satisfy the Strang and Fix condition
is referred to as the maximal order.
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3. Rate of decay of the general error (QT f). The approximation error from
the orthogonal projector PT is now under control. Our next desideratum
is to consider other projectors QT which are possibly suboptimal, but still
guarantee the same rate of decay of the error. This is satisfied if ϕ and ϕ̃
are quasi-biorthonormal of order L ≥ 1. The quasi-biorthonormality of order
L corresponds to the combination of the Strang and Fix condition of order L
as stated in (3.59) and the equality between the moments of ϕ̃ and ϕd up to
order L as given in (3.60) below.

Proposition 2 (Reformulation of [94, Definition 2 and Theorem 3] using
the notations of [92, II.D]). Let ϕ be such that {ϕi(· − Nk)}i=1,...,N,k∈Z is
a Riesz basis, and let us consider functions f that are bounded with bounded
derivatives up to order L. We assume that Eϕ(f, T ) = O(TL) for some
L ≥ 1. Then, the two following conditions are equivalent:

• Eϕ̃
ϕ(f, T ) = O(TL),

• For the dual function ϕd given by (3.45),∫
R
t`ϕ̃(t) dt =

∫
R
t`ϕd(t) dt for all ` = 0, . . . , (L− 1). (3.60)

4. Asymptotic constants. The previous points allow characterizing the rate
of decay of the errors from PT and QT . The last remaining step is the
computation of the asymptotic constants. To do so, we first introduce the
kernels

Emin(ω) =1 + ϕ̂∗T (ω)G−1
ϕ (ω)ϕ̂(ω), (3.61)

Eres(ω) =( ̂̃ϕ− ϕ̂d)∗T (ω)Gϕ(ω)( ̂̃ϕ− ϕ̂d)(ω), (3.62)

E(ω) =Emin(ω) + Eres(ω), (3.63)

where Gϕ is the Gram matrix (3.46). The kernel Emin relates to the minimum
error case achieved using the orthogonal projector (i.e., ϕ̃ = ϕd), and Eres

to the residual error arising when using sampling functions that differ from
the dual functions. We furthermore remark that Eres(ω) = 0 when ϕ̃ = ϕd,
as expected. The asymptotic constants are finally computed as follows.

Proposition 3 (Reformulation of [94, Theorem 4] using the notations of [92,
III]). Let ϕ be such that {ϕi(· −Nk)}i=1,...,N,k∈Z is a Riesz basis, and let us
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consider functions f that are square integrable with square integrable deriva-
tives up to order L. If the synthesis functions ϕ are of maximal order L, then

E(2L)
min (0) 6= 0 and

Eϕ(f, T ) ∼
T→0

√
E(2L)

min (0)

(2π)2L(2L)!
‖f (L)‖L2

TL. (3.64)

In addition, if ϕ and ϕ̃ are quasi-biorthonormal of order L, then E(2L)(0) 6= 0
and

Eϕ̃
ϕ(f, T ) ∼

T→0

√
E(2L)(0)

(2π)2L(2L)!
‖f (L)‖L2

TL. (3.65)

We hereafter provide a sketch of proof for Proposition 3. The asymptotic
constant of the minimum error, (3.64), is obtained with the following reason-
ing. First, under the assumptions of Proposition 3, the functions Emin and
Eres are 2L times differentiable at 0. The Taylor expansion of order L of E2

ϕ

is well-defined and is given by

E2
ϕ(f, T ) =

L∑
`=0

E(2`)
min (0)

(2π)2`(2`)!
‖f (`)‖2L2

T 2` +O(T 2(L+1)). (3.66)

Since the ϕ are of maximal order L, the first 2(L− 1) terms of (3.66) vanish,

i.e., E(0)
min(0) = . . . = E(2(L−1))

min (0) = 0 and the first non-vanishing term is

E(2L)
min (0). In the general case, we have that E(2`)(0) = E(2`)

min (0) + E(2`)
res (0). We

first notice that E(2`)
min (0) ≥ 0 and E(2`)

res (0) ≥ 0 for all 0 ≤ ` ≤ L. Additionally,

when ϕ and ϕ̃ are quasi-biorthonormal of order L, we have that E(2`)
res (0) =

0 for all ` ≤ L. We then obtain the asymptotic constant of the general
approximation error as (3.65). For the interested reader, all these arguments
are fully developed in [94].

Choosing a pair of ϕ and ϕ̃ that satisfy the quasi-biorthonormality condition
of order L therefore ensures that the error of the resulting approximation
scheme is decaying in a similar way as the minimum error case (i.e., when
ϕ̃ = ϕd).
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3.2.3 Numerical Comparisons

With these tools in hands, we proceed to compare different approximation schemes.
Our focus is on the approximation of both f and its derivative f ′. We first assume
that both f and its first Lth derivatives belong to L2(R). In order to be of interest
for us, an approximation scheme should approximate f and f ′ relying on QT f and
(QT f)′, respectively. We study the two components of the approximation error
vector

Eϕ̃
ϕ(f, T ) =

(
‖f −QT f‖L2

‖f ′ − (QT f)′‖L2

)
, (3.67)

with Eϕ̃
1,ϕ = ‖f −QT f‖L2 and Eϕ̃

2,ϕ = ‖f ′ − (QT f)′‖L2 .
The quality of the approximation is quantified by the rate of decay L and by the

two asymptotic constants. Note that, in (3.56), the asymptotic constant depends
on the function f being approximated. From (3.65), we are able to precisely identify
the nature of this dependency. It can thus be relieved by considering

Cϕ̃
ϕ =

(
limT→0 T

−L‖f (L)‖−1
L2
Eϕ̃

1,ϕ(f, T )

limT→0 T
−(L−1)‖f (L−1)‖−1

L2
Eϕ̃

2,ϕ(f, T )

)
. (3.68)

We rely on these constants as criterion to compare the approximation power of
different schemes having the same rate of decay L. The asymptotic constant of
Eϕ̃

2,ϕ can be computed with the same tools as that of Eϕ̃
1,ϕ. We indeed have that

(QT f)
′

=
1

T

N∑
i=1

∑
k∈Z

〈
f,

1

T
ϕ̃i

( ·
T
− k
)〉

L2

ϕ′i

( ·
T
− k
)
. (3.69)

This however does not fit our framework, as the approximation of the function must
rely on samples of the function itself. In other words, the sampling functions ϕ̃
must be applied to f ′. Relying on integration by parts, (3.69) is modified as

(QT f)
′

=
1

T

N∑
i=1

∑
k∈Z

〈
f ′,

1

T
ϕ̃i,int

( ·
T
− k
)〉

L2

ϕ′i

( ·
T
− k
)
, (3.70)

where the new sampling functions ϕ̃i,int(t) = −
∫ t
−∞ ϕ̃i(x)dx are better defined in

the Fourier domain as

̂̃ϕi,int(ω) = − 1

jω
̂̃ϕi(ω). (3.71)
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From (3.70), one can see that the rate of decay of the error on the derivative is
equal to L− 1. One power of T indeed gets lost in the differentiation process.

The first considered scheme is cubic B-spline interpolation (N = 1). The ap-
proximation is obtained as

(QT f) (t) =
∑
k∈Z

〈
f,
∑
n∈Z

(b3)−1[n]δ(· − n)

〉
L2

β3

(
t

T
− k
)
, (3.72)

with (b3)−1 defined in (3.34).
In the Hermite framework, sampling functions are taken to be ϕ̃1 = δ and

ϕ̃2 = δ′. The interpolation functions are the cubic Hermite splines, namely ϕ1 = φ1

from (3.2) and ϕ2 = φ2 from (3.3). The approximation scheme in the Hermite
setting therefore corresponds to

(QT f) (t) =
∑
k∈Z

f(2k)φ1

(
t

2T
− k
)

+ 2f ′(2k)φ2

(
t

2T
− k
)
. (3.73)

As a generalized sampling scheme involving the function and its first derivative,
interlaced derivative sampling is a good candidate for comparison. In this setting,
the sampling functions are ϕ̃1 = δ and ϕ̃2 = δ′

(
· − 1

2

)
. The interpolation functions

are constructed as described in Section 3.2.1 and yield ϕ1 and ϕ2 given by (3.41)
and (3.42). The resulting approximation is expressed as

(QT f) (t) =
∑
k∈Z

f(2k)ϕ1

(
t

T
− 2k

)
+ f ′(2k + 1)ϕ2

(
t

T
− 2k

)
. (3.74)

The shift of 1
2 on the derivative sampling is chosen so as to optimally tune this

scheme to get the lowest error when considering both Eϕ̃
1,ϕ and Eϕ̃

2,ϕ together.
Other shift values are observed to result in larger overall approximation errors, as
illustrated by those obtained with a shift of zero, corresponding to ϕ̃2 = δ′.

In neither of these frameworks do the sampling functions correspond to the dual
functions. For this reason, the relevant quantity is Eϕ̃

ϕ(f, T ). In all cases, results can
however be compared to the corresponding optimal asymptotic constant obtained
from (3.61). The main properties and asymptotic constants for cubic B-spline,
interlaced derivative sampling and cubic Hermite splines are provided in Table 3.1.
All methods have an order of approximation of L = 4 on the function. One order



54 Taming the Hermite Splines

Table 3.1: Comparison of approximation methods.

Approximation Method Cubic
B-splines

Generalized
Sampling

(shift of 1
2 )

Generalized
Sampling

(shift of 0)

Hermite
Splines

Interpolating 7 3 3 3
Finite Support 3 7 7 3
Closed-form expression 3 7 7 3

Rate of Decay (Eϕ̃
1,ϕ) 4 4 4 4

Asymptotic Constant (Eϕ̃
1,ϕ) 1

362880
1

362880
1

567000
1

362880

Ratio to optimal (Eϕ̃
1,ϕ) 3

10
3
10

15
32

3
10

Rate of Decay (Eϕ̃
2,ϕ) 3 3 3 3

Asymptotic Constant (Eϕ̃
2,ϕ) 1

30240
1

30240
1

23625
1

30240

Ratio to optimal (Eϕ̃
2,ϕ) 1 1 25

32 1

gets lost when approximating the derivative, and the error on f ′ therefore decreases
with an order of L = 3. With the exception of interlaced derivative sampling with
a shift of 0, their behavior is equivalent in terms of the value of their asymptotic
constant, both regarding the estimation of the function and of its first derivative.
Hermite interpolation is in this sense not a unique way of approximating a function
and its first derivative, even when one requires the error to remain close to optimal.
The notable remaining difference is that the Hermite scheme provides functions that
are simultaneously of finite support, which is not the case for interlaced derivative
sampling (see (3.41) and (3.42)), and interpolating, which is not the case for cubic
B-splines.

As a conclusion, there exists several approximation schemes given a function
and its first derivative. However, the cubic Hermite construction is the only one
which results in reconstruction functions that have a closed-form expression, a finite
support, and that are interpolating.

3.3 Optimality

The optimality properties of B-splines have been the topic of several research work,
which will be recalled in this chapter. We provide here analogous results for cubic
Hermite splines.

In the generalized sampling framework mentioned in Section 3.2, reconstruc-
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tion is based on variational principles [96]. In parallel, a statistical interpretation
can be given to deterministic spline-fitting methods through the minimal mean
square-error (MMSE) criterion, extending their use to the optimal reconstruction
of random processes in the least-square sense. In the following, we study optimality
properties of Hermite splines first in a purely variational formulation, and then in
the statistical framework of MMSE estimation.

3.3.1 Variational Formulation: Smoothness Properties

Variational formulations are commonly used to describe regularization constraints
in various kind of optimization procedures. The energy minimization properties of
spline interpolation are a strong justification for using splines in signal estimation
and reconstruction. Cubic splines can for instance be shown to have a minimum-
curvature property [97, 98], which tends to favor solutions with a low average cur-
vature, thus imposing some natural amount of smoothness. We hereafter show that
the Hermite interpolant has similar properties.

Optimal Smoothness of Hermite Splines

Cubic B-splines are said to provide optimal smoothness because of their minimum-
norm (or minimum-curvature) property. This result states that, given a set of nodes
in the [a, b] interval, the cubic spline interpolator is the one that minimizes∫ b

a

|f ′′(t)|2 dt (3.75)

among all interpolating functions f . This result is shown with some variations
in [99, Theorem 3.1.1] and [44, Theorem 1]. The optimal smoothness property of
Hermite splines, described in Theorem 1, is closely related to that of the cubic
B-splines.

Theorem 1. Let c, d ∈ `2(Z). Among all possible functions f : R→ R with f , f ′,
f ′′ ∈ L2(R), the optimal one that minimizes

‖f ′′‖L2
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subject to c[k] = f(k) and d[k] = f ′(k) for k ∈ Z is the Hermite interpolator fHer

defined as

fHer(t) =
∑
k∈Z

(c[k]φ1(t− k) + d[k]φ2(t− k)) . (3.76)

Proof. The existence and uniqueness of the Hermite interpolant given the sequences
c and d is ensured by Schoenberg’s work, as mentioned at the beginning of Sec-
tion 3.1. We then have to show that, for any f satisfying the two interpolation
constraints f(k) = c[k] and f ′(k) = d[k], we have

‖D2f‖2L2
= ‖D2fHer‖2L2

+ ‖D2(f − fHer)‖2L2
, (3.77)

where D2 denotes the second derivative operator d2

dt2 . If f = fHer, the second term
in (3.77) vanishes, implying that fHer is optimal among all solutions that interpolate
f . Let us take g = f − fHer. Then,

‖D2g + D2fHer‖2L2
= ‖D2fHer‖2L2

+ 2〈D2fHer,D
2g〉L2 + ‖D2g‖2L2

, (3.78)

and proving (3.77) reduces to demonstrating that

〈D2fHer,D
2g〉L2

= 0. (3.79)

By definition, fHer is given by

fHer(t) =
∑
k∈Z

(c[k]φ1(t− k) + d[k]φ2(t− k)) (3.80)

=

(
φ1 ∗

∑
k∈Z

c[k]δ(· − k)

)
(t) +

(
φ2 ∗

∑
k∈Z

d[k]δ(· − k)

)
(t), (3.81)

where ∗ denotes the continuous convolution and δ is the Dirac delta. In the Fourier
domain,

f̂Her(ω) = φ̂1(ω)C(ejω) + φ̂2(ω)D(ejω) = φ̂T (ω)

[
C(ejω)
D(ejω)

]
, (3.82)

with C(ejω) and D(ejω) the discrete Fourier transforms of the sequences c and d,
respectively. Since, from (3.14),

φ̂(ω) = R̂(ejω)ρ̂(ω) = R̂(ejω)

[
1
jω

]
ρ̂D4(ω), (3.83)
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then

f̂Her(ω) =

[
1
jω

]T
ρ̂D4(ω)R̂T (ejω)

[
C(ejω)
D(ejω)

]
. (3.84)

Let us remind that jωĝ(ω) = ĝ′(ω). Then,

〈D2fHer,D
2g〉L2 =

1

2π

∫
R
(jω)2f̂Her(ω)(jω)2ĝ(ω) dω (3.85)

=
1

2π

∫
R

[
1
jω

]T
R̂T (ejω)

[
C(ejω)
D(ejω)

]
ĝ(ω) dω (3.86)

=
1

2π

∫
R

〈
R̂T (ejω)

[
C(ejω)
D(ejω)

]
,

[
1
jω

]
ĝ(ω)

〉
dω (3.87)

=
1

2π

∫
R

〈
R̂(ejω)

[
C(ejω)
D(ejω)

]
,

[
ĝ(ω)

ĝ′(ω)

]〉
(3.88)

=
1

2π

∫ 2π

0

A(ejω)
∑
k∈Z

ĝ(ω + 2kπ) dω

+
1

2π

∫ 2π

0

B(ejω)
∑
k∈Z

ĝ′(ω + 2kπ) dω (3.89)

≤ ‖A(ejω)‖L2([0,2π])

∥∥∥∥∥∑
k∈Z

ĝ(ω + 2kπ)

∥∥∥∥∥
L2([0,2π])

· ‖B(ejω)‖L2([0,2π])

∥∥∥∥∥∑
k∈Z

ĝ′(ω + 2kπ)

∥∥∥∥∥
L2([0,2π])

, (3.90)

where A = R̂11C + R̂12D and B = R̂21C + R̂22D. In the development, (3.85) is
obtained from Parseval’s relation. Then, (3.86) comes from the definition of fHer

given in (3.84) and from the fact that ρ̂D4(ω)(jω)4 = 1. Finally, Cauchy-Schwarz
inequality yields (3.90). The terms ‖A‖L2([0,2π]) and ‖B‖L2([0,2π]) are bounded

since the four entries of R̂ given by (3.14) have finite L2 norms, and the C(ejω),
D(ejω) are discrete-time Fourier transforms of sequences c, d ∈ `2(Z). Finally, since
g = f − fHer and f(k) = fHer(k), f ′(k) = f ′Her(k) for all k ∈ Z, one obtains, by
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Poisson formula, that ∑
k∈Z

ĝ(ω + 2kπ) =
∑
k∈Z

g(k)e−jkω = 0, (3.91)∑
k∈Z

ĝ′(ω + 2kπ) =
∑
k∈Z

g′(k)e−jkω = 0. (3.92)

This concludes the proof.

3.3.2 Statistical Interpretation: MMSE Estimation

We now consider a statistical framework where the signal s is modeled as a process
in the continuous domain described by the linear stochastic differential equation
Ls = w, with L a differential operator referred to as the whitening filter, and w a
Lévy white noise [85]. This generic equation allows to easily describe an extended
family of processes, including Brownian motion and Lévy flights. We focus on the
statistical interpretation of spline optimality. In the stationary case, the generalized
spline interpolator is demonstrated to be the linear minimum mean-square error
(LMMSE) estimator of the stationary continuous-time stochastic process s(t), t ∈ R
whose whitening filter L is spline-admissible, given its discrete sequence of samples
{c[k]}k∈Z with c[k] = s(k) [100]. Spline interpolation is therefore optimal for the
estimation of a wide family of stationary random signals. Similar results have been
demonstrated in [101, 102]: the optimal interpolator for first-order Lévy processes
is always the piecewise linear B-spline. First-order Lévy processes, defined as s
such that Ds = w, are non-stationary but (wide-sense) self-similar. We aim at
extending these results to the Hermite spline interpolation framework, relying on
the two sequences of samples {c[k], d[k]}k∈Z, where c[k] = s(k) and d[k] = s′(k).

Second-Order Lévy Processes

We consider continuous-time random processes s that are solutions of the stochastic
differential equation

D2s = w, (3.93)

where D is the differential operator and w a Lévy white noise with finite variance
and zero mean, and with boundary conditions s(0) = s′(0) = 0. The process s
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is called a second-order Lévy process [85]. As the integration of a Lévy process,
second-order Lévy processes are smoother. Such processes include the integrated
version of the Brownian motion, which corresponds to Gaussian white noise exci-
tations (Figures 3.3a and 3.3b). They can as well be driven by compound-Poisson
white noise (Figure 3.3c), which yields piecewise linear processes, as illustrated in
Figure 3.3d. Second-order Lévy processes s are continuous and their derivatives s′

are first-order Lévy processes [103]. The samples of s and s′ at the integers are
therefore well-defined. The Poisson process is for instance not differentiable at the
jumps locations, but the intersection of the set of transitions and sampling loca-
tions (i.e., the integers) is empty with probability 1. A throughout mathematical
formulation of these objects can be found in [85, 104].

Let css(t, τ) = E{s(t)s(τ)} be the autocorrelation function of s. The second-
order Lévy process s is wide-sense self-similar with scaling order H = 3

2 , meaning

that s and a
3
2 s
( ·
a

)
have the same second-order statistics for all a > 0. Equivalently,

the autocorrelation function satisfies css(t, τ) = a3css
(
t
a ,

τ
a

)
. In the Gaussian case,

s is even strongly self-similar, which means that s and a
3
2 s
( ·
a

)
have the same law.

Moreover, s is non-stationary but has second-order stationary increments [85]. The
explicit expression of the autocorrelation function css is given in [105] as

css(t, τ) =
σ2

4

(
|t− τ |3 − |t|3 − |τ |3 + 3tτ(|t|+ |τ |)

)
(3.94)

and is normalized such that Var{s(t)} = σ2|t|3.

Our goal is to study the estimation of s at a fixed time point t0 given the
sequences {c[k], d[k]}k∈Z. Since the process s is of slow growth [106], its samples
fit the requirements enunciated in Section 3.1. Moreover, for a fixed τ = t0, the
derivative of css(t, t0) with respect to t can easily be computed and is always well-
defined. Similarly, the sequences {css(k, t0)}k∈Z and {c′ss(k, t0)}k∈Z are well-defined
for all k ∈ Z and are of slow growth. Hence, the function t 7→ css(t, t0) and its first
derivative can be expanded in a Hermite basis.
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Figure 3.3: Second-order Lévy processes for different types of noise. (a) Randomly
generated Gaussian noise and (b) corresponding second-order Gaussian process.
(c) Randomly generated Poisson noise with normally distributed jumps and (d)
corresponding second-order Poisson process. We use the conventional way of rep-
resenting white noises although they are not technically defined pointwise.
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Statistical Optimality of Hermite Spline

For a fixed t0, we determine a linear estimator of s(t0) given the random sequences
{c[k], d[k]}k∈Z. The estimator is a random variable of the form

s̃(t0) =
∑
k∈Z

(at0 [k]c[k] + bt0 [k]d[k]) , (3.95)

where at0 [k] and bt0 [k] are two infinite deterministic sequences of regression coef-
ficients. The linear minimum mean-square error (LMMSE) estimator s̃LMMSE(t0)
corresponds to the estimator s̃(t0) that minimizes the mean-square error E{|s(t0)−
s̃(t0)|2}.

The random sequences c[k] = s(k) and d[k] = s′(k), for all k ∈ Z, are in S′(Z)
almost surely [85]. We make sure that the summation in (3.95) is well-defined by
restricting ourselves to sequences at0 [k], bt0 [k] ∈ S(Z), the space of sequences that
decay faster than any polynomial.

Theorem 2. Let s be such that E{s(t)} = 0 and E{s(t)s(τ)} is equal to (3.94).
Then, the linear minimum mean-square error (LMMSE) estimators of s(t) and s′(t)
at t = t0 given the samples {c[k] = s(k), d[k] = s′(k)}k∈Z are

s̃LMMSE(t0) = sHer(t0) (3.96)

s̃′LMMSE(t0) = s′Her(t0), (3.97)

where
sHer(t) =

∑
k∈Z

(c[k]φ1(t0 − k) + d[k]φ2(t0 − k))

is the Hermite interpolation of {c[k], d[k]}k∈Z.

Proof. Note that, since boundary conditions impose that s(0) = s′(0) = 0, c[0] =
d[0] = 0, we exclude the index k = 0 through the proof for the sake of convenience.

A linear estimator is built by projecting the element to be estimated onto the
space spanned by the set of elements used for the estimation. The error is minimized
if it is orthogonal to the subspace spanned by the elements used for the estimation
or, in other term, if their inner products are equal to zero. This is referred to as
the orthogonality principle [107] and yields for every n ∈ Z

E{c[n](s(t0)− s̃LMMSE(t0))} = 0, (3.98)
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E{d[n](s(t0)− s̃LMMSE(t0))} = 0. (3.99)

By definition of the autocorrelation function, we have that

E{s(t)s(τ)} = css(t, τ) = css(τ, t), (3.100)

E{s′(t)s(τ)} = ∂1css(t, τ),

E{s(t)s′(τ)} = ∂2css(t, τ) = ∂1css(τ, t). (3.101)

Rearranging (3.98) and plugging in (3.95), we obtain

E{c[n]s(t0)} = E{c[n]s̃LMMSE(t0)} =
∑

k∈Z\{0}

(at0 [k]E{c[n]c[k]}+ bt0 [k]E{c[n]d[k]})

(3.102)

which, from (3.100) and (3.101), can be rewritten as

css(n, t0) =
∑

k∈Z\{0}

(at0 [k]css(n, k) + bt0 [k]∂2css(n, k)) . (3.103)

Doing similar operations with (3.99), we obtain the system
css(n, t0) =

∑
k∈Z\{0}

(at0 [k]css(n, k) + bt0 [k]∂2css(n, k))

∂1css(n, t0) =
∑

k∈Z\{0}
(at0 [k]∂1css(n, k) + bt0 [k]∂2∂1css(n, k)) .

(3.104)

We now observe that

css(n, t0) =
σ2

4

(
|n− t0|3 − |n|3 − |t0|3 + 3nt0(|n|+ |t0|)

)
(3.105)

and

∂1css(n, t0) =
3σ2

4
((n− t0)|n− t0|+ n(2t0sgn(n)− |n|) + t0|t0|)) . (3.106)

Therefore, css is piecewise cubic with C2 transitions, and ∂1css is piecewise cubic
with C1 transitions. They both belong to the space spanned by the cubic Hermite
splines φ1 and φ2 and can be expanded following (3.1) as

css(n, ·) =
∑

k∈Z\{0}

(css(n, k)φ1(· − k) + ∂2css(n, k)φ2(· − k)), (3.107)
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∂1css(n, ·) =
∑

k∈Z\{0}

(∂1css(n, k)φ1(· − k) + ∂2∂1css(n, k)φ2(· − k)). (3.108)

The system to solve thus becomes

∑
k∈Z\{0}

(css(n, k)φ1(t0 − k) + ∂2css(n, k)φ2(t0 − k))

=
∑

k∈Z\{0}
(at0 [k]css(n, k) + bt0 [k]∂2css(n, k))∑

k∈Z\{0}
(∂1css(n, k)φ1(t0 − k) + ∂2∂1css(n, k)φ2(t0 − k))

=
∑

k∈Z\{0}
(at0 [k]∂1css(n, k) + bt0 [k]∂2∂1css(n, k)) .

(3.109)

Let the sequences u and v be such that u[k] = φ1(t0 − k) − at0 [k] and v[k] =
φ2(t0 − k) − bt0 [k], k ∈ Z \ {0}. The system (3.109) can be reformulated in blocs
matrix notation as [

A B
BT C

] [
u
v

]
=

[
0
0

]
, (3.110)

where [A]n,k = css(n, k), [B]n,k = ∂2css(n, k), [BT ]n,k = ∂1css(n, k) (see (3.101))
and [C]n,k = ∂1∂2css(n, k), with a slight abuse of notation from the fact that these
sequences and matrices are bi-infinite. To finish the proof, we observe that

[
u
v

]T [
A B
BT C

] [
u
v

]
= Var

 ∑
k∈Z\{0}

(u[k]s(k) + v[k]s′(k))

 = 0, (3.111)

which implies that
∑
k∈Z\{0} (u[k]s(k) + v[k]s′(k)) = 0 almost surely. The only

solution is therefore u[k] = v[k] = 0 for all k ∈ Z \ {0}. Indeed, if one of the u[k] or
v[k] is nonzero, say for instance u[k0], it implies that s(k0) can be deterministically
evaluated from the values of all the s(k) and s′(k) except s(k0), which is absurd.
Therefore,

at0 [k] = φ1(t0 − k),

bt0 [k] = φ2(t0 − k),
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and the LMMSE is finally given by

s̃LMMSE(t0) = sHer(t0) =
∑
k∈Z

(s(k)φ1(t0 − k) + s′(k)φ2(t0 − k)) . (3.112)

The proof for the problem of estimating s′(t0) from {s(k), s′(k)}k∈Z is obtained
with a similar development starting from

E{s(n)(s′(t0)− s̃′LMMSE(t0))} = 0, (3.113)

E{s′(n)(s′(t0)− s̃′LMMSE(t0))} = 0, (3.114)

and the LMMSE is given by

s̃′LMMSE(t0) = s′Her(t0) =
∑
k∈Z

(s(k)φ′1(t0 − k) + s′(k)φ′2(t0 − k)) . (3.115)

The LMMSE is the linear estimator that provides the minimum mean square
error. In the Gaussian case, it can be shown from Bayes theorem that the LMMSE
is actually the MMSE [107], which is the best overall estimator. This leads to
Proposition 4.

Proposition 4. If w is Gaussian, then the Hermite interpolation of
{s(k), s′(k)}k∈Z is also the MMSE of w.

Second-order Lévy processes s such that D2s = w are an example of processes
that satisfy the assumptions of Theorem 2. It is worth noting that, in the Poisson
case, our result implies that the best reconstruction of a piecewise linear (second-
order Poisson) process is a piecewise cubic (Hermite) function. This result, which
appears counter intuitive at first, can be explained as follows. On one hand, the
second-order Poisson process is generated by the double integration of an impulsive
noise, with non-uniformly distributed impulse locations. On the other hand, the
Hermite interpolation scheme is cardinal with knots placed at the integers. In this
setting, one cannot simply linearly interpolate between the “knots” of the second-
order Poisson process, as they are not located at the integers.

Theorem 2 and Proposition 4 provide solid statistical ground for using Hermite
spline interpolation when dealing with second-order Lévy processes. The novelty of
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these results is twofold. First, they rely on a sampling scheme involving both s(k)
and s′(k). Then, in addition to the optimal estimator of s(t0), they simultaneously
give the optimal estimator of the derivative s′(t0), which happens to be the deriva-
tive of the Hermite spline interpolator. Our results are strongly linked to [100, 101]
as they also highlight the optimality of splines for the estimation of random pro-
cesses from their samples. Our contribution however differs in two ways: first from
the fact that the samples s′(k) are provided in addition to the s(k), and then from
the class of studied processes, which are non-stationary (unlike in [100], where the
stationary case is investigated) and second-order (unlike in [101], where first-order
Lévy processes are considered).

Illustrative Examples

We illustrate the Hermite spline reconstruction from samples of a second-order Lévy
process in the Gaussian case. A realization of a continuous-time random process
s satisfying D2s = w and its continuous-time derivative s′ are represented in Fig-
ures 3.4a and 3.4b, respectively. As, formally, s = D−2w (with suitable boundary
conditions), the process s was generated by performing two rounds of integration on
a Gaussian white noise while the derivative s′ was obtained by integrating the noise
only once. The process and its derivative were sampled at the integers, yielding the
two discrete sequences s(k) and s′(k) represented in Figures 3.4c and 3.4d. Finally,
the Hermite interpolation scheme (3.1) was applied to reconstruct the process s from
its samples {s(k), s′(k)}k∈Z, yielding the continuous-time process sHer displayed in
Figure 3.4e. Similarly, the scheme was applied to reconstruct the continuously
defined derivative s′ from the samples {s(k), s′(k)}k∈Z, yielding s′Her shown in Fig-
ure 3.4f. The absolute reconstruction error on the process, |sHer(t)−s(t)|, is smaller
than 0.01 (Figure 3.4g), and that on its derivative, |s′Her(t)− s′(t)|, is smaller than
0.05, as seen in Figure 3.4h.

These optimality results hold for uniform samples. However, we expect similar
findings in a non uniform sampling scheme, as it is already known in the case
of reconstruction with mere function samples [102]. An extension of the problem
would be to investigate the optimal estimation algorithm for continuous processes
given collections of noise-corrupted measurements. There, we again expect to obtain
results analogous to the known ones in the ordinary sampling case presented in [100].
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Figure 3.4: Hermite spline reconstruction of a sampled second-order Gaussian pro-
cess. (a) Realization of a second-order Gaussian process s and (b) its continuous
derivative s′. (c) Discrete sequence of samples s(k) drawn from s and (d) sequence
of samples s′(k) drawn from s′, the first derivative of s. (e) Reconstruction sHer of
the original continuous-time process s using Hermite spline interpolation. (f) Re-
construction s′Her of the original continuous-time derivative s′ using Hermite spline
interpolation. Reconstruction errors (g) (sHer − s) and (f) (s′Her − s′).
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3.4 Towards Hermite L-Splines

In the following, we discuss a generalization of cubic Hermite splines. We pro-
ceed in two steps. First, we consider Hermite constructions including sequences of
samples from higher order derivatives. As a consequence, more spline generators
are required. These higher order polynomial Hermite families are already covered
by the theory of I. J. Schoenberg [74, 75], although the explicit expressions of the
resulting bases are not necessarily provided. The second direction we explore is the
development of novel Hermite spline constructions by considering other differential
operators. The underlying idea is that every spline construction is associated to
a particular differential operator, as introduced in [78] and [79, Chapter 10]. By
considering different operators, alternative spline families can be constructed. This
unifying theory, referred to as L-splines, is further developed in [80].

3.4.1 Higher Order Polynomial Hermite Splines

Higher-order families of Hermite splines are obtained by increasing the number of
considered derivatives and, as a consequence, of generators. The immediate next
construction after cubic Hermite splines yields quintic polynomial splines. Three
generators φ1, φ2, and φ3 are involved, and their supports are all restricted to the
[−1, 1] interval. The functions φ1, φ2 and φ3 and their first and second derivatives
φ′1, φ′2, φ′3, φ′′1 , φ′′2 , and φ′′3 satisfy the joint interpolation conditions

φ1(k) = δ[k], φ′2(k) = δ[k], φ′′3(k) = δ[k],

φ′1(k) = 0, φ′′1(k) = 0, φ2(k) = 0, φ′′2(k) = 0, φ3(k) = 0, φ′3(k) = 0,
(3.116)

for all k ∈ Z. Their expressions are given by

φ1(t) =

{
1− 10|t|3 + 15t4 − 6|t|5 for 0 ≤ |t| ≤ 1
0 for |t| > 1,

(3.117)

φ2(t) =

{
t− 6t3 + 8t|t|3 − 3t5 for 0 ≤ |t| ≤ 1
0 for |t| > 1.

(3.118)

φ3(t) =

{
1
2

(
t2 − 3|t|3 + 3t4 − |t|5

)
for 0 ≤ |t| ≤ 1

0 for |t| > 1.
(3.119)
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The functions φ1, φ2 and φ3 along with their first and second derivatives are repre-
sented in Figure 3.5. They satisfy the second-order interpolation properties (3.116).
Functions interpolated with this scheme are splines of degree 5 with C2 regularity
at the knots. In comparison, quintic B-splines are also of degree 5 but are of C4

regularity at the knots.
The construction of higher-order polynomial Hermite spline families follows a

path analogous to that of the design of B-splines of increasing order. These two
strategies pursue similar goals under different sets of constraints. We propose the
following unifying vision. The starting point is linear interpolation, or linear B-
splines, which are the simplest way of interpolating a set of points. From there,
several generalizations can be considered.

• One of them is to increase the smoothness of the scheme, related to the
approximation power, while keeping a single basis function. This yields to
the construction of B-splines, and comes at the cost of losing interpolation
properties and having larger and larger supports for increasing smoothness.

• A second one is to increase the smoothness of the scheme but require that
the interpolation conditions remain. A powerful way to increase smoothness
is then to use several basis functions jointly. Different bases are then used
for different samples types, e.g. one basis for even and one basis for odd
sample indices. This corresponds to multigenerator constructions as studied
in [91, 94].

• Another variation of the previous solution is to use the same basis for all
samples, but to have different bases handling different orders of differentiation
of the function. This corresponds to the Hermite construction.

Interestingly, it seems to be a general case that saving the interpolation condi-
tions imposes for basis functions to remain of support 2. This was observed in all
studied cases, although not demonstrated formally. The linear spline can thus be
considered as the common starting point of both the classical and Hermite splines
constructions.

3.4.2 Exponential Hermite Splines

A framework to build exponential splines as generalization of B-splines was intro-
duced in [108]. There, a continuous-time function s(t), t ∈ R is a called a cardinal
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Figure 3.5: Second-order (quintic) polynomial Hermite spline basis functions and
their first and second derivatives.
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L-spline if and only if

Ls(t) =
∑
k∈Z

a[k]δ(t− k), (3.120)

with a[k] ∈ S′(Z). In particular, B-splines are obtained when the considered differ-
ential operator corresponds to an nth order derivative, i.e., L = Dn. The first-order
differential operator, D, generates β0(t), the B-spline of degree 0, yielding piecewise-
constant functions. Exponential splines are obtained when considering operators
of the type L = D− αI, where α ∈ C is a constant coefficient.

The Hermite construction allows for an analogous generalization. Although
providing a complete theory in the spirit of [80] is not the goal of this thesis, we
investigate an example of other Hermite spline family. We only consider differential
operators of the form L = α0I+ ...+αNDN = P (D), where P denotes a polynomial
function. The degree N ≥ 1 of P is by extension called the degree of the operator.
The particular case of cubic Hermite splines we considered up to now corresponds
to L = D4. Increasing the Hermite order amounts to consider operators of the form
Dn for increasing values of n. The second-order Hermite splines introduced in 3.4.1
for instance correspond to L = D6.

In this spirit, we construct the first-order exponential Hermite spline functions
associated to the operator D−αI, with α ∈ C a constant coefficient. They generalize
the first-order polynomial Hermite splines. Exponential splines are relevant to
model circles and ellipses when α is chosen to be a purely imaginary number. We
investigated this additional family in [109]6. The considered differential operator is

L = D4 + 4π2

M2 D2 = D2(D− j2π
M I)(D+ j2π

M I). The corresponding exponential Hermite
spline generators are specified as

φ1,M (t) =

{
g1,M (t) t ≥ 0

g1,M (−t) t < 0
(3.121)

φ2,M (t) =

{
g2,M (t) t ≥ 0

−g2,M (−t) t < 0
(3.122)

6This work has been carried out in collaboration with Profs. C. Conti, Dipartimento di Ingeg-
neria Industriale, Università degli Studi di Firenze, Florence, Italy, and L. Romani, Department
of Mathematics and Applications, University of Milano-Bicocca, Minalo, Italy.
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built using the functions

g1,M (t) =

{
a1(M) + b1(M)t+ c1(M)ej 2πM t + d1(M)e−j 2πM t 0 ≤ t ≤ 1,

0 elsewhere,
(3.123)

g2,M (t) =

{
a2(M) + b2(M)t+ c2(M)ej 2πM t + d2(M)e−j 2πM t 0 ≤ t ≤ 1,

0 elsewhere,
(3.124)

where M is a positive integer. The coefficients of the generators are expressed as

a1(M) =
j 2π
M +1+ej

2π
M (j 2πM −1)

q(M) , b1(M) = − j 2πM (ej
2π
M +1)

q(M) ,

c1(M) = 1
q(M) , d1(M) = − ej

2π
M

q(M) ,

a2(M) = p(M)

j 2πM (ej
2π
M −1)q(M)

, b2(M) = − ej
2π
M −1
q(M) ,

c2(M) =
ej

2π
M −j 2πM −1

j 2πM (ej
2π
M −1)q(M)

, d2(M) = − ej
2π
M (ej

2π
M (j 2πM −1)+1)

j 2πM (ej
2π
M −1)q(M)

,

with

p(M) = j
2π

M
+ 1 + ej 4πM

(
j
2π

M
− 1

)
,

q(M) = j
2π

M
+ 2 + ej 2πM

(
j
2π

M
− 2

)
.

We display φ1,M and φ2,M along with their derivatives in Figure 3.6. Similarly as
classical polynomial Hermite splines, the support of these two functions is limited to
the [−1, 1] interval. The generating functions φ1,M and φ2,M and their derivatives
φ′1,M and φ′2,M also satisfy the joint interpolation conditions

φ1,M (k) = δ[k], φ2,M (k) = 0, φ′1,M (k) = 0, φ′2,M (n) = δ[k] (3.125)

for all k ∈ Z. The novelty is that these basis functions reproduce the function space
{1, t, ej 2πtM , e−j 2πtM }. Hence, they generate ellipsoid and circular curves. Exponential
Hermite splines can for instance represent perfect circles with M control points,
whereas an infinity would be required with polynomial Hermite splines. Note that,
as M grows to infinity, φ1,M and φ2,M , the exponential Hermite splines, converge to
φ1 and φ2, the polynomial Hermite splines. Additional mathematical properties of
Hermite exponential splines, including their associated vector subdivision scheme,
are investigated and discussed in [110].
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Figure 3.6: Ellipse-reproducing Hermite exponential B-spline basis functions and
their first derivatives, represented for M = 20.



Chapter 4

Designing Feature Detectors

In this chapter, we focus on our second ingredient, namely detectors providing in-
formation about local features in the image. We study steerable filters as a possible
way to design such tools. We first recall the steerable filter formalism focusing
on the particular family of polar separable functions. We highlight two important
elements in their construction, namely an isotropic, radial part and a set of circular
harmonics determining the angular part. We then separately investigate how each
of these two elements can be tuned and how it influences the properties of the re-
sulting detector. Finally, we discuss a learning-based scheme that is currently under
development. It allows creating custom steerable filters to detect features of inter-
est from a template. The work presented in this chapter results from collaborations
with Zs. Püspöki for the study of circular harmonics and angular profiles [111] and
P. Pad for the investigation of radial profiles [112, 113]. The learning framework
discussed at the end is ongoing research from A. Depeursinge and J. Fageot1. We
included it for two main reasons. Firstly, it lies in the continuity of our work on
the design of radial and angular profiles, and, secondly, it is being developed so as
to be used in the landmark snake framework presented in Chapter 5.

Through the chapter, we denote the two-dimensional Fourier transform of a
generalized function f ∈ S ′(R2) as F{f} = f̂ , which is computed, when f is in

1All collaborators mentioned here are with the Biomedical Imaging Group, EPFL, Lausanne,
Switzerland.
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L1(R2), as

f̂(ω) =

∫
R2

f(x)e−j〈x,ω〉dx, (4.1)

for x = (x, y) and ω = (ωx, ωy). We indicate the standard vector scalar product
and associated norm as 〈·, ·〉 and ‖ · ‖, respectively. Inner products and norms on
function spaces are denoted in a similar way, with the function space indicated as a
subscript. For instance, the classical L2 inner product and norm are designated as
〈·, ·〉L2

and ‖·‖L2
, respectively. We put the arguments of operators in curly brackets

and the arguments of functionals in parentheses. When there is no ambiguity, we
may choose to do away with brackets and parentheses, a typical case being the
gradient ∇.

4.1 A Reminder on Steerable Filters

Feature detection refers to the problem of identifying particular patterns or ele-
ments in images. When performing feature detection, one is generally interested
in identifying the feature of interest regardless of its orientation. This can be
performed through rotated template matching. For a 2-dimensional image f and
feature template h, the detection problem is formulated as

θ∗0(x) =arg max
θ0

(f ∗ h(−Rθ0 ·)) (x), (4.2)

µ(x) =
(
f ∗ h(−Rθ∗0 (x)·)

)
(x), (4.3)

where Rθ denotes a rotation matrix and ∗ is the convolution operation. The mag-
nitude and orientation of the feature at position x = (x, y) are given by µ and θ∗0 ,
respectively. In its original formulation, the template matching approach is com-
putationally heavy as it requires the discretization of the angle θ0 and one filtering
operation for each rotated template.

The concept of steerable filters has been introduced by Freeman and Adel-
son [114] as a mean to perform rotated template matching at a lighter computa-
tional cost. In their formulation, the feature template, or detector, is chosen such
that any rotated version of it can be expressed with linear combinations of a finite
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number of basis filters. Formally, a steerable detector h can be expressed as

h(Rθ0x) =

N∑
n=1

cn(θ0)hn(x), (4.4)

where Rθ0 is a rotation matrix, h1, ..., hN are the basis filters, and c1(θ0), ..., cN (θ0)
are some coefficients. Importantly, the steerability property can be equivalently
shown in the space and frequency domains. Remembering that applying a rota-
tion in the spatial domain also corresponds to a rotation in the frequency domain
provides a good intuition towards this result. The advantage of steerable filters
then stems from the fact that no discretization is needed, and the filter can be
continuously steered in θ0 to find the angle of maximum filter response. A classical
example is the class of detectors h of the form

h(x) =

N∑
n=1

n∑
i=0

an,i
∂n−i

∂xn−i
∂i

∂yi
g(x), (4.5)

where g is an arbitrary isotropic window function and N is referred to as the order of
the detector. Steerable edge, ridge and wedge detectors can be constructed relying
on this formalism [31].

Let us consider any polar-separable function h
(n)
pol(r, θ) = hrad(r)ejnθ with r ∈

R+, θ ∈ [0, 2π), and n ∈ Z. The isotropic, radial part of every h
(n)
pol is similar and

is denoted by hrad. The angular part is a purely complex exponential that depends

on the value of n following ejnθ. Then, h
(n)
pol(r, θ) is steerable since, under the

application of a rotation matrix Rθ0 , it is equal to h
(n)
pol(r, θ + θ0) = h

(n)
pol(r, θ)e

jnθ0 .
Consequently, functions expressed as linear combinations of polar-separable basis

filters h
(1)
pol, ..., h

(N)
pol following

h(r, θ) =
∑
n∈S

cnh
(n)
pol(r, θ), (4.6)

with S a finite set of elements n ∈ Z, are steerable as well since

h(r, θ + θ0) =
∑
n∈S

ejnθ0cnh
(n)
pol(r, θ). (4.7)
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Note that, in this construction, h is polar-separable as well because all h
(1)
pol, ..., h

(N)
pol

have the same radial part, which does not depend on n. The form (4.6) characterizes
the subclass of steerable filters that we study in Sections 4.3 and 4.2.

An additional refinement is the construction of steerable wavelets, introduced by
E. Simoncelli with the steerable pyramid [115]. This opens the way to the design of
rotation- and scale-covariant feature detectors. In this framework, steerable filters

are built following (4.6): the h
(n)
pol(r, θ) are composed of a unique isotropic wavelet

profile for the radial part (that is common for each of the h
(n)
pol(r, θ)), which is then

given angular selectivity. The isotropic profile allows performing classical multiscale
wavelet analysis, and extracting isotropic image features as well as isolated singu-
larities. The angular selectivity generates the multiorientation counterpart, which
capture directional structures such as edges and curvilinear features. Building up
on this idea, M. Unser and N. Chenouard proposed a general formulation for con-
structing tight steerable wavelet frames relying on the Riesz transform [116, 117].
There, the generalized Riesz transform of order n of a function f is defined as

Rnf(x)
F←→ ejϑnf̂pol(w, ϑ), (4.8)

with w ∈ R+ and ϑ ∈ [0, 2π). We refer the reader to [116] for an exhaustive list of
properties of the generalized Riesz transform.

To build a steerable tight wavelet frame, let us first consider ρ(ω), a purely
radial profile in the frequency domain such that

1. ρ(ω) = 0 for all ω > π, (4.9)

2.
∑
i∈Z
|ρ(2iω)|2 = 1, (4.10)

3.
dnρ

dωn
(ω)
∣∣
ω=0

= 0 for n = 0, ..., N, for a fixed N. (4.11)

Then, the basis functions are built from the isotropic generator ψ and given by

ψi,k(x) = ψi(x− 2ik) with ψi(x) = 2−iψ
( x

2i

)
(4.12)

with i ∈ Z, k ∈ Z2, and ψ̂(ω) = ρ(ω) where ω = (w cos(ϑ), w sin(ϑ)). These basis
generate a tight wavelet frame of L2(R2) and have vanishing moments up to order
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N [116]. Any function f ∈ L2(R2) can therefore be expanded as

f(x) =
∑
i∈Z

∑
k∈Z2

〈f, ψi,k〉L2ψi,k(x). (4.13)

The generalized Riesz transform (4.8) can now be combined with the wavelet
frame generated by ψ to yield steerable wavelets. To do so, let us first define

ξ(n)(x) = Rnψ(x)
F←→ ξ̂(n)(ω) = ρ(ω)ejϑn. (4.14)

The isotropic wavelet at scale i ∈ Z and location (grid point) 2ik, k ∈ Z2 is of the
form

ξ
(n)
i,k (x) = Rnψi,k(x) (4.15)

and, in Fourier domain,

ξ̂
(n)
i,k (ω) = F{Rnψi(· − 2ik)}(ω)

= ejnϑ2iψ̂(2iω)e−j〈2ik,ω〉

= 2iρ(2iω)ejnϑ−jωkω cos(ϑ−ϑk),

(4.16)

with 2ik = ωkejϑk .
The primal isotropic wavelet frame {ψi,k}, i ∈ Z, k ∈ Z2 of L2(R2) can be

mapped into a steerable wavelet frame {ψ(m)
i,k }, i ∈ Z, m = 1, ...,M , k ∈ Z2 of

L2(R2) through the multiorder generalized Riesz transform as ψ(1)

...
ψ(M)

 = U

 ξ(n1)

...
ξ(nN )

 , (4.17)

where U is a (possibly complex-valued) shaping matrix of size M ×N with M ≥ 1
such that UHU = diag(d1, ..., dN ) is diagonal with

∑
n∈S dn = 1 [116, Proposition

4.2]. Note that the exponent H denote the Hermitian transpose of a matrix, which
corresponds to the complex conjugate of its transpose. The integers of the set
S = {n1, ..., nN} are referred to as harmonics and the m = 1, ...,M as channels.
The value of N appearing in (4.11) is chosen by considering the orders of the Riesz
transform in the set of harmonics [116].
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The steerability property can be verified by observing two things. First, the
ψ(m) are polar-separable in the Fourier domain since they correspond to a linear
combination of polar separable basis sharing the same radial part. Second, the
number of elements in the sum is finite since S is of finite dimension. We indeed
have

ψ(m)(x) =
∑
n∈S

um,nRnψ(x)
F←→ ψ̂(m)(ω) =

∑
n∈S

um,nξ̂(n)(ω) (4.18)

= ρ(ω)
∑
n∈S

um,nejϑn, (4.19)

where the um,n are the elements of the mth row of U.
For a function f(x) ∈ L2(R2), the corresponding steerable wavelet coefficients

are given by

wm,i[k] = 〈f, ψ(m)
i,k 〉L2

, (4.20)

and allow reconstructing the signal as

f(x) =
∑
i∈Z

∑
k∈Z2

M∑
m=1

wm,i[k]ψ
(m)
i,k (x). (4.21)

We now give specific example of interesting steerable wavelet transforms that
can be generated with this framework.

• The two gradient wavelets (∂xψ1, ∂yψ1) = ∇ψ1 for edge detection, obtained
with S = {−1, 0, 1} and

U =

(
j
2 0 j

2
− 1

2 0 1
2

)
, (4.22)

where ψ1 = (−∆)−
1
2ψ is a smoothed version of ψ. This results in filters

than attenuate noise while having an edge detector effect, as expected from
standard gradient approaches.

• The three Hessian wavelets (∂xxψ2,
√

2∂xyψ2, ∂yyψ2) for ridge detection, ob-
tained with S = {−2,−1, 0, 1, 2} and

U =

 − 1
4 0 − 1

2 0 − 1
4

− j

2
√

2
0 0 0 j

2
√

2
1
4 0 − 1

2 0 1
4

 , (4.23)
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where ψ2 = (−∆)−1ψ is a smoothed version of ψ like in the gradient case.

The two key elements of steerable filters constructed as such are thus the
isotropic wavelet ρ(ω), which imposes the radial profile, and the parameters of
the generalized Riesz transform, namely the set of harmonics S and the shaping
matrix U, which dictate the angular behavior2. In the two following sections, we
investigate each of these two aspects.

4.2 Tuning the Angular Profile

In our steerable filter construction, the angular profile is imposed by the choice of
the harmonics and of the shaping matrix. One can design filters to detect particular
features by identifying the right set of harmonics and the corresponding shaping
matrix coefficients. In this spirit, our work [111] focuses on the design of shaping
matrices to generate detectors for different types of symmetric patterns. To do so,
we define an angular energy concentration of the form

∑
n unξ

(n), where ξ(n) = Rnψ
as in (4.14). This amounts to considering matrices U that are composed of only
one row, and thus yield a single wavelet. We then optimize the energy with respect
to the angular weights un that control its concentration along the desired pattern,
with u = (u1, u2, ..., uN ) and uHu = 1. The optimal solution can be found through
an eigendecomposition, similarly as in the work of D. Slepian [118].

The radial profile of the filters is here not the topic of study. We thus choose
a radial profile that remains fixed throughout this section. We pick Simoncellis
isotropic wavelet [119], which is inspired from biological vision and has several
well-established applications in image analysis. We recall its definition as

ρ(ω) =

{
cos
(
π
2 log2

(
2ω
π

))
π
4 < |ω| < π,

0 otherwise.
(4.24)

It is worth noting that Simoncelli’s isotropic wavelet satisfies conditions (4.9),
(4.10), and (4.11) for any value of N ≥ 0 [120].

2The generalized Riesz-wavelet transform has been implemented for various useful shaping
matrices as a Java-based plug-in for the open-source image-analysis software ImageJ [9].
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4.2.1 Design of Specific Angular Profiles

We briefly review the core ideas introduced in [111] and refer the interested reader
to the paper for more mathematical details.

K-fold Symmetries

To design a detectors of patterns with K-fold symmetries, we propose to impose
the same K-fold-symmetric pattern on ψ. We achieve this by minimizing a well
chosen energy functional. In the case of a unimodal detector, we are looking for the
angular profile that is most concentrated around the angle 0. We are thus targeting
a minimum-variance solution, which results in an energy that concentrates around
a chosen axis. We can formulate this energy optimization either in the spatial or
Fourier domain. Both designs are appropriate, each one having its own advantages
and drawbacks.

The spatial quadratic energy term we propose to minimize is of the form

E{ψ} =
1

2π

∫ ∞
0

∫ π

−π
|ψ(r, θ)|2w(θ)dθrdr, (4.25)

where w is an K-fold-symmetric non-negative weighting function composed of K
equidistant minima on the unit circle in order to favor K-fold-symmetric solutions.
Minimizing E forces the solution ψ to be symmetrically localized near the K-fold
minima. Once the wavelet ψ is found, its translations and dilations will naturally
share the optimal angular profile around their center. Expanding ψ as

∑
n∈S unξ

(n)

and imposing u to be normalized leads to a quadratic optimization problem with
quadratic constraints that can be solved through an eigendecomposition. Noting
that the ξ(n) are polar-separable, the problem can be reformulated as the minimiza-
tion of

E = uHWu (4.26)

with quadratic constraints (uHu = 1). Each entry of the matrix W is composed of
an angular part corresponding to the Fourier coefficients of w(θ) and of a radial part
computed from the radial part of ξ(n), which results in Hankel-like integrals. For
detailed computations and the precise definition of W, we point the reader to [111,
Equations (22) to (26)]. Since (4.26) is a standard eigenvalue problem, minimizing
the energy functional is equivalent to finding the eigenvector that corresponds to
the smallest eigenvalue of W. We note that the matrix W is positive-semi-definite
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(a) (b) (c)

Figure 4.1: (a) Magnitude, (b) real, and (c) imaginary parts of a three-fold-
symmetric wavelet designed using the energy functional in the space domain and
visualized in the space domain, with S = {3n : n = −8, ..., 8} as harmonics. Note
that, since the chosen set of harmonics is symmetric, the filter is purely real and
its imaginary part is equal to zero.

since it is derived from a non-negative weight function, which itself defines a non-
negative energy. A particular example of a three-fold-symmetric wavelet obtained
by the proposed method is shown in Figure 4.1. The weight function w is 2π

3 -

periodic with w(θ) =
(

3θ
π

)2
for |θ| ≤ π

3 to achieve maximal energy concentration
about the minima in the sense of variance. An example of a complex threefold-
symmetric wavelet obtained by the proposed method is presented in Figure 4.2.

Since rotations and symmetries in the space domain carry over to the frequency
domain, we can formulate our minimization problem in either one. The advantage
of the frequency-domain formulation is to avoid the computation of Hankel-like
integrals since, in the Fourier domain, the radial part of the wavelet has no effect
on the optimization.

The Fourier-domain energy functional E is defined as

E{ψ̂} =
1

2π

∫ ∞
0

∫ π

−π
|ψ̂(ω, ϑ)|2w(ϑ)dϑrdr, (4.27)

where w ≥ 0 is an K-fold-symmetric weighting function with K equidistant minima
on the unit circle. This forces the solution ψ̂ to be localized symmetrically near
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(a) (b) (c)

Figure 4.2: (a) Magnitude, (b) real, and (c) imaginary parts of a three-fold-
symmetric complex wavelet designed using the energy functional in the space do-
main and visualized in the space domain, with S = {3n : n = 0, ..., 9} as harmonics.

the K-fold minima through the minimization of E. Relying again on the polar-
separability of ψ̂, one observes that the radial part of the wavelet function can be
factored out from the integral and thus plays no role in the optimization process.
As a result, one can again formulate the problem as (4.26), where W is this time
only composed of the coefficients of the Fourier serie of w ([111, Equations (31)
and (32)]). We again end up with an eigenvalue problem. A particular example of
a three-fold-symmetric wavelet obtained using the Fourier approach can be seen in

Figure 4.3. The weight function w is 2π
M -periodic with w(ϑ) =

(
Mϑ
π

)2
for |ϑ| ≤ π

M to
achieve maximal energy concentration around the minima in the sense of variance.
Examples of higher-fold-symmetric wavelets can be seen in Figure 4.4.

It is worth noting that execution speed for both approaches pertains only to the
initial design of the wavelets (i.e., the calculation of the design matrix U). Once the
wavelets have been designed, the analysis and processing of images runs at the same
speed for a given number of harmonics, independent on the design. Both approaches
provide a comprehensive basis to detect symmetric junctions. The Fourier-domain
design yields easier computations, since the radial part of the wavelet has no effect
on the optimization process. The space-domain design is more cumbersome as it
requires to handle the Hankel-like integrals associated with the radial part of the
wavelet. In return, it sidesteps the limitations of the Fourier domain that forbid
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(a) (b) (c)

Figure 4.3: (a) Magnitude, (b) real, and (c) imaginary parts of a three-fold-
symmetric wavelet designed using the energy functional in the Fourier domain and
visualized in the space domain, with S = {3n : n = 0, ..., 9} as harmonics.

(a) (b) (c)

Figure 4.4: Modulus of (a) four-, (b) five-, and (c) six-fold-symmetric wavelets
designed using the energy functional in the Fourier domain and visualized in the
space domain, with S = {Mn : n = 0, ..., 9} as harmonics.
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wavelets that are asymmetric and real [111, Proposition 3]. While the Fourier
design is not appropriate to obtain odd-symmetric real wavelets, it does not impair
the detection of junctions since complex odd designs are still possible relying on
positive harmonics alone. Also, defining the energy functional E{ψ} in the space
domain allows obtaining purely real wavelets.

Asymmetric Patterns

Our framework is flexible and easy to generalize to many classes of local structures
and junctions. Here, we take another look at the angular weighting functions
and propose to design asymmetric wavelets, targeting shapes like corners or T-
junctions. The advantage, as before, is that we can steer these wavelets to any
arbitrary angle by a systematic complex rescaling of the wavelet coefficients. The
Fourier technique presented earlier is not suitable for the design of asymmetric
wavelets since it relies on the equivalence of rotational symmetries between the
spatial and Fourier domains. In the case of the symmetric three-fold junction
from previous section, we had identified a profile that, after proper steering, was
simultaneously concentrated around zero, 2π

3 , and −2π
3 . Following our energy-

minimization paradigm, we now choose w such that it has three identical minima

at 0, 2π
3 , and −2π

3 . This function is given by the parabola
(

3θ
π

)2
over the interval

[−π3 ,
π
3 ] as well as its translates to the intervals [π3 , π] and [−π3 ,−π]. The specific

expression of the resulting function wS3 on the [−π, π] interval is given in [111,
Equation (33)].

In the case of a T junction, we intend to identify profiles that, after proper
steering, are simultaneously concentrated around zero, π

2 , and −π2 . Similarly to
the symmetric case, we take w to have three identical minima at 0, π

2 , and −π2 ,

given by the parabola
(

4θ
π

)2
over the interval [−π4 ,

π
4 ] and its translates to the

intervals [π4 ,
3π
4 ] and [− 3π

4 ,−
π
4 ]. We keep wT constant over the intervals [ 3π

4 , π]
and [−π,− 3π

4 ]. The expression of the function wT on the [−π, π] interval is given
in [111, Equation (35)].

Finally, the perpendicular corner is obtained in a similar fashion. The weight
function consists of two identical parabolas placed at −π4 and π

4 . We keep wC
constant over the intervals [π2 , π] and [−π,−π2 ]. This leads to the function given
in [111, Equation (37)].



4.2 Tuning the Angular Profile 85

4.2.2 Detection Algorithm

Suppose that a K-fold symmetric steerable wavelet is available. Keypoints in the
image correspond to maxima in the response of the wavelet detector. The wavelets
thus have to be steered to search for the orientation yielding the largest response.
The optimal steering angle at each point in the image can be found by maximizing
a trigonometric polynomial in θ0, which is achieved by computing the roots of its
first-order derivative. The wavelet coefficients obtained when filtering the image
are given by

wi[k] =〈f,
∑
n∈S

unξ
(n)
i,k 〉L2 =

∑
n∈S

un〈f, ξ(n)
i,k 〉L2 (4.28)

=
∑
n∈S

un〈f,Rnψi,k〉L2
=
∑
n∈S

unqi,n[k], (4.29)

where {qi,1[k], ..., qi,N [k]} denote the wavelet coefficients for each of the N harmon-
ics computed by analyzing the input image at scale i and position k.

To perform the steering per se, we rotate the wavelet ψ at each (i,k) and find the
maximum of |〈ψi,k(·, ·+ θ0), f〉L2

| as a function of θ0. For each (i,k), we use (4.7)
and rewrite the function to maximize as

Q(i,k, θ0) =

∣∣∣∣∣∑
n∈S

ejnθ0un〈f,Rnψi,k〉L2

∣∣∣∣∣
2

. (4.30)

The maximization of (4.30) can be achieved by performing root-finding on its
derivative with respect to θ0. The most basic method to solve the problem re-
lies on brute-force computations, although alternative approaches can also be used
to speed up the maximization process.

Finally, our algorithm to detect junctions of a given multiplicity along with their
orientation can be decomposed in the three following steps.

1. Wavelet analysis with optimally steered wavelets. We decompose the
image with the steerable wavelet. At each location and scale, the local ori-
entation θ∗0(i,k) that maximizes the detector response (4.30) is determined.
The output of this first stage is a map of maximal steerable wavelet responses
µ(i,k) and orientations at every scale and location in the wavelet decomposi-
tion of the image. These correspond to multiscale versions of (4.2) and (4.3).
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2. Maximal projection across scales. We perform a maximum-intensity pro-
jection to aggregate the keypoints detected at different scales. The detectors
have normalized energy across scales, which motivates the choice of a max-
imal projection. For each position, we keep the coefficient corresponding to
the largest detector response as

µ(k) = max
i
µ(i,k). (4.31)

3. Thresholding and the detection of local maxima. We assume that the
pixels that correspond to features are sparse in the image. Points with a
detector response smaller than a threshold are assigned as background pixels.
We additionally apply local non-maximum suppression over a user-predefined
window in order to prevent detecting the same feature multiple times.

4.2.3 Examples of Application

Our symmetry detection algorithm has been implemented as a plug-in for the open-
source image processing software ImageJ [9]. There, we use Simoncellis isotropic
wavelets [119] with dyadic scale progressions. To evaluate the performance of the
algorithm, we tested it on a variety of synthetic images in the presence of noise
and, finally, on real microscopic images. The aim of these experiments is to assess
to which extent our method honors translation, rotation, and scale covariance, how
robust it is to noise and how good its detection performance are.

A thorough evaluation of two versions of the space design (a real version with
positive and negative harmonic pairs and a complex version with positive harmon-
ics only) is provided in [111]. There, these results are compared with the ones
given by the Fourier template. The robustness against noise, rotation invariance
and multiscale properties of our design is studied in synthetic images. The result-
ing conclusions can be summarized as follows. First, the Fourier and the complex
spatial design perform well in the presence of noise. The real spatial design has
difficulties under heavy noise and exhibits small errors even in the noise-free case.
This can be explained in two ways. First, the shape of the wavelet contains os-
cillations related to the Hankel functions. When matching, the algorithm tries to
fit the junction with the oscillations, such that the maxima overlap. Second, when
generating the wavelet, we have to use more harmonics to achieve the same detec-
tion range (17 in total). When steering the wavelets, these extra harmonics mean
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(a) (b)

Figure 4.5: Three-fold junctions in a brightfield microscopic image of a honeycomb.
(a) Original 256× 256 pixels image. (b) Detection results.

that we have to find the roots of a polynomial of a much higher order (17 instead of
10), thus increasing numerical errors. The method is observed to perform well inde-
pendently on the orientation of the junctions, as expected for a rotation-covariant
approach. Finally, we could show that our method is essentially scale-covariant and
yields good detection results, independently on the scale of the pattern.

We illustrate the use of our method in three types of real bioimages. First,
Figure 4.5 features a microscopic view of a honeycomb. This biological structure
is composed of a mass of cells that naturally exhibit a close-to-perfect hexagonal
structure. The detection results of our method are shown on the right. They
are accurate, which is expected from the regularity of the structure. Second, the
image of Figure 4.6 contains hexagonal embryonic stem cells imaged by fluorescence
microscopy featuring three-fold symmetric junctions. The detection task is more
challenging than in the honeycomb image due to the variety of orientations and
sizes of the junctions. In this case, the method yields again good results, which
suggests that our algorithm works well even if the structures are only semi-regular
and corrupted by photon counting noise. Finally, Figure 4.7 features endothelial
cells of the cornea along with the detection results.
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(a) (b)

Figure 4.6: Three-fold junctions in a fluorescence microscopic image of embryonic
stem cells. (a) Original (512× 512) image. (b) Detection results.

Figure 4.7: Result of the detection of three-fold junctions in an image of endothelial
cells of the cornea.
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4.3 Tuning the Radial Profile

The second key element of our steerable filter construction is the isotropic profile
that defines the radial part of the detector. Studying the design of such isotropic
profiles and how it affects results in different image processing tasks was the topic
of our work [113].

In order to generate an isotropic wavelet transform, the underlying basis func-
tions must satisfy several properties. The main ones are isotropy and perfect re-
construction of the image. Another desirable feature is that the basis functions
form a tight frame. In this way, the wavelet transform is self-reversible, enabling
simpler and faster algorithms. The isotropy and perfect-reconstruction properties
are ensured by choosing a radially bandlimited wavelet profile that satisfies a par-
tition of unity condition in the frequency domain [121, 122]. Many such bases have
been proposed, including the Meyer [123], Papadakis [124], and Simoncelli [119]
wavelets. The Simoncelli wavelet is the one implemented in the original version of
the steerable pyramid. Due to its good performance in a wide range of practical
applications, it is a commonly used profile.

Localization, either in the spatial or frequency domain, is an important consid-
eration when specifying such wavelets. On the practical side, steerable wavelets are
bandlimited with infinitely many vanishing moments, which tends to induce oscil-
lations that can be visually displeasing. It is observed that more localized wavelets
result in fewer oscillations and are less subject to truncation artifacts. Moreover,
it has been theoretically shown that wavelets with better localization are more effi-
cient for decoupling sparse signals [125]. It is worth mentioning that the Simoncelli
wavelet is shown to be the most-localized wavelet in a specific sense [126].

We introduce a method based on calculus of variations to design localized ra-
dial profiles for steerable tight frames. Since the frequency response of steerable
wavelets is polar-separable, we can concentrate on the task of optimizing the radial
frequency profile. We focus on moment-based measures of localization and propose
two different classes of criteria depending on whether we consider the localization
in the spatial domain or in the wavelet domain. Two criteria can be derived within
each class, depending on whether one considers localization over the whole space
or in each radial direction. Ultimately, the choice of a particular criterion is guided
by the application.
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4.3.1 Preliminaries on Isotropic Wavelets

We here specify the class of wavelets that we consider. Let the mother wavelet ψ
be a function from R2 to R. The complete wavelet frame is given by

ψi,k(x) = 2−iψ
( x

2i
− k

)
, (4.32)

in which i ∈ Z and k ∈ Z2. It is a tight frame by construction, which implies that
conditions (4.9), (4.10), and (4.11), also enunciated in [121, 122], are verified. We
also assume that ψ is isotropic. Thus, following the notations we introduced at the
beginning of this chapter, we write

ψ(x) = ψ(r), (4.33)

where r = ‖x‖. For simplicity, we use the notation ψ for both the wavelet and its

radial profile. Now, let ψ̂ be the two-dimensional Fourier transform of ψ as defined
in (4.1). According to the properties of the Fourier transform, ψ̂ is also isotropic.
Hence, similarly as in (4.33), we write

ψ̂(ω) = ρ(ω), (4.34)

where ω = ‖ω‖. According to [127], ψ and ρ are related through the Hankel
transform as

ψ(r) = H{ρ}(r) =

∫ ∞
0

ρ(s) J0(rs) sds (4.35)

for r ≥ 0, with J0 a Bessel function of the first kind. With these preliminaries,
we are ready to propose a framework to find the most-localized wavelet among the
ones that satisfy the present conditions. The following method can be used for a
broad class of measures of localization.

4.3.2 Designing Localized Profiles

Our general framework relies on calculus of variations to find the optimal wavelet
with respect to a given localization measure. We focus on two natural classes of
moment-based measures.

Let us assume that the functional V is a given measure of localization. We recall
that a functional is a mathematical object which takes as argument a function and
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associates a value to it. We shall consider that this measure operates in the Fourier
domain. When V is Gâteaux differentiable, the natural method of minimizing it
is to use a variation of the steepest-descent algorithm [128]. To do this, we first
need the gradient of the localization criterion V . Since V is a functional on an
infinite-dimensional space, we have to rely on calculus of variations to obtain its
gradient. Then, during the optimization steps, we have to be careful not to leave
the set of tight frames. We thus need to characterize P, the orthogonal projector
onto the space of tight wavelet frames. Technical details on how to obtain these two
components, namely the gradient of V and the projector P, are provided in [113,
Section III.B]. The outline of the optimization algorithm is given in Algorithm 1,
where ∇V denotes the gradient of V . It corresponds to the standard projected
gradient descent algorithm in an infinite dimensional space [129].

Algorithm 1: Most Localized Wavelet

1: initialize: ρ ∈ L2([0,∞])
2: initialize: η > 0
3: repeat
4: ρ̃← ρ− η ∇V {ρ}
5: ρ← P{ρ̃}
6: until ρ converges
7: return ρ

Measures of Localization

We propose four measures of localization split in two natural classes. The first class
consists of measures of the variance. Variance is the most well-known measure of
localization as less variance implies more concentration around the center. In addi-
tion, we know from the uncertainty principle that the best achievable localization
of a function is inversely proportional to the localization of its Fourier transform,
and vice versa. More precisely, for a function ψ ∈ L2(R2) with ψ : R2 → R, we
have [130] ∫

R2 ‖x‖2ψ(x)2dx∫
R2 ψ(x)2dx

∫
R2 ‖ω‖2|F{ψ}(ω)|2dω∫

R2 |F{ψ}(ω)|2dω
≥ 1

16π4
. (4.36)

The first term of the left-hand side is the variance of the wavelet itself, and the
second term is the variance of its Fourier transform. Thus, setting an upper bound
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on the variance in one domain imposes a lower bound on the variance in the other
domain. In practice, we are interested in bandlimited wavelets, which implies that
the variance of the wavelet in the Fourier domain is bounded from above. Thus,
the variance of the wavelet in the space domain is bounded from below. Since we
are interested in finding the wavelet profile that reaches the minimum value for the
variance, our first measure of localization is given by

V2D(ψ) =

∫
R2 ‖x‖2ψ(x)2dx∫

R2 ψ(x)2dx
=

∫∞
0
r2ψ(r)2 rdr∫∞

0
ψ(r)2 rdr

. (4.37)

We are also interested in isotropic wavelets used in a directional framework. This
suggests that the variance of the one-dimensional radial profile of the isotropic
wavelet can be another good candidate measure of localization. Hence, we propose
the second variance-based measure of localization

V1D(ψ) =

∫∞
0
r2ψ(r)2 dr∫∞

0
ψ(r)2 dr

, (4.38)

which measures the spread of the wavelet along each radial line.
The second class of measures focuses on the localization of the wavelet coef-

ficients rather than that of the wavelet profile. More precisely, the energy of a
function computed over some spatial neighborhood should be well represented by
the wavelet coefficients associated to that neighborhood and its vicinity. According
to [126], as a wavelet ψi,k gets further from a position m, the contribution of the
local neighborhood of the image around m in the corresponding wavelet coefficient
decays. Moreover, the rate of decay is controlled by a constant that corresponds
to the unnormalized variance of the wavelet profile ψ. We propose this value as a
third measure of localization, this time for the wavelet coefficients, as

U2D(ψ) =

∫
R2

‖x‖2ψ(x)2dx =

∫ ∞
0

r2ψ(r)2 rdr. (4.39)

Accounting for the fact that isotropic wavelets are often used in a directional setting,
we define the unnormalized variance of the one-dimensional radial profile of the
wavelet in analogy to (4.38) as our last measure of localization

U1D(ψ) =

∫ ∞
0

r2ψ(r)2 dr. (4.40)
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To summarize, the first class of measures targets the localization of the shape
of the wavelet in the space domain while the second class of measures describes
the localization of the wavelet coefficients. We thus expect the first class to be
useful in applications that benefit from a local wavelet analysis. The second class
should, on the contrary, be more appropriate in applications involving some form
of wavelet-domain N -term approximation. For both classes of measures, the index
2D indicates that the spread of the wavelet is a measure over the whole space.
The index 1D, conversely, indicates that the spread is measured along each radial
direction. In detection tasks using steerable filters, we predict that profiles with
the best radial localization will obtain the best performances.

Numerical Optimization

In practice, we are interested in a fast implementation of wavelet transforms relying
on filter-banks. Focusing on wavelets that are supported on [π4 , π]3, the highpass
and lowpass filters of the filter-bank, denoted as ρH and ρL, respectively, are given
by

ρH(ω) =


0 ω ≤ π

4

ρ(ω) π
4 < ω < π

2

1 π
2 ≤ ω

, (4.41)

ρL(ω) =


1 ω ≤ π

4

ρ(2ω) π
4 < ω < π

2

0 π < ω

, (4.42)

respectively. According to the tight-frame constraint (4.10), we automatically have
that

ρ2
L(ω) + ρ2

H(ω) = 1. (4.43)

Hence, when searching for the minimizer of a given criterion, we optimize the values
of the function ρ(ω) over the [π4 , π] interval. In this spirit, it is worth noting that
a filter-bank construction for one-dimensional tight wavelet frames with arbitrary
dilation has been proposed in [131]. The resulting wavelets have more frequency

3We refer the reader to [115] for a detailed explanation.
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contents than the ones we consider in this work and are thus more localized in
the space domain. However, there is no simple relation between the filters and the
wavelet profiles, which hinders the optimization of the localization of such profiles.

We apply our numerical optimization algorithm to each of the proposed mea-
sures of localization. First of all, it can be shown analytically that the Simoncelli
wavelet minimizes the criterion U2D [126]. Thus, we already know the optimal
profile with respect to this measure. To minimize V2D, V1D, and U1D, we rely on
Algorithm 1. The parameters and details of the optimization procedure are pro-
vided in [113]. At convergence, we obtain the minimum values of 1.73, 0.39, and
1.64 for V2D(ρ), V1D(ρ), and U1D(ρ), respectively. However, due to the Gibbs phe-
nomenon that results from the truncation of the Fourier transform, the wavelets
exhibit ringing artifacts. In order to remove these effects and obtain smooth pro-
files for practical applications, we identify the closed-form formula that fits the best
each numerically obtained wavelet. We propose four wavelets named ρV2D

, ρU2D
,

ρV1D
, and ρU1D

, which correspond to each of the considered measures of localiza-
tion. From (4.43), it is sufficient to specify the wavelet profile either over [π4 ,

π
2 ] or

over [π2 , π] to describe it entirely. The expressions of ρV2D
and ρU2D

are easier when
their high-pass filters are given as

ρV2D,H(ω) =

√
6−

√
1 + 20

(
2ω
π − 1

)2
√

6− 1
, (4.44)

ρU2D,H(ω) = cos

(
π

2
log2

2ω

π

)
. (4.45)

We recall that ρU2D is Simoncelli’s wavelet. The profiles ρV1D and ρU1D , conversely,
are better expressed through their low-pass filters as

ρV1D,L(ω) =

(
log2

π

ω
− 0.005

√
π

ω
sin
(
π log2

π

ω

)) 2
5

, (4.46)

ρU1D,L(ω) =

√(
log2

π
ω + 0.6

)4 − 0.64

1.64 − 0.64
. (4.47)

The radial profiles of these wavelets are shown in Figures 4.8 and 4.9 in Fourier
and space domains, respectively. We have that V2D(ρV2D

) = 1.74, V1D(ρV1D
) = 0.40,

and U1D(ρU1D) = 1.65. These values are only marginally suboptimal. The values of
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Table 4.1: Localization of different wavelets measured by V2D, V1D, U2D, and U1D

((4.37), (4.38), (4.39), and (4.40))

Wavelet type Localization
V2D V1D U2D U1D

ρV2D
(4.44) 1.74 0.44 3.88 2.19

ρV1D
(4.46) +∞ 0.40 +∞ 2.03

ρU2D (Simoncelli) (4.45) 1.84 0.46 3.55 1.93
ρU1D (4.47) +∞ 0.52 +∞ 1.65

Papadakis [124] 2.06 0.49 4.93 2.52
Meyer [123] 2.88 0.66 6.04 2.61

Shannon [116] +∞ +∞ +∞ +∞

the different measures of localization for each of these wavelets as well as for more
traditional ones are given in Table 4.1.

The measures V2D and U2D can also be interpreted as the normalized and un-
normalized third-order moment of the radial profile of the wavelet, respectively,
while V1D and U1D correspond to its normalized and unnormalized second-order
moment. Since having finite values for higher-order moments in the space domain
implies being smoother in the Fourier domain, the minimiziers of V2D and U2D

necessarily have finite V1D and U1D values. The converse is however not always
true.

As seen in Table 4.1, the localization values of the profiles minimizing V1D and
U1D explode for V2D and U2D. This is in accordance with the roughness of the
profiles at points π

4 , π
2 , and π, as seen in Figure 4.8. In the case of the Shannon

wavelet, the discontinuity in the frequency-domain profile results in a slow decay
in the spatial domain that brings V1D and U1D to infinity. From Table 4.1, we
observe that the Simoncelli wavelet is not only optimal for the criterion U2D, but
also exhibits reasonable values for other measures of localization.

4.3.3 Examples of Application

We demonstrate the benefit of well-localized wavelet profiles in practical applica-
tions. In particular, we study the performance of our wavelets and compare them
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(a) (b)

Figure 4.8: Wavelet profiles in Fourier domain of (a) the proposed optimal profiles,
and (b) existing ones (Simoncelli, Meyer, and Papadakis).

(a) (b)

Figure 4.9: Wavelet profiles in space domain of (a) the proposed optimal profiles,
and (b) existing ones (Simoncelli, Meyer, and Papadakis).
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against other existing popular profiles for the problems of local orientation estima-
tion and image reconstruction from edges.

Estimation of Local Orientation

First, we focus on the task of estimating the local orientation of ridge-like objects
(e.g., filaments) using a steerable ridge detector. We construct Hessian-like wavelets
by selecting an isotropic profile and applying the generalized Riesz-wavelet trans-
form with the appropriate shaping matrix (4.23), as described in Section 4.1. The
Hessian filters are steered to retrieve the orientation corresponding to the best re-
sponse of the ridge detector at every point of the image. To perform a multiscale
ridge detection at every location using the Hessian filter, we go through every scale
of the wavelet pyramid and select the one where the strongest filter response is
found, in a similar procedure as presented in Section 4.2.2. The final output of
our experiment is therefore an angle map of the same dimensions than those of the
input image, which contains at each pixel the estimated local orientation yielding
the best ridge filter response4.

In our experiment, we rely on a 512 × 512 pixels 8-bits image (Figure 4.10a)
in which several regions of interest (ROIs) made of short line segments have been
manually selected by an expert, and where local orientation should be estimated.
The angle that each of the manually placed ROI form with the horizontal direc-
tion is considered as ground truth and corresponds to the orientation that shall
be retrieved. To build our filters, we consider the trivial isotropic profile5 (Shan-
non [116]), several popular isotropic wavelet profiles (Simoncelli [132], which cor-
responds to ρU2D

(4.45), Papadakis [124], and Meyer [123]), as well as with the
wavelets we propose (ρU1D

(4.47), ρV2D
(4.44) and ρV1D

(4.46)). The estimation of
the local orientation of each ROI is obtained by averaging the orientation estimates
provided by the steerable filter under the ROI (i.e., we average the values of the
pixels that belong to the line segment composing the ROI). We indicate the esti-
mated local orientation as well as the ground truth orientation in Table 4.2. We
also report the absolute error between the ground truth and each of the estimates
in Table 4.3. The experiment is conducted using 4 scales of wavelet decomposition.

4The extraction of local orientation estimation at each point of the input image has been
implemented as a Java-based plug-in for the open-source image-analysis software ImageJ [9].

5Given by ρ(ω) =

{
1 π

2
≤ ω < π

0 elsewhere
.
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(a) (b)

Figure 4.10: Estimation of local orientation. (a) Original filaments image
from [133], and (b) overlaid regions of interest with their label.

Best results are obtained with ρU1D
. The two classes of wavelets ρU and ρV are

optimized for different applications. The profiles of ρV2D
and ρV1D

are most localized
in the spatial domain as they optimize V2D (4.37) and V1D (4.38), while ρU2D

and
ρU1D optimally localize wavelet coefficients following U2D (4.39) and U1D (4.40).
The estimation of local orientation is better when the wavelet response is strong
and well localized, as ridges (here, the filaments) are then more accurately detected.
In this experiment, a profile maximizing wavelet coefficients localization, and hence
a criterion of the class U , is therefore preferable. This is confirmed by the results
and the good performance obtained by ρU1D

and ρU2D
. Also, among the class of ρU

wavelets, ρU1D outperforms ρU2D . A possible interpretation is that a 1-dimensional
design is more suitable for steerable wavelets since they are inherently directional.
In this application, wavelets align themselves with ridges so that the U1D criterion,
which measures the spread in each radial direction, is the most appropriate one.

Image Reconstruction from Edges

Our second experiment deals with image reconstruction from a reduced set of
wavelet-based edges. First, a multiscale primal sketch [134], or edge map [117],
is extracted from the set of wavelet coefficients of the image. An approximation of
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Table 4.2: Estimation of local orientations for the regions of interest depicted in
Figure 4.10b

Wavelet type Angle [◦]
1 2 3 4 5 6

Ground Truth 95 .36 129 .09 83 .88 166 .50 33 .02 13 .24
ρV2D (4.44) 95.88 133.19 80.48 164.66 36.74 15.95
ρV1D

(4.46) 96.08 133.59 79.14 163.13 37.44 15.90
ρU2D

(Simonceli) (4.45) 96.42 133.75 78.37 164.55 37.72 16.67
ρU1D

(4.47) 95.57 132.88 83.19 165.07 36.12 15.53
Papadakis 97.31 134.91 79.46 163.39 41.65 18.04

Meyer 97.15 134.67 79.65 164.25 41.61 18.75
Shannon 96.78 136.61 76.97 136.10 70.73 22.16

Table 4.3: Error in local orientation estimates for the regions of interest depicted
in Figure 4.10b

Wavelet type Absolute error [◦]
1 2 3 4 5 6

ρV2D
(4.44) 0.52 4.10 3.41 1.85 3.72 2.71

ρV1D
(4.46) 0.73 4.49 4.75 3.38 4.41 2.66

ρU2D
(Simonceli) (4.45) 1.07 4.66 5.52 1.95 4.69 3.43
ρU1D (4.47) 0.22 3.79 0.69 1.43 3.09 2.29
Papadakis 1.95 5.82 4.42 3.11 8.62 4.80

Meyer 1.79 5.57 4.24 2.26 8.59 5.51
Shannon 1.43 7.51 6.91 30.41 37.71 8.92
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the original image is then recovered from this small subset of coefficients, relying
on constrained optimization.

To extract a multiscale edge map from the input image, we rely on a gradient-like
wavelet framework. It is implemented using the generalized Riesz-wavelet transform
with the appropriate shaping matrix (4.22) and yields a pair of x- and y-derivative
wavelets as described in Section 4.1. Edges in the multiscale gradient signal are
then detected based on a wavelet-domain version of the Canny edge detector, which
includes non-maximum suppression and hysteresis thesholding [134]. Note that the
Canny edge detector requires an estimation of the magnitude and orientation of the
gradient at each point in the image, which is obtained by steering the gradient-like
wavelets at every scale and location. The final edge map is composed of the wavelet
coefficients retained by the multiscale edge detector. To preserve the graylevel
information of the image, all coefficients of the lowpass residual of the wavelet
decomposition are kept.

Reconstruction is then formulated as the constrained optimization problem

minimize ‖z‖`1 (4.48)

subject to z = WH f̃ (4.49)

zκ = qκ, ∀κ ∈ S, (4.50)

where WH is the wavelet analysis operator, f̃ and z are the variables being opti-
mized (the reconstructed image and its wavelet transform, respectively, represented
as matrices), and S the set of indices of wavelet coefficients that are part of the
edge map. Finally, qκ denotes the wavelet coefficient of the original image f at
location κ, where κ is an index of 2D position and scale (i.e., a compact notation
for the indices i, k we used earlier). The reconstructed image possesses the same
coefficient as the original one for those that are part of the edge map, and the
remaining ones are filled during the optimization. This formulation is motivated by
two main principles. First, we aim at conserving the elements of the edge map in
order to reconstruct the image. We refer to them as wavelet-based edges, as they
are the output of a Canny edge detector applied on the wavelet transform of the
image. This gives us constraint (4.50), which imposes the elements qκ, κ ∈ S to
be fixed during the optimization process. Second, we want the estimated wavelet
coefficients to project back onto an image. Knowing that images are sparse in
the wavelet domain, we impose sparsity by minimizing the `1-norm of the wavelet
transform z of the image, yielding (4.48). Our problem thus amounts to minimizing
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a convex functional under a finite set of linear constraints, which guarantees the
existence of a feasible minimum that can be reached using appropriate optimization
algorithms.

Hereafter, we propose an improvement of the reconstruction algorithm intro-
duced in [117] that relies on a gradient descent of the augmented Lagrangian. Our
algorithm is based on the alternating-direction method of multipliers (ADMM),
which motivates the introduction of the auxiliary variable z. ADMM is known
to converge very fast to an acceptable solution and guarantees the residual to be
brought to zero. In practice, it is observed that the fast and moderately good esti-
mate provided after 30 iterations of the algorithm is already visually satisfactory.
We refer the reader to [135] for a complete description of the method.

To reconstruct the image with ADMM, we first form the augmented Lagrangian

L(z, f̃ ,λ) = ‖z‖`1 + λT
(
z−WH f̃

)
+
σ

2

∥∥∥z−WH f̃
∥∥∥2

`2
, (4.51)

where σ is a step size that can be adapted to influence the speed of convergence.
We rewrite (4.51) in terms of the scaled dual variable u = λ

σ in order to obtain
simpler mathematical expressions, yielding

L(z, f̃ ,u) = ‖z‖`1 +
σ

2

∥∥∥z−WH f̃ + u
∥∥∥2

`2
− σ

2
‖u‖2`2 . (4.52)

The ADMM algorithm for our problem thus consists of the three successive itera-
tions

z(k+1) = arg min
z
L(z, f̃ (k),u(k)), (4.53)

f̃ (k+1) = arg min
f̃

L(z(k+1), f̃ ,u(k)), (4.54)

u(k+1) = u(k) +
(
z(k+1) −WH f̃ (k+1)

)
. (4.55)

The update of z can be rewritten in an element-wise manner as

z(k+1) = arg min
z

(
‖z‖`1 +

γ

2

∥∥∥z−WH f̃ (k) + u(k)
∥∥∥2

`2

)
(4.56)

= arg min
z

(∑
κ∈I
|zκ|+

γ

2

∑
κ∈I

∣∣∣zκ − v(k)
κ

∣∣∣2) , (4.57)
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where we denote by I the set of indices of all wavelet coefficients in the reconstructed

image (thus, S ⊂ I). We introduced v
(k)
κ = [WH f̃ (k)]κ − u(k)

κ for convenience. For
all elements κ ∈ S, (4.50) imposes that zκ = qκ, and no further computations are
required. For κ /∈ S, zκ and vκ should be colinear in order to turn the second
term of (4.57) into a constant. Plugging zκ = Cvκ into (4.57) and solving for the
optimal constant C brings us to the component-wise expression of the z update

z(k+1)
κ =


qκ, if κ ∈ S(

1− 1

γ
∣∣∣v(k)κ

∣∣∣
)

+

v
(k)
κ , if κ /∈ S, (4.58)

where (·)+ = max(0, ·) corresponds to the shrinkage operation. Then, updating
f̃ boils down to an unconstrained quadratic optimization problem. It can hence
be performed by taking the partial derivative of the augmented Lagrangian and
solving for zero. This yields

f̃ (k+1) = arg min
f̃

∥∥∥z−WH f̃ + u
∥∥∥2

`2
(4.59)

=
(
WWH

)−1
W
(
z(k+1) + u(k)

)
. (4.60)

As W forms a tight frame, (4.60) can be further simplified by observing that
WWH = I. Finally, u is simply modified through a linear update.

In practice, the algorithm is initialized with z(0) composed of all the wavelet
coefficients qκ, κ ∈ S retained in the edge map and the complete lowpass residual
of the image to reconstruct. Then, f̃ (0) is initialized as an image entirely composed
of pixels of zero value, and WH f̃ (0) is its wavelet transform. Finally, u(0) is set as
a pyramid of images composed only of zeros and having the same number of scales
and dimensions as WH f̃ (0). The parameter σ is empirically set to 106. With these
settings, from 30 to 50 ADMM iterations were observed to be sufficient to reach
“visual convergence”, which corresponds to a situation where additional iterations
bring unnoticeable visual improvements. Note that, through the optimization pro-
cess, the left multiplication by WH or W amounts to performing wavelet analysis or
synthesis, respectively. The algorithm can be executed in reasonable time as these
two operations are performed efficiently with the help of a filterbank implementa-
tion. To illustrate this experiment, we give in Figure 4.11 the original Cameraman
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image, its reconstruction from 7% of the wavelet coefficients, as well as the mask
containing the coefficients retained by our multiscale wavelet-based edge detector6.

We gather results on a set of 7 standard test images, namely, House, Pirate, Pep-
pers, Lena, Bridge, Cameraman, and Einstein, all being 512× 512 pixels grayscale
images. We run the same experiments with the trivial isotropic profile (Shan-
non [116]), several popular isotropic wavelet profiles (Simoncelli [132], which hap-
pens to be ρU2D

(4.45), Papadakis [124], and Meyer [123]), and finally with our
wavelets (ρU1D

(4.47), ρV2D
(4.44) and ρV1D

(4.46)). We investigate the reconstruc-
tion performance of the different wavelets in terms of the PSNR of the reconstructed
image. We start by retaining 7% of the total number of wavelet coefficients in the
image. These 7% are selected from the set of wavelet-based edges identified by the
multi-scale Canny edge detector7. Note that, as the test images all have the same
size, the 7% threshold corresponds to the same absolute number of coefficients in
each case. All experiments are conducted using 4 scales of decomposition. Recon-
struction results obtained after 30 iterations of the ADMM algorithm are shown
in Table 4.4. In order to allow for a visual comparison of the performance, we
also show in Figure 4.12 close-ups of Lena reconstructed using the different wavelet
profiles. We observe that ρU1D

outperforms the other wavelets. Further experi-
ments of reconstruction using a set of edge coefficients with 1 to 7% of the total
number of wavelet coefficients in the image allows us to reach similar conclusions,
as presented in [113]. This confirms that the proposed ρU1D profile is better for
reconstruction than the other wavelets considered in this experiment. Comparing
Tables 4.1 and 4.4, one can actually notice an interesting correlation between the
average PSNR and the localization of the wavelet according to criterion U1D.

Notice that, in this application, ρU1D followed by ρU2D outperforms in partic-
ular ρV2D and ρV1D . The construction of the edge map relies on the same kind of
framework as the filaments detection for local orientation estimation (namely, mul-
tiscale steerable filters). The same arguments therefore hold for explaining these
results. The reconstruction task obtains better results when the edge map contains
sharper elements, which yield better sets of edges. What matters most is therefore

6We implemented the Riesz-wavelet transform [120] as well as the edge-map extraction and
subsequent image reconstruction using ADMM as a Java-based plug-in for the open-source image-
analysis software ImageJ [9].

7In practice, we can adapt the number of coefficients identified by the multiscale Canny edge
detector by changing the hysteresis thresholding parameters to make sure that the set contains
enough elements .
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(a) (b)

(c)

Figure 4.11: Wavelet-based edge reconstruction. (a) Original Cameraman image,
(b) final result after reconstruction using ρU1D

, and (c) binary masks featuring the
wavelet coefficients saved for reconstruction at different scales. Here, 4 scales were
used and 7% of the total number of coefficients was retained.

Table 4.4: Reconstruction from wavelet-based edges (7% of coefficients)

Wavelet type PSNR [dB]
House Pirate Peppers Lena Bridge Cameraman Einstein

ρV2D
(4.44) 28.90 27.33 27.61 29.14 23.42 29.01 28.97

ρV1D
(4.46) 29.72 27.32 27.96 30.04 23.99 29.70 29.28

ρU2D
(4.45) (Simoncelli) 29.15 27.37 27.96 29.95 23.91 30.14 29.22
ρU1D

(4.47) 30.01 28.24 28.42 30.37 24.07 30.67 29.40
Papadakis [124] 27.98 26.55 27.34 28.99 23.67 28.52 28.89

Meyer [123] 27.72 26.29 26.70 28.88 23.50 28.97 28.65
Shannon [116] 26.80 24.91 25.53 27.20 23.03 25.60 27.61
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 4.12: Wavelet-based edge reconstruction. Close-up of the reconstruction
of Lena relying on (a) Shannon, (b) Meyer, (c) Papadakis, (d) ρU1D

, (e) ρU2D

(Simoncelli), (f) ρV1D
, and (g) ρV2D

. The best PSNR is achieved by ρU1D
shown

in (d). Here, 4 scales were used and 7% of the total number of coefficients were
retained.
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again the optimal localization of the wavelet coefficients. This explains why best
performances are obtained with profiles optimizing criterion of the class U (ρU1D

and ρU2D
). Results can actually directly be interpreted from the values of U1D pro-

vided in Table 4.1. Starting from the optimal ρU1D
, the next most localized profiles

sorted by distance to the optimum are Simoncelli (ρU2D
), ρV1D

, ρV2D
, Papadakis and

Meyer. The quality of reconstruction obtained with the different profiles follows
the same pattern, with Papadakis and Meyer being the worst and followed by ρV2D

and ρV1D
, ρU2D

(Simoncelli), and finally ρU1D
, which achieves the best results.

In [113], we provide as additional example an experiment of image denoising us-
ing the BLS-GSM algorithm. There, we observe that ρV1D , followed by ρV2D , yields
consistently better results than all the other profiles we tested, outperforming state-
of-the-art results using the steerable pyramid. The most desirable feature in denois-
ing, in comparison with local orientation estimation and image reconstruction from
edges, is a spatially localized profile for the steerable pyramid. A transformation
yielding very localized wavelet coefficients is actually even counterproductive as it
concentrates the neighborhood of each coefficient, and thus reduces the amount
of information that can be exploited by BLS-GSM. The profiles of choice for this
application are hence of the class V . These different use-cases show that both
classes of localization criterion are relevant depending on the kind of application
being considered, and that the proposed wavelet profiles are interesting candidates
for image processing tasks involving isotropic wavelets. The good or bad perfor-
mance of the studied wavelet profiles can indeed be interpreted in the light of the
localization metrics we introduced. This further hints at the fact that localization
criterion are useful to study the localization of wavelets either in terms of their
spatial profiles, or of the coefficients they generate. The two proposed localization
criteria can thus serve as quick estimates to assess the relative performance of an
isotropic tight-frame wavelet profile based on a simple calculation.

4.4 Learning Custom Feature Detectors

In Sections 4.2 and 4.3, we were studying the design of steerable filters optimiz-
ing properties such as the variance of their radial profile, or the shape of their
angular profile. A further step is to formulate a procedure allowing to construct
pattern-specific feature detectors from a given template. Such detectors can then
be used to do template-matching-like analysis of images, while benefiting from all
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the advantages of the steerable filters framework. As research in this direction is
ongoing [136], we here limit ourselves to providing a brief overview of the problem.

4.4.1 Designing Template-Specific Profiles

The template matching problem can be formulated as follows. A two-dimensional
feature template h is swept over a two-dimensional input image f . At each location
x in the image, we consider the normalized correlation between the image and the
rotated template, expressed as

µθ0(x) =
(f ∗ h(−Rθ0 ·)) (x)

‖f‖L2
‖h‖L2

, (4.61)

where Rθ denotes a rotation matrix and ∗ the convolution operation. The function
µθ0 reaches maximum values at locations in the image that resemble the template
rotated by an angle of θ0. From there, the amplitude and orientation responses are
obtained as

µ(x) =max
θ0

µθ0(x), (4.62)

θ∗0(x) =arg max
θ0

µθ0(x), (4.63)

respectively. Additionally, a pyramid can be constructed to add a scale component
to the template matching procedure. To do so, the template is subjected to different
amount of upsampling and downsampling, and the matching procedure is repeated
such that an amplitude map µs and orientation map θ∗0,s are obtained for each
template scale s. The scale response map ς is obtained by identifying, for each
location in the image, the scale where the largest amplitude response is found. This
amounts to performing a maximum intensity projection of the amplitude response
values across the scales of the pyramid. The final amplitude and orientation maps
are constructed by reporting, at each location, the amplitude and corresponding
orientation at the scale which responds the best (i.e., which has the maximum value
across the pyramid at that location). Formally, the multiscale version of template
matching is thus expressed as

µ(x) =max
θ0,s

µθ0,s(x), (4.64)
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(θ∗0(x), ς(x)) =arg max
θ0,s

µθ0,s(x), (4.65)

with

µθ0,s(x) =

(
f ∗ hRθ0

,s(−·)
)

(x)

‖f‖L2
‖h‖L2

, (4.66)

where hRθ0
,s is the template h rotated by an angle of θ0 and resized to correspond

to scale s8.
Template matching is unfortunately computationally heavy. One inner product

between the template and the image must be computed for each particular value
of location, scale, and angle. In practice, (4.61) is computed for a collection of
θ0 that uniformly discretizes the [0, 2π] interval. Since the detection quality is
strongly dependent on the fineness of the discretization angle, relying on a too coarse
discretization step is not favorable. Detection with steerable filters is performed in
a similar fashion, as described in Section 4.1. The main difference lies in the fact
that the steerability property implies that any µθ0 can be computed as a linear
combination of the basis filters. As a consequence, the computational cost for
every rotation and scale is only a function of the number of considered basis filters.
Considering a template matching procedure relying on an angle discretization of
π
5 (i.e., 10 angles are used to cover the [0, 2π] interval), 10 inner products are
required for a single scale. To improve the quality of the amplitude and orientation
response maps, the discretization step must be reduced to finely sample the [0, 2π]
interval, thereby increasing the number of required computations. A steerable
filter built from 10 basis functions is in contrast able to represent a continuum of
rotation angles at the single cost of 10 inner products. To obtain the amplitude and
orientation response maps at a given location in the image, the relevant quantities
are therefore the number of (discrete) angles in the case of template matching, and
the number of basis functions in the case of steerable filters. The advantage of each
method can then be stated as follows. Template matching requires the computation
of many inner products but, once done, returns directly the maximal amplitude and
corresponding orientation. Steerable filters involve fewer inner product operations
but, once these are computed, require to solve a minimization problem in θ0 to
recover the optimal amplitude and orientation.

8The actual resizing factor depends on the way the pyramid is built. Powers of two are often
used, implying a rescaling factor of 2s at scale s.
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Our design goal is the following. Given an external feature template, one
searches for the optimal radial profile for a given steerable filter framework. The
angular profile of the filters are given by a set of harmonics of the Riesz trans-
form. Considering the predefined finite set of harmonics S, the task translates to
identifying the collection of optimal ρn,opt(ω) such that the detector

ĥ(ω, ϑ) =
∑
n∈S

ρn,opt(ω)ejnϑ (4.67)

responds to (possibly rotated9) occurrences of the template in the input image.
The work we presented in Sections 4.2 and 4.3 involved optimizing either the set
of harmonics defining the angular part for a fixed radial one, or the common ra-
dial part for a fixed set of harmonics defining the angular one. Filters designed
following (4.67) have in constrast a dedicated radial profile for each harmonic. This
formulation is very rich: it makes it possible to go beyond polar separable filters
and to represent any template in L2(R) by increasing the number of considered

harmonics. The optimal radial profiles are obtained by identifying the detector ĥ
which, when normalized, maximizes its inner product with the template. Several
methods are under development in order to achieve this maximization. The most
promising one consists in considering the spline expansion of the optimal radial
profile. Additional refinements can be incorporated. For instance, the optimiza-
tion problem can be reformulated to find the filter that responds the best to the
template while responding the least to background. Although initially designed for
templates featuring centered patterns surrounded by background, the approach can
technically be used for any type of template under mild conditions. The number of
considered harmonics is the main parameter. As detectors built from non-isotropic
templates require in theory an infinite number of harmonics, the size of the set S is a
function of the trade-off between the quality of the detector and the computational
cost.

This procedure allows easily building custom feature detectors that yield am-
plitude response and orientation maps. For every pixel in the input image, one
obtains a measure of how much the feature of interest is represented and how it is
oriented at that location. It opens the way to more specific and refined feature or
keypoint detectors built from steerable filters.

9The multiscale aspect is currently not covered by this theory.
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Chapter 5

Theorizing Landmark Active
Contours

In this chapter1, we introduce the landmark snake, a novel active contour algorithm
that relies on Hermite spline interpolation (Chapter 3) to perform segmentation
relying on information extracted from local feature detectors (Chapter 4) and con-
tours in the context of bioimage analysis. We present a general formulation of the
landmark snake, from which a particular case (the open curve) has been briefly
introduced in our previous work [138]. Our landmark snake model is reminiscent of
B-spline based active contours [44, 65, 70] but benefits from direct control over tan-
gents on the curve, which allows the locally adapt the curve according to keypoint
descriptor-like information. To the best of our knowledge, this is the first time
that a segmentation method bringing together spline-snakes and feature detectors
is proposed. The essential ingredients of the snake model are the two complemen-
tary cubic Hermite spline basis functions that grant control on the curve and on its
tangent field. This representation offers two interesting capabilities. First, modifi-
cation of tangent magnitude allows generating local features such as sharp corners,
or tips, which are harder to obtain with classical spline snakes. Second, controlling
tangent orientation enables the design of energies enforcing that the snake locally

1This chapter is composed of a mixture of published material and manuscripts under prepara-
tion. Published results are adapted from our two papers [76] and [137].
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adapts to the nature and orientation of features in the image.
The construction of (open and closed) snake curves that are able to generate

corners and the definition of energy functionals based on local orientation informa-
tion has also been studied by R. Kimmel et al. [59] with geodesic active contours.
The construction of the model, the formulation of the energy, the associated opti-
mization procedure and, ultimately, the capabilities and strengths of the resulting
algorithms are however different from ours. Geodesic snake curves as proposed
in [59] are defined implicitly. They allow for topological changes but have limited
potential for manual interactions. By contrast, our landmark snakes are defined ex-
plicitly by construction. They allow for extensive manipulation through a general
user interface, although the segmentation process remains mostly automated. The
anchor points and tangent vectors can be manually tweaked in a user-friendly and
precise manner. Such edit capabilities are of particular interest for complex image
analysis problems where feedback from the user might be required. Our contribu-
tion is, firstly, to propose a new snake algorithm with very particular properties in
terms of model and energies, differentiating it from existing active contours, and
secondly to characterize the model and energies in a comprehensive manner through
practical experiments so as to highlight their practical scope2.

In the following, we denote two-dimensional vectors as

v = (v1, v2) =

[
v1

v2

]
.

We denote the standard vector scalar product and associated Euclidean norm as
〈·, ·〉 and ‖ · ‖, respectively. As in previous chapters, inner products and norms
on function spaces are denoted in a similar way, with the relevant function space
indicated as a subscript.

5.1 Model

We now recall the general formulation of parametric snakes and specify our new
snake model. We describe the active contour constructions (closed and open curves)
obtained from our model.

2Open- and closed-snake variants have been implemented as plugins for the open-source image-
analysis software ImageJ [9]. They are freely available online for use by the bioimage-analysis
community at http://bigwww.epfl.ch/algorithms/hsnakes.
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Let r = (r1, r2) be a two-dimensional curve in the image. It is described by
the two Cartesian coordinate functions r1(t) and r2(t), with t ∈ R a continuous
variable. The coordinate functions can be parameterized efficiently as the linear
combination of integer shifts of basis functions weighted by a sequence of control
points. In the case of spline snakes, bases are constructed as the integer shifts of
a compactly supported spline generator φ. The sequence of distinct control points
is denoted as {c[k]}k∈Z and the general expression of parametric spline snakes is
therefore

r(t) =

[
r1(t)
r2(t)

]
=
∑
k∈Z

c[k]φ(t− k). (5.1)

For the interested reader, we elaborate on spline snake models in 2.3.1. In our case,
the generators are the two cubic Hermite spline basis functions φ1 and φ2 discussed
extensively in Chapter 3. The novel aspect of our construction comes from the fact
that, given a curve, the function φ1 interpolates point values on the curve, while the
derivative of φ2 interpolates tangents to the curve. Both φ1 and φ2 are compactly
supported in [−1, 1] and yield fast and stable interpolation methods (see [57] for
more details). The analytic expressions of φ1 and φ2 as well as the mathematical
formulation of their joint interpolation properties can be found in Section 3.1.

Our landmark snake model is particularly well adapted to both the open-
and closed-curve scenarios. A closed curve can easily be constructed relying on
periodized versions of the Hermite basis, in direct analogy with classical spline
snakes [70]. The generation of open snakes from cubic B-splines, however, requires
one to rely on virtual or invisible control points at the curve extremities. By con-
trast, cubic Hermite splines result in natural conditions at the ends of the landmark
snake.

5.1.1 Open Landmark Snake

Parametric snake curves are continuously defined for t ∈ R. However, for implemen-
tation convenience, we usually prefer to normalize them for t ∈ [0, 1]. To follow the
convention used for classical spline-snakes, we denote the number of control points
as M . Landmark snakes therefore have 2M parameters, since the local tangent can
also be edited at every control point.

Open curves are specified by a sequence of M anchor points and their associated
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tangents vectors, defined respectively for k = 0, ...,M − 1 as

r[k] = r(t) |t= k
M−1

,

r′[k] = dr
dt (t)

∣∣∣∣
t= k

M−1

.
(5.2)

Due to the interpolation properties of the Hermite generators, control points and
tangents directly correspond to the curve value at integer locations. The parametric
representation of the open landmark snake is then given by

ropen(t) =

M−1∑
k=0

(
r[k]φ1((M − 1) t− k) + r′[k]φ2((M − 1) t− k)

)
, (5.3)

where t ∈ [0, 1]. An example curve is depicted in Figure 5.1a.

5.1.2 Closed Landmark Snake

Closed curves are obtained by periodizing the control point sequence, as explained
in 2.3.1. In such case, the active contour is entirely defined by its M -periodic
sequence of anchor points {r[k]}k∈Z and tangent vectors {r′[k]}k∈Z. In analogy to
the open-curve case,

r[k] = r[k +M ] = r(t) |t= k
M
,

r′[k] = r′[k +M ] = dr
dt (t)

∣∣∣∣
t= k

M

.
(5.4)

The periodic nature of the control point sequences allows expressing the curve with
periodized basis functions. We denote the M -periodized versions of the generators
as

φ1,per(t) =

∞∑
n=−∞

φ1(t−Mn) (5.5)

φ2,per(t) =

∞∑
n=−∞

φ2(t−Mn). (5.6)
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The continuously defined closed contour is 1-periodic from the normalization to
t ∈ [0, 1]. It is given by

rclosed(t) =

M−1∑
k=0

(
r[k]φ1,per(Mt− k) + r′[k]φ2,per(Mt− k)

)
, (5.7)

where t ∈ [0, 1] (see Figure 5.1b). Note that normalization is here achieved by
multiplying t by M , whereas M − 1 was used in (5.3). This is due to the fact that,
when dealing with an open curve, considering M points only yields M − 1 curve
segments. In the closed curve case, a portion of curve connects the last control
point to the first one, yielding M intervals.

The positive integer M , corresponding to the number of pairs of control points
and tangent vectors, regulates the flexibility of the snake. Large values of M allow
reproducing complex shapes, while small ones yield simple contours. It is possible to
approximate any closed shape by considering an arbitrarily large amount of control
points and associated tangent vectors.

Our model is an extension of cubic B-spline snakes. In the absence of φ2, (5.3)
and (5.7) indeed reduce to (5.1), the classical formulation of parametric active
contours. The introduction of φ2 allows controlling the tangents, which grants
several features that classical spline snakes do not offer.

5.1.3 A Digression on the Generation of Corners

An important advantage of the landmark snake is its ability to reproduce corners
with only one control point, something that is not achievable with classical spline
snakes.

To better understand how the landmark snake generates corners, we start by
considering what defines such features. A necessary condition for introducing a cor-
ner at curvilinear coordinate t0 is to set the derivatives of the coordinate functions
to

r′1(t0) = r′2(t0) = 0. (5.8)

What we call corners are often referred to as singular points [139].
Provided that no two control points are identical, it can be shown that, in the

cubic B-spline and exponential-spline snake cases, (5.8) can only be satisfied when
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(a) (b)

Figure 5.1: (a) Open and (b) closed landmark active-contour models. In both cases,
the curve is represented by a set of control points and associated tangent vectors.

all control points lie on a straight line. We refer to this situation as a flat corner.
It is obviously of limited practical interest. The landmark snake, however, allows
enforcing (5.8) by setting the tangent vectors to zero at any arbitrary control point.
When all tangent vectors in a landmark snake are set to zero (i.e., r′[k] = 0 for

all k), it is not hard to show that r2(t)
r1(t) is constant in [k, k + 1) for every k on the

curve. This is equivalent to linear interpolation and control points are hence linked
by straight lines. Non-null tangent vectors introduce smoothness in the curve at
the corresponding control point location, as shown in Figure 5.2. Conversely, in
a curve composed of mostly non-zero tangent vectors, setting one of them to zero
results in a local roundish corner as depicted in Figure 5.3.

As a more precise explanation, two situations allow creating a true, non-flat
corner. The local slopes in each coordinate functions around the corner point can
either be different or equal to zero. The first situation with unequal local slopes
around the corner point implies that the second derivative—of either coordinate
function—contains a discontinuity. Cubic B-splines and exponential splines are
C2-continuous by construction at the joining points and hence necessarily have
continuous second derivatives. Hermite spline curves, on the contrary, are C1 at
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Figure 5.2: Generation of corners with the landmark snake. Two 2-D curves are
depicted as solid lines along with a plot of their coordinate functions and their
derivatives. The curves are parameterized by three control points (solid dots) and
associated tangent vectors (arrows, set to vanish at r(0) and r(2)). The control
points of the two curves are identical, except for the tangent vector at r(1). When
set to zero, it creates a discontinuity in r′′1 and yields a sharp corner. When it doesn
not vanish, the discontinuity disappears and a smooth curve is obtained.
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Figure 5.3: Generation of roundish corners with the landmark snake. Setting
r′1(1) = r′2(1) = 0 creates a corner. Although the surrounding control points have
non-zero derivatives (represented by the tangent vectors as arrows), the local be-
havior around the corner is conserved and yields a sharp discontinuity at r(1).

the joining points and therefore allow for discontinuous second derivatives. It is still
possible to generate corners with cubic or exponential splines through the second
scenario, where slopes around the corner point are vanishing. However, it implies
that several control points accumulate at the same location on the 2D plane. This
corresponds to the introduction of multiple knots in the spline curve, which does
not fit the spline-snake formalism relying on sequences of distinct control points3.

5.2 Energies

The evolution of active contours is driven by the optimization of a cost functional
referred to as snake energy. Many energy terms have been proposed in the lit-
erature [65, 140], we point the reader to Section 2.3.2 for some examples. The
specificity of the image analysis problem at hand usually drives the design of the
energy function, as the energy dictates the quality of the final segmentation result.

While many approaches to detect feature points exist in the computer vision
community (see Chapter 2 for more details), segmentation approaches relying on the

3The curve r(t) = (t3, t2) is an example of this situation, with a corner at r(0).
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automated detection of landmarks are more rarely found in bioimage informatics.
There, most methods rely on points that are defined manually [65]. The landmark
snake is versatile enough to handle all traditional energy functionals designed for
classical parametric and point-based snakes. However, in addition to that, the
direct expression of tangents in the snake model enables the design of feature-based
energies. As a consequence, constraints based on the output of feature detectors can
be imposed locally on the tangent field of the contour. It allows linking automatic
feature detection and active-contour methods.

5.2.1 Internal Energies

Cubic Hermite splines are optimally smooth in the sense that, for a function f ∈
L2(R), they minimize ‖f ′′‖L2

, as presented in more details in 3.3.1. This quantity
is linked to the snake curvature [65]. It therefore holds the potential to eliminate
the need for an explicit internal energy term. If required, low curvature can be
guaranteed under some mild conditions on the parametric curve in a similar fashion
as for cubic B-spline snakes [65].

5.2.2 Image Energies

Let us start by recalling that energies are functions of the snake curve that get mini-
mized during the optimization process. Following the notations introduced in 2.3.1,
we consider snake curves C(Θ), where Θ is the snake representation. In our case,
the snake is completely determined by Θ = {r[k], r′[k]}k=0,...,M−1 through r and is
normalized such that t ∈ [0, 1]. Thus, C is parameterized by r : [0, 1] → C. Opti-
mizing an energy term amounts to adapting the values of the {r[k], r′[k]}k=0,...,M−1

such that E(Θ) reaches a minimum value.
We propose three types of energies which directly use the control over tangents

granted by the landmark snake. The underlying idea is to use feature detectors to
obtain maps of possible landmarks in the image. These correspond to places where
something particular happens. From the interpolation property of Hermite splines,
the control points of the landmark snake lie directly on the curve. They can thus be
used as a one-to-one correspondence with landmarks. Our feature-based energies
then deforms the snake curve to attract control points to landmark regions. As
feature detectors provide information on the nature of the local neighborhood of
each feature, the energy then translates this information into constraints on the
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tangent vector so as to locally adapt the snake curve properties. Each tangent
vector r′[k] has three different aspects that can be constrained, namely:

• its origin, which corresponds to the location of the associated control point
r[k],

• its magnitude, which corresponds to ‖r′[k]‖2 and which dictates the local
smoothness of the curve at the tangent location,

• its orientation, which corresponds to the angle between the vector r′[k] and
the horizontal axis and which influences the local orientation of the curve.

Our three feature-based energies target each of these properties, together or sep-
arately. First, the purely directional energy term imposes only orientation con-
straints on the tangent from the output of general-purpose filters. Then, the
purely amplitude-based energy term based on corner detectors focuses on tangent
magnitude only. Finally, our last formulation simultaneously constrains both tan-
gent magnitude and orientation using the information provided by the output of
template-based filters.

Purely Directional Energy

We define the continuous directional snake energy as

Edirectional(Θ) = − 1

L(Θ)

∮
C(Θ)

∣∣∣∣ 〈vθ∗0 (r),
r′

‖r′‖

〉 ∣∣∣∣ µ(r) dr, (5.9)

where the two-dimensional vector functions r = (r1, r2) and r′ = (r′1, r
′
2) corre-

spond to the snake curve and its derivative, respectively. The elements θ∗0 and
µ are some orientation and amplitude maps computed from the input image and
having the same dimensions as the latter. By µ(r), we designate the values of the
map µ under the image coordinates of the curve r. Similarly, we define the unit
vectors vθ∗0 (r) = (cos(θ∗0(r)), sin(θ∗0(r))) representing the local orientations θ∗0 un-
der the image coordinates of the curve r. The absolute value of the inner product
between vθ∗0 (r) and the coordinates of r′, which is the first term of the integrand,
is maximized when the tangents of the snake are locally aligned with the orien-
tation given by θ∗0 . The term µ acts as a weight that favors where the feature of
interest is locally present, indicated by a large magnitude. In order to obtain a



5.2 Energies 121

dimensionless energy, the line integral is finally normalized by the length of the

curve L(Θ) =
∮
C(Θ)

dr =
∫ 1

0
‖r′(t)‖dt. The whole expression is set with a minus

sign since the snake optimization is defined as a minimization process.
The directional energy (5.9) is general enough to accommodate any input-image-

sized maps θ∗0 and µ providing orientation and amplitude information, respectively.
We here give two different examples thereof.

1. For an input image denoted by I, the orientation and amplitude maps are
given by the classical two-dimensional gradient orientation and magnitude

θ∗0(x) = arctan

(
∂I(x)
∂y

∂I(x)
∂x

)
, (5.10)

µ(x) =

√(
∂I(x)

∂x

)2

+

(
∂I(x)

∂y

)2

. (5.11)

The resulting snake energy tends to deform the snake towards regions of high
gradient amplitude (i.e., edges) and to align its tangent vectors with the local
orientation of the gradient. As θ∗0 defined as (5.10) tends to be noisy, this
choice is not the most robust in practice.

2. Steerable filters offer more refined orientation and magnitude response maps.
From Chapter 4, orientation and magnitude can be defined as (4.2) and (4.3),
respectively. The detection template h is given by

h(x) =

N∑
n=0

n∑
i=0

an,i
∂n−i

∂xn−i
∂i

∂yi
g(x), (5.12)

where g is a Gaussian window and N is the order of the detector. The kind
of features detected by h can be modified by acting on N . Odd values of
N yield edge detectors while even values of N produce ridge detectors. In
addition, filters built with larger values of N have a higher SNR and better
localization capabilities, at the cost of increasing computational expenses [31].
The orientation information obtained with steerable filters is generally less
subject to noise and therefore more precise than that obtained with the Canny
edge and Hessian ridge detectors.
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Proof of Concept. The purely directional snake energy (5.9) differs from clas-
sical image-based energies by the addition of the term that enforces r′ to be in the
orientation given by θ∗0 . Constraining the behavior of the derivative of the snake
through the tangent vectors increases the overall robustness of the segmentation.
In cases where several patterns of interest are in close contact or when dealing
with object having complex shapes, magnitude information might indeed not be
sufficient to properly segment the contour. We generated synthetic images that
are representative of situations where the contour of the object of interest contains
rapid changes of orientation or has circonvolutions, and where nearby objects are
likely to attract the snake and divert it from its target. Using the same initial
curve, we optimized a cubic B-spline snake, an exponential snake [70], and a land-
mark snake. We carried out all experiments using a steerable filter designed to
detect ridges constructed following (5.12). In the Hermite case, we took advantage
of (5.9). For the other snakes, we used only magnitude information as

Esimple(Θ) = − 1

L(Θ)

∮
C(Θ)

µ(r) dr. (5.13)

Traditional spline snakes do not include tangents in their parameterization. To per-
form a fair comparison and be consistent in the number of parameters, we therefore
endow such snakes with at most twice as many control points as the landmark
snake. Results are shown in Figure 5.4 for the closed-curve case and in Figure 5.5
for the open-curve case.

Purely Amplitude-Based Energy

Energies attracting parametric snakes towards a set of user-defined points have
been proposed [65], as well as methods driving contour extremities to automatically
detected landmarks [141]. We aim at extending this idea by not only imposing
that automatically detected landmarks attract the control points, but also that
the nature of the landmark constrains the local behavior of the curve through the
tangent vectors. We propose the amplitude-based energy that enables the generation
of controlled discontinuities at precise locations on the curve as

Eamplitude(Θ) =

Nc∑
i=1

‖r[k∗i ]− ci‖2 +M2 ‖r′[k∗i ]‖2

‖r[k∗i ]− ci‖2
, (5.14)
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(a) (b) (c)

Figure 5.4: Segmentation with and without orientation information in the closed-
curve case. (a) Snake initialization for (b) and (c). (b) Segmentation result after
optimizing a 16-point exponential-spline snake with the ridge-based energy (5.13).
(c) Segmentation result after optimizing an 8-point landmark snake with (5.9).

(a) (b) (c)

Figure 5.5: Segmentation with and without orientation information in the open-
curve case. (a) Snake initialization for (b) and (c). (b) Segmentation result after
optimizing an 8-point cubic-spline snake with the ridge-based energy (5.13). (c)
Segmentation result after optimizing a 4-point landmark snake with (5.9). Fixed
snake extremities are depicted as disks.
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where

k∗i = argmin
0≤k<M

‖r[k]− ci‖2.

The r[k] and r′[k] are the M control points and tangent vectors from (5.7), and ci
is the i-th element in the collection of Nc detected corner points.

The energy contribution of the corner point ci is composed of two terms: the
squared distance to the control point closest to the corner, and the length of the
associated tangent vector divided by the aforementioned distance. In this way, the
penalty imposed on the length of the tangent increases as the point approaches the
corner location, forcing the curve to create a sharp corner. This result is weighted
by M2 to impose stronger constraints on the tangents for curves with more control
points and, therefore, more degrees of freedom. In practice, an epsilon is added to
the denominator to avoid numerical instabilities when control points get very close
to or match corner locations.

Proof of Concept. We rely on a synthetic image to demonstrate the benefits
of using the amplitude-based energy (5.14). We study the segmentation of a solid
almond-shaped object. As depicted in Figure 5.6a, the pointy extremities can
easily be detected, for instance by a Harris corner detector. This method identifies
locations of sudden variation of the gradient in the image (see Section 2 for more
details). More precisely, it relies on the eigenvalues (λ1, λ2) of the Hessian matrix
to obtain a corner score R for each point in the image, defined as

R = λ1λ2 − k(λ1 + λ2).

The behavior of the detector can be tuned by acting on three main parameters.
The first one is the so-called sensitivity parameter k, for which smaller values allow
capturing sharper corners. The second is a minimal value for R, which sets a
threshold on the accepted quality of corners. Finally, the support of the filter used
to estimate the Hessian matrix can be tuned as well.

When the snake is not encouraged to place control points at the extremities
of the object, it tries to generate a discontinuity by dramatically increasing the
length of its tangents, resulting in unwanted loops (Figure 5.6c). Adding a land-
mark energy that does not involve tangents, such as the one proposed in [65], is
still not sufficient (Figure 5.6d) as it fails to prevent the snake from diverging at
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(a) (b) (c)

(d) (e) (f)

Figure 5.6: Examples of synthetic image. (a) Detected corner locations in red.
(b) Initialization of the 4-points snake. Segmentation results after optimizing on
(c) an edge-based energy only, (d) a combination of edge- and constraint-based [65]
energies, (e) a combination of (5.14) and of an edge-based energy. (f) Results using
a combination of (5.14) and of an edge-based energy on the image degraded by
additive Gaussian noise.

the tips of the object. Attracting control points to corner locations and simulta-
neously encouraging small tangent values allows for a precise outline of the whole
shape (Figure 5.6e). Moreover, both the corner detection method and the snake
optimization are robust to noise (see Figure 5.6f). Results are shown for the same
initial conditions depicted in Figure 5.6b in all cases.

Local Feature-Based Energy

The two energy terms we proposed so far were either purely directional or purely
amplitude-based in the sense that we either imposed constraints only on the ampli-
tude of the tangent or only on its direction. We now propose a local feature-based
energy where both the magnitude and the direction of the tangent adapt to the
nature of the features present in the image. The initial element we rely on is a
template representing a type of features of interest. Let us consider a landmark
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snake curve with one control point that lies exactly on the feature (i.e., in the
center of the template). The way its tangent should be set in order to perfectly
outline the feature locally is referred to as the ideal tangent and is denoted as τf .
The template and ideal tangent generation can be replaced by a training step. This
consists in manually annotating an instance of the object of interest with a land-
mark snake and flag the control points that should act as landmarks. Templates
are then generated by extracting crops of the image around these control points,
and ideal tangents are directly obtained as the tangent values at these locations.

In order to compute the local feature-based energy from this initial setting, an
input image should be processed by a feature detector outputting three pieces of
information, namely

1. where the feature occurs, or where it is found in the image;

2. at which scale the feature occurs;

3. how the feature is oriented.

These elements can come in two forms. The first one is a triplet of amplitude,
orientation and scale response maps of the same dimensions than those of the input
image, which contain at each location a measure of how strongly the feature is
represented, how it is oriented and at which scale it occurs, respectively. For a
feature f , the amplitude response map is referred to as µf (x). The orientation
response map is denoted as θ∗0,f (x) and the scale response map as ςf (x). To build
our local feature-based energy, we will rely on the image inverse of the amplitude
response map, referred to as µf (x). The image inverse corresponds to a reversed
version of µf (x) and is similar to a photographic negative. As a consequence,
areas of strong amplitude response correspond to peaks (i.e., local maxima) in
µf and pits (i.e., local minima) in µf . The orientation and scale response maps
can be used without any modification. The second form that feature detector
outputs can take is a discrete list of coordinates indicating feature locations with
a corresponding descriptor providing scale and orientation information, which is
typical of keypoint detectors. As our energy is more easily expressed using input-
image-sized maps, we propose the following strategy. For a discrete list of NK
keypoints {p1,p2, · · · ,pNK}, an inverted amplitude response map for the feature
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f can be constructed as

µf (x) =

NK∑
i=1

wie
− ‖x−pi‖

2

σ2
i , (5.15)

where wi ∈ [0, 1] is a keypoint weight given by the descriptor (i.e., a measure
of how it is trusted to be a good keypoint), and σi is the size of the basin of
attraction of the keypoint, which is an empirically-chosen value proportional to wi.
The quantity ‖x− pi‖2 corresponds to the squared (Euclidean) distance from the
current image location to the keypoint pi

4. The orientation and scale response
maps can be constructed by filling small areas around each keypoint locations with
their respective orientation and scale values extracted from the descriptor, and
setting the remaining pixels to zero. Steerable filters learned from feature templates
following the approach discussed in 4.4 are promising candidates as they provide
all the aforementioned required pieces of information.

From there, the local feature-based energy is constructed to satisfy the following
goals.

1. Attract control points to locations of high feature amplitude response (i.e.,
to locations where the feature is present).

2. There, align the tangents to the local feature orientation.

3. Also encourage the tangent magnitude to correspond to that of the ideal
tangent for that feature, up to a rescaling factor that depends on the scale at
which the feature was detected.

The formulated energy is exclusively designed for landmark snakes as it exploits
both the interpolating and tangent control properties of our model. Its expression
is given by

Esingle feature(Θ) =

M−1∑
k=0

µf (r[k]) +
αf
∣∣Cςf (r[k])‖τf‖ − ‖r′[k]‖

∣∣
µf (r[k])

, (5.16)

4From a collection of discrete keypoint locations, a further possibility is to use the distance
from the keypoints to the nearest control point as a direct measure of amplitude. Then, µf (r[k])
in (5.16) is replaced by ‖r[k]− pi‖2 in the spirit of (5.14).
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with

αf = cos−1


∣∣∣〈Rθ∗0,f (r[k])τf , r′[k] 〉

∣∣∣
‖τf‖‖r′[k]‖

 , (5.17)

where r[k] is the location of the kth control point on the landmark snake curve,
θ∗0,f (r[k]) the local orientation of the feature at position r[k], µf (r[k]) the image
inverse of the local amplitude of the feature (where low values thus indicate that
the feature is locally strongly present), and τf theideal tangent for this type of
feature. Then, Cςf (r[k]) is a normalization factor corresponding to the scale ςf (r[k])
at which the local feature was identified in the image coordinates of r[k]. It thus
adapts the magnitude of the ideal tangent to the actual feature scale. As explained
earlier, the underlying idea is to favor local tangents that match the ideal one.
This is in addition be enforced regardless of the direction of the parameterization
(i.e., curves with the same set of control points that are parameterized clockwise
and counterclockwise are equivalent). The local and ideal tangents are therefore
enforced to align up to an angle of π. This leads to the expression of the angle αf ,
which corresponds to the angular discrepancy between the local tangent and the
line obtained by extending the ideal tangent vector. It is derived from the nature
of the scalar product, considering that∣∣∣〈Rθ∗0,f (r[k])τf , r′[k] 〉

∣∣∣
‖τf‖

provides the orthogonal scalar projection of r′[k] onto the line determined by τf .
This measure of orientation discrepancy is multiplied by the absolute difference
in magnitude between the ideal and current tangents, taking into account possible
scaling effects. The product of these two terms is divided by the image inverse of the
local feature amplitude in order to relieve the constraints on tangent orientation and
magnitude in areas where the feature is not present. When minimized, this energy
term thus encourages the placement of control points at feature locations and, at
these locations, favors a tangent orientation and magnitude that corresponds to the
nature of the feature template.

A variation on this theme is to restrict the feature-based energy to specific
control point indices. It amounts to specifying the nature of individual control
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points: some should act as landmark and be attracted to features, some others not.
In this way, a particular snake parameterization can be imposed, e.g., by ensuring
that the kth control point is always acting as a landmark for a feature of interest.
As a result, the energy is modified as

Esingle feature,k(Θ) = µf (r[k]) +
αf
∣∣Cςf (r[k])‖τf‖ − ‖r′[k]‖

∣∣
µf (r[k])

, (5.18)

where k ∈ {0, . . . ,M − 1} is the index of a control point. The total energy of the
snake curve is obtained by summing over the set K of control points that should
act as landmarks, yielding

Esingle feature, targeted(Θ) =
∑
k∈K

Esingle feature,k(Θ). (5.19)

Finally, different type of features can be combined in this spirit to yield a mul-
tiple local features-based energy. In this situation, each feature of interest has a
corresponding template and ideal tangent. We denote the set of features of different
nature as F . The input image is then processed to obtain one triplet of feature
amplitude (and its corresponding image inverse), orientation and scale response
maps for each considered feature type. The resulting energy is expressed as

Emultiple features(Θ) =

NF∑
i=1

M−1∑
k=0

µfi(r[k]) +
αfi

∣∣∣Cςfi (r[k])‖τfi‖ − ‖r′[k]‖
∣∣∣

µfi(r[k])
, (5.20)

with NF the number of different feature types (i.e., the cardinality of F ) and the
other elements defined as in (5.16). The tangents are hence adapted according to a
mixture of ideal tangents, which are weighted by how strongly each corresponding
feature is locally represented.

More generally, the multiple local features-based energy can be adapted to tar-
get precise control points in the same way as (5.19). Each control point can be
assigned a dedicated energy term corresponding to the kind of feature it should
represent. Let us consider again NF different feature types. One denotes as Ki the
set containing the indices of control points that should act as landmarks for feature
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i, where i = 1, . . . , NF . The resulting energy is expressed as

Emultiple features, targeted(Θ) =

NF∑
i=1

∑
k∈Ki

µfi(r[k]) +
αfi

∣∣∣Cςfi (r[k])‖τfi‖ − ‖r′[k]‖
∣∣∣

µfi(r[k])
.

(5.21)
The energy (5.20) is a particular case of (5.21) where Ki = {0, 1, . . . ,M − 1} for
all feature types i = 1, . . . , NF or, in other words, where control points are all in-
distinctively attracted to every type of feature. The energy (5.21) is the pinnacle
of our points-and-curves story. It allows to explicitly associate an arbitrary set of
control points to each type of features of interest. As a result, every individual con-
trol point acts as a feature-specific point seeker, deforming the curve it is attached
to as it gets attracted to its target. The points and curves paradigms get united
through this direct correspondence between snake control points and landmarks.

A possible unwanted effect of the feature-based energy term (5.21) is the accu-
mulation of control points at a similar location in the image. The expression of the
energy indeed encourages control points to be placed at landmark locations, but
does not control that only one does so. To reduce the risk of having control points
clustering at the same position, we propose to combine (5.21) with a self-repulsive
energy given by

Erepulsive(Θ) =

M−1∑
k=0

L[ k−1
M , k+1

M ](Θ)

2 min
(
L[ k−1

M , kM ](Θ), L[ kM , k+1
M ](Θ)

) , (5.22)

where L[t0,t1](Θ) =
∫ t1
t0
‖r′(t)‖dt is the arc length of the snake curve from t0 to t1.

The energy is thus the ratio between half of the arc length from r[k− 1] to r[k+ 1]
to the minimum among the arc lengths from r[k] to r[k + 1] and from r[k − 1]
to r[k]. It is worth noting that L[ k−1

M , k+1
M ] is completely determined by the three

pairs of control points and tangents in k − 1, k and k + 1. Similarly, L[ k−1
M , kM ] and

L[ kM , k+1
M ] only depend on the two pairs of control points and tangents in (k−1)—k

and k—(k+ 1), respectively. This is a convenient consequence of the small support
of the cubic Hermite splines (see Section 3.1 for more details). In the case of closed
curves, the sequence of control points is periodic and no boundary conditions need
to be considered. In the case of open curves, the set of indices in the summation
is simply reduced from k = 1 to M − 2, thereby excluding the two end points
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without any loss of generality. The effect of (5.22) is to introduce a repulsive force,
which enforces that control points remain well distributed along the snake curve.
Importantly, as it only consists of ratios, the energy is normalized. It therefore
does not encourage the snake curve to grow endlessly. Moreover, the final energy
used for optimization is always a combination of several terms. Other energy terms
are required, e.g., for the control points that do not act as landmarks. In addition
to (5.22), these other terms also help avoiding that the snake curve collapses as
control points cluster.

Proof of Concept. We demonstrate the efficiency of the local features-based
energy (5.21) on synthetic images. We split our experiments in two parts. In
the first one, we show how the quality of segmentation results can be improved by
incorporating feature-based information in the segmentation process. In the second
one, we illustrate the use of the feature-based energy targeted to specific control
points in order to impose a common parameterization when segmenting several
instances of similar objects in the image.

1. Improved segmentation results on objects with prominent features.

We consider objects whose shapes imitate those of cells with filopodia-like
protrusions. It consists in more or less sharp tips on a portion of the cell
body, while the rest appears as smooth, as seen in Figure 5.8a. We search
for two different feature types in these images, namely bumps and rounded
tips. The corresponding templates are shown in Figure 5.7. Ideal tangents are
obtained by setting a control point in the center of the template and manually
adapting its tangent so as to obtain a curve portion that locally outlines the
contour of the feature in the template. Test images are filtered by a pyramid
of rotated matched filters built from each template. For the interested reader,
this procedure is formulated in more details at the beginning of 4.4. Given
a test image, three potential maps are obtained per feature type fi: the
amplitude response map µfi containing at each location the highest response
that could be obtained across the pyramid, the orientation response map
θ∗0,fi containing the template rotation that provided this highest response,
and the scale response map ςfi containing the scale of the pyramid at which
the strongest response was found.

We obtain segmentation results first by optimizing the landmark snake using
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(a) (b)

Figure 5.7: Feature templates for the filopodia test images. In both cases, the ideal
tangent, overlaid as a red arrow, is that of a control point placed in the center of
the template. It is set as an horizontal vector (i.e., with an angle of zero), whose
magnitude is then adapted to obtain a curve locally fitting the feature contours.
(a) Tip-like template used to capture filopodia tip feature, (b) bump-like template
used to detect the “back-end” of the cells.

a mixture of self-repulsive energy (5.22), constraint-based energy in the spirit
of [65] and edge-based energy (5.9) (Figure 5.8c). The constraint-based energy
used here only enforces that control points locate at area of high feature
response, but does not affect the tangents. We then replace the constraint-
based energy by our multiple local features-based energy (5.20) for bumps
and rounded tips, while keeping the two other remaining terms (Figure 5.8d).
Results are shown for the same initial conditions in all cases (Figure 5.8b).
Encouraging control points to locate at precise places does not appear to be
sufficient to obtain good segmentation results. When the tangents are not
restricted, entangling occurs. It is worth noting that this effect could be seen
as a counter-argument for using models involving tangents. However, much
more control points are needed in order to obtain the same outline quality with
classical spline-snake models. As a result, the model is more complicated and
the risk of self-intersections increases. Our local feature-based energy precisely
provides a good way to sufficiently constrain the landmark snake to benefit
from the simplicity of its model when dealing with complicated shapes. Using
this energy, precise segmentation results can be obtained in a reproducible and
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(a) (b) (c) (d)

Figure 5.8: Illustration of the benefit of the local feature-based energy for con-
straining the landmark snake when segmenting complicated objects. (a) Synthetic
images mimicking cells with filopodia-like protrusions, (b) landmark snake curve
initialization, followed by segmentation results after optimizing on (c) a combina-
tion of edge- and constraint-based [65] energies, and (d) a combination of (5.20)
and edge-based energies. The location of the control points in the final curve are
indicated by crosses. In both cases the self-repulsive energy was used in order to
avoid control points clustering.

stable manner. Although not depicted here, the local feature-based energy
offers similar robustness to noise as the purely amplitude-based energy (5.14).

2. Unique parameterization on different instances of similar objects.

The local feature-based energy can also be used as a way to enforce particular
control points to be placed at locations where the feature is detected, making
it possible to set a common origin for different snake curves. Imposing a
unique parameterization of the segmentation curve is required to align and
compare different instances of similar objects. To illustrate this, we provide
a second proof-of-concept example using mock images of elongated rod-like
objects that could be bacteria or nematodes (Figure 5.10a). These objects
are smooth and standard spline-snake models can thus efficiently segment
them (Figure 5.10c). However, there is then no easy way to favor particular
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Figure 5.9: Feature templates for capturing extremities of rod-like shaped objects.
The ideal tangent, overlaid as a red arrow, is that of a control point placed in the
center of the template. It is set as an horizontal vector (i.e., with an angle of zero),
whose magnitude is then adapted to obtain a curve fitting the feature contours.

distributions of control points along the segmentation curve and, therefore,
to impose a unique origin for the parameterization of each curve. This can
be achieved by relying on (5.19) with a single feature type, namely rounded
tip-like features. We use the template shown in Figure 5.9 and impose that
the first (r[0]) and middle (r

[
M
2

]
) control points go to the object extremities,

while the remaining ones evenly spread along both sides of the object, which
translates to K1 =

{
0, M2

}
. As a result, solutions where these two particular

control points locate at each object extremity are preferred (Figure 5.10d). It
is then possible to align the outlines of the different objects, compare them
and compute measures of difference in a meaningful manner.

In the above examples, we rely on a pyramid of rotated matched filters. This
fairly simplistic feature detection method can be easily implemented with
custom templates. However, it could be replaced by any feature detection
method providing information about either the location or the magnitude,
the local orientation and the local scale of the features in the image. For
instance, steerable filters or convolutional neural networks tuned to detect
instances of a given template appear as good alternatives. Due to the ideal
tangent construction, the only critical aspect of the method is to be able
to detect occurrences of the same pattern under the effect of rotation and
scaling, and not a collection of different local features of different nature.
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(a) (b) (c) (d)

Figure 5.10: Illustration of the benefit of the local feature-based energy for imposing
a particular snake parameterization by enforcing control points to lie at particular
physical locations on the object. (a) Synthetic images featuring elongated rod-
like structures., (b) landmark snake curve initialization, followed by segmentation
results after optimizing on (c) an edge-based energy and (d) a combination of (5.19)
and edge-based energies. The location of the control points in the final curve are
indicated by crosses. In this experiment, the interest of using (5.19) lies in enforcing
a given distribution of the control points along the object contour, not in improving
the quality of the segmentation outline. In both cases the self-repulsive energy was
used in order to avoid control points clustering.

The local feature-based energy unifies automated feature-detection methods
and active contour segmentation. It can be seen as an extension of point-
based only landmark energies for classical spline snakes. It does not only rely
on feature detectors to attract control points at landmark locations, but also
locally constrains the snake curve according to the nature, the orientation
and the scale of the landmark. An interesting aspect of the method is that
its robustness to noise boils down to the robustness of the feature detector.
Similarly, the invariance properties of the feature detector used are inherited
by the local feature-based energy.
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5.3 Applicative Aspects

We now discuss additional aspects related to the implementation and user interac-
tions with landmark snakes.

5.3.1 Implementation Details

The landmark snake plugin is implemented as a direct translation of the theory pre-
sented in Sections 5.1 and 5.2. More precisely, snake curves are directly constructed
from (5.3) (for the open curve case) and (5.7) (for the closed curve case). Since our
landmark snake model is continuously defined and practical implementations lie in
the digital world, we discretize the continuous parameter t at a fixed sampling rate.
To speed up execution time, samples of the cubic Hermite spline basis functions
φ1 and φ2 are also precomputed and stored in lookup tables. This allows for a
real-time response when interacting with the anchor points and tangent vectors of
the snake.

5.3.2 Optimization

Automated optimization is carried out in an efficient way relying on Powell-like
line-search methods [142], which are standard unconstrained optimization algo-
rithms. These methods converge quadratically and require the computation of the
derivatives of the energy function with respect to the parameters (i.e., the coeffi-
cients of the Hermite spline). First, one direction is chosen according to the partial
derivatives of the energy. Second, a one-dimensional minimization of the energy
is performed along the selected direction. Finally, a new direction is chosen from
the partial derivatives, while enforcing conjugation properties. These steps are re-
peated until convergence, and the position of the control points are updated as the
energy gets minimized. Since the energy is continuously defined, centered finite
differences a discrete approximation of the continuous derivative is used to esti-
mate partial derivatives with respect to each of the control points. The convergence
speed can sometimes be increased further by deriving a closed-form expression of
the derivatives of the snake energy. However, while it has been shown in [70] that
having an analytical expression for the energy gradient is especially useful when
the number of parameters becomes large, our snake is defined by a small number of
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parameters (M anchor points plus M tangent vectors). Therefore, estimating the
energy gradient using centered finite differences is satisfying in practice.

5.3.3 User Interaction

Our Hermite active-contour model facilitates interaction with the user in several
ways. First, it relies on a smaller number of control points than many other para-
metric snake models. Then, since its construction involves basis functions of small
support, the snake is only locally affected by structural changes. Modifications
of one control point indeed merely affect the curve in a small local neighborhood.
Finally, due to the interpolation properties of Hermite splines, anchor points truly
lie on the actual contour on the snake, resulting in more intuitive interactions. We
take advantage of this framework to provide a user-friendly interface in which the
position and shape of the snake can be manually edited through manipulation of
the control points and associated handles that correspond to their tangents. We
also add the possibility to manually “freeze” control points and/or tangent handles
at specific locations (corners, typically). When launching automated optimization,
the “frozen” points are left out where they are while the rest of the curve automat-
ically adapts to the outline of the object of interest. Our method can be deployed
interactively by combining steps of snake initialization, optimization, and manual
correction.

5.4 Practical Experiments

We carry out experiments to demonstrate that the landmark snake is well-suited
to a wide range of segmentation tasks. For the quantitative evaluation of the snake
performance, we rely on the Jaccard index J ∈ [0, 1] defined as

J =
|S ∩ Sref |
|S ∪ Sref |

, (5.23)

where Sref is the ground-truth region and S the region segmented by the snake. It
therefore measures the percentage of similarity between the two regions computed
with a pixelwise discretization, 1 being perfect segmentation. Note that, because of
discretization effects, a Jaccard index of 1 is almost never reached and values close
to one can be considered as accurate segmentations.



138 Theorizing Landmark Active Contours

We proceed in three steps. First, we discuss how the landmark snake compares
to other state-of-the-art spline snakes. We discuss the introduction of sharp corners
in the snake curve as well as local orientation constraints. We also study changes
in the number of control points, dependence on initial conditions and robustness to
noise. Finally, we show segmentation results in bioimages acquired using different
microscopy modalities. In the literature, the snake energy is usually split into an
external energy term, which contains all data-driven functionals, and an internal
energy term encompassing the regularization energies. In the present case, snake
optimization is only carried out relying on external energy terms, which are specified
in each example.

5.4.1 Comparison with Existing Approaches

State-of-the-art spline snakes such as the ones built from cubic B-splines and expo-
nential splines [70] adhere to the same principles as the landmark snake and are the
most relevant competing methods. Here, we discuss how the two novel features of
our model, namely the ability to influence tangent orientation through the design of
directional energy functionals and that of reproducing corners by acting on tangent
magnitude, are advantageous.

Reproduction of Corners

Cubic B-spline and exponential-spline snakes generate curves that are smooth by
design. Sharp angles can be approximated but require a large number of distinct
control points, as shown in Figures 5.11a and 5.11b. Conversely, the landmark
snake is able to introduce sharp corners in curves with only one control point by
setting the tangent magnitude to zero, as illustrated in Figure 5.11c. The cubic
and exponential snakes are here composed of 9 control points and yield a poor
approximation of the sharp tip. With 4 control points and associated tangent
vectors, the landmark snake is able to perfectly recreate the tip of the drop-like
shape. As the stability of the optimization process depends on the number of
parameters, the landmark snake is also less likely to diverge.
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(a) (b) (c)

Figure 5.11: Generation of sharp corners using (a) cubic B-spline snake, (b)
exponential-spline snake, and (c) landmark snake.

Constraints on the Local Orientation

Constraining the local orientation of the snake curve can serve two purposes. Firstly,
it enhances robustness when segmenting complicated shapes. This aspect is dis-
cussed in 5.2.2 as a proof of concept of the usefulness of our purely directional
energy. Energies taking into account, e.g., the orientation of the gradient can be
designed for classical spline snakes but involve artificially constructed unit normal
vectors to the snake curve (see 2.3.2 for more details). Conversely, landmark snakes
instantaneously provide such vectors: they simply are perpendicular to the tangents
that directly appear in the snake model. As a result, energies incorporating local
orientation information have simpler and more natural expressions.

Secondly, control over the local orientation allows locally adapting the snake
curve to the presence of a feature. It is simply not possible to formulate terms such
as the purely magnitude-based energy (5.14) or the feature-based energy (5.20) for
classical spline snakes. These models do not provide a way to modify the local
properties of the curve with a single control point. In classical spline snake models,
control points only dictate where the curve goes, not how it looks like around them.
A possible way to design local feature-based energies for classical spline snakes could
be to impose constraints on groups of neighboring control points. The energy would
enforce that the points behave together so as to locally shape the curve according
to the nature and orientation of the feature. The number of required control points
would however differ depending on the scale of the feature, resulting in overly
complicated formulations. An added difficulty comes from the fact that control
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points of most smooth snakes (including cubic B-spline and exponential ones) do
not lie on the curve. There is thus no correspondence between control points and
landmarks, further complexifying the design of local feature-based energies.

5.4.2 Validation

Degrees of Freedom

The number M of control points is the main parameter of the Hermite-snake model.
The choice of M is guided by the particular segmentation task being considered,
keeping in mind that larger values of M grant additional flexibility to the curve
and hence allow the reproduction of more complex shapes, but also enlarge the
search space of the optimizer, which is therefore more likely to diverge or fall into
local minima. A few control points are sufficient to segment smooth shapes, for
which snakes with large M have a higher risk of getting entangled. For rougher,
more complex contours, snakes with more control points and hence more degrees
of freedom are required.

In the following experiments, we manually set the number of control points.
There also exist ways to choose the number of control points automatically. For
instance, one can apply a multiresolution strategy and perform several rounds of
optimization starting from a snake with very few control points, optimizing it,
resampling the resulting curve with more control points, further optimizing, and
iterating in this way until the value of the snake energy at convergence stops de-
creasing. We do not provide a study of such approaches here, although it is used
in the application presented in 6.3.

Dependence on Initial Conditions

Another important aspect is the initial snake curve from which the automated
optimization process is started. A rough sketch should be sufficient since the opti-
mization process takes care of precisely adapting it to the object boundary. Circular
or oval shapes for closed snakes and broken lines for open ones are common initial-
izations. From there, the curve obtained at convergence is a direct consequence of
the nature of the chosen energy terms.



5.4 Practical Experiments 141

Robustness to Noise

We investigate the robustness of the landmark snake to noise in the image as a
function of the number of coefficients M , when it is driven by a purely directional
energy of the type (5.9). We created two synthetic images, one for the closed-
and one for the open-curve case. We generated 100 realizations of these images
in different PSNR conditions by adding a mixture of Gaussian and Poisson noises.
Median Jaccard indices for each experimental setting are presented in Table 5.1.
Snake initializations are overlaid in the thumbnails which depict the noise-corrupted
images. In the closed-curve case, the performance of the snake degrades faster for
large number of control points as the amount of noise increases. This can be
explained by the presence of noise-induced local minima in snakes with large values
of M . In the open-curve case, the decrease in performance for low PSNR is more
gradual due to the fixed curve extremities, which reduces the risk of entanglement
for large values of M .

Considerations on Execution Time

The automated optimization of the landmark snake from an initial curve runs in
real time. The optimization process can either be clamped to a given number of
iterations or can be left to run until a minimum is found. The time required for
optimization is affected by the number of control points. The change in execution
time is however hardly noticeable for a reasonable range of control point values
(i.e., M = 2, ..., 20). The number of manual clicks required to get an appropriate
segmentation depends both on the initial shape and on the corrections possible
required after automated optimization. It remains significantly lower than fully
manual segmentation.

5.4.3 Segmentation of Bioimages

We provide insights into the capabilities of the landmark snake to segment bioim-
ages. As we do not possess ground-truth information for the images presented here,
we only rely on qualitative assessments for the quality of segmentation. For com-
parison purpose, we also provide results obtained with classical spline snakes. We
rely on cubic B-spline snakes for the open curve case, and on exponential spline
snakes [70] for the closed curve case. In all experiments, we use the same initial-
izations for the different snake types and then let them evolve automatically until
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Table 5.1: Segmentation results (Jaccard index) in noisy data using closed- and
open-snakes, as a function of M .

C
lo

se
d

S
n
ak

e

M PSNR = ∞dB PSNR = 11dB PSNR = 8dB PSNR = 6dB PSNR = 5dB

3 0.98 0.72 0.78 0.61 0.58
4 0.98 0.72 0.75 0.59 0.48
5 0.93 0.79 0.86 0.65 0.49
6 0.96 0.85 0.69 0.51 0.37
7 0.92 0.77 0.63 0.54 0.43
8 0.93 0.62 0.59 0.42 0.29

O
p

en
S
n
ak

e

M PSNR = ∞dB PSNR = 11dB PSNR = 8dB PSNR = 6dB PSNR = 5dB

4 0.93 0.87 0.75 0.64 0.46
5 0.92 0.87 0.76 0.68 0.41
6 0.95 0.95 0.75 0.66 0.42
7 0.97 0.96 0.75 0.67 0.48
8 0.92 0.92 0.72 0.65 0.43

convergence. To account for the fact that landmark snakes have twice more pa-
rameters per control points, we allow classical snakes with at most twice as many
control points and display the best results we could obtain.

Segmentation of Phase-Contrast Microscopic Images

We segmented phase-contrast microscopic images of HeLa cells from [143]. Phase-
contrast images are challenging for segmentation as they feature uneven gradients
and halos around objects. We initialized closed landmark snakes with rough polyg-
onal shapes around the cells, setting the number of control points as the number
of edges in the polygon. For comparison, we initialized exponential snakes with a
smoothed version of the polygons. Tangents at each points were initially set to zero.
We then optimized the exponential snakes on (5.13) and the landmark snakes on
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Figure 5.12: Phase-contrast images of HeLa cells. From left to right: original
image, snake initialization, automated segmentation result using a classical spline-
snake [70], automated segmentation result using landmark snakes.

the directional energy functional (5.9), both using an edge-sensitive steerable filter
for the magnitude information. Results are displayed in Figure 5.12. Note that
orientation information is of particular importance in these images as cell shapes
exhibit fine details, in analogy with the synthetic example of Figure 5.4.

Segmentation of Differential-Interference-Contrast Images

Similar to phase-contrast microscopy, differential interference contrast (DIC) mi-
croscopy yields images where object boundaries are uneven due to shading effects.
We obtained images of pancreatic acinar cells of live guinea pigs from the Cell Im-
age Library 5 and initialized circular closed landmark snakes inside each cell. Each
snake contained 5 control points and their associated tangents. We also generated
exponential snakes from the same initializations. Relying on (5.13) for exponential
snakes and on our directional energy functional (5.9), both using an edge-sensitive
steerable filter, we obtained the segmentation results shown in Figure 5.13. Orienta-
tion information is crucial to constrain the overall shape of the snake in areas where
cells touch each other and where little gradient information is available, similarly
to the situation in Figure 5.5.

5Image corresponding to Figure 1 in [144], freely accessible from the Cell Image Li-
brary (http://www.cellimagelibrary.org/), accession number CIL:37314.
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Figure 5.13: Differential-interference-contrast images of animal pancreatic acinar
cells. From left to right: original image, snake initialization, automated segmenta-
tion result using a classical spline-snake [70], automated segmentation result using
landmarks snakes.

Outline of Partly Polygonal Cells

We analyzed scanning-electron micrographs of the epidermal surface of lamprey
larvae6. The image features microvilli that outline the polygonal borders between
cells, while short microvilli cover the external surface in a reticular network. The
motivation for using landmark snakes in these data is the presence of polygonal
cells with sharp corners. We initialized closed landmark snakes inside the cells and
manually imposed some critical corners. Note that the local feature-based energy
cannot be used here because the corner locations are not discriminative enough with
respect to other smooth parts of the cell contour. The number of control points was
tuned depending on the complexity of each cell. We similarly initialized exponential
snakes and imposed the same fixed points. The snakes were then automatically
optimized. As shown in Figure 5.14, landmark snakes are able to properly segment
both smooth and polygonal cells, and can therefore better accommodate biological
variability than active contours that are uniformly smooth.

6Image from [145], freely accessible from the Cell Image Library, accession number CIL:11115.
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Figure 5.14: Epidermal cells in scanning-electron micrographs. From left to right:
original image, snake initialization, automated segmentation result using a classical
spline-snake [70], automated segmentation result using landmark snakes. User-
defined fixed points are depicted as disks.

Segmentation of Caenorhabditis Elegans

From its ability to reproduce sharp angles, the landmark snake is well-suited to
outline biological structures with pointy tips such as nematodes or protists. We
segmented images from the C. elegans infection live/dead image set Version 1 pro-
vided by F. Ausubel (BBBC10) and available from the Broad Bioimage Benchmark
Collection (BBBC, [146]). The living C. elegans nematodes appear in these im-
ages as elongated with pointy extremities and exhibit a variety of curved shapes.
The difficulty when segmenting these data stems from the need to have a method
that is flexible enough to accommodate the sinuous shapes of the nematodes while
retaining the capability to capture sharp features. Sample results are shown in
Figure 5.15. For comparison purpose, we also provide the best attainable results
using exponential snakes [70] with at most twice more control points compared to
the corresponding landmark snakes. Classical snakes like the exponential ones re-
quire control points to accumulate in order to generate pointy extremities, which
increases the risk of artifacts as can be seen at the tips of some of the nematodes.

In Table 5.2, we report a quantitative comparison of our results against the man-
ually annotated ground truth provided on the BBBC website7. For comparison,

7In Table 5.2, the nomenclature corresponds to the ground truth provided at
http://www.broadinstitute.org/bbbc/BBBC010/.
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Figure 5.15: Caenorhabditis elegans nematodes. From left to right column: regions
of interest from images B07 (top) and C03 (bottom) from the BBBC10 dataset,
detected landmarks using a properly tuned Harris corner detector, active-contour
initialization, automated segmentation result using a classical spline-snake [70],
automated segmentation result using landmark snakes.

Table 5.2: Jaccard index—Snakes versus ground truth.

nematode # 1 4 5 6 10 12 14

B07 (Landmark snake) 0.79 n/a 0.83 0.79 n/a n/a n/a
B07 (Exponential snake [70]) 0.77 n/a 0.80 0.79 n/a n/a n/a

C03 (Landmark snake) 0.84 0.87 n/a n/a 0.81 0.88 0.84
C03 (Exponential snake [70]) 0.79 0.83 n/a n/a 0.80 0.82 0.81

we also give the same metrics for segmentation results obtained with exponential
snakes [70]. A multiscale optimization scheme was used to boost robustness in such
potentially crowded environment. Landmark active contours are first optimized on
the purely amplitude-based energy (5.14) targeted to control points with index 0
and M

2 to capture the extremities of the nematodes. The locations of the extrem-
ities of the nematode are obtained from a properly tuned Harris corner detector.
The multiscale steerable edge-based energy (5.9) is then used to fit the rest of the
contour. Our segmentation results are robust to initial conditions provided that
the initial snakes do not significantly overlap nearby nematodes.
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Segmentation of Heligmosomoides Polygyrus Bakeri

We also tested our approach on images of unstained Heligmosomoides polygyrus
bakeri (H. bakeri) nematodes8. This natural parasite of mice is a purely enteric
nematode and appears as translucent with uneven interior. Here, we experiment
both with the open and closed landmark snake for two different tasks.

The first task is to get a good approximation of the medial axis of the nema-
todes relying on open landmark snakes. Depending on experimental conditions,
the nematodes are either “clean” or get cluttered by immune cells. By adapting
the number of control points to the complexity of the nematode shape and initial-
izing open landmark snakes with simple broken lines, we were able to accurately
detect the medial axis, as shown in Figure 5.16. Snake optimization was carried
out relying on (5.13) for cubic B-spline snakes, and on the directional energy func-
tional (5.9) for landmark snakes, using in both cases properly tuned ridge-sensitive
steerable filters. As they do not incorporate any directional information, the cubic
B-spline snakes are more likely to get trapped in local minima and yield a less good
estimation of the medial axis.

The second experiment consists in segmenting the complete nematode contour.
H. bakeri appears as translucent and is therefore more difficult to segment than C.
elegans. Moreover, as these nematodes are moving fast, their extremities are blurred
in most images, although being pointy in reality. We optimized our landmark snakes
on a combination of the purely directional energy functional (5.9) and the purely
magnitude-based potential (5.14). Landmark locations, here corresponding to the
extremities of the nematode, were obtained from a properly tuned Harris corner
detector. Typical results are shown in Figure 5.17. Snakes with 4 to 8 control points
were used, depending on the shape complexity. We had to initialize snakes close to
the actual contour to get a satisfactory result because of the difficulty of the task.
To provide comparison with existing approaches, we also show the best results we
could obtain using exponential snakes [70] with at most twice more control points.
In the absence of a corner potential, the extremities of the nematodes tend to get
badly detected. Our rather simple corner detector sometimes fails to capture the
correct location of the extremities in these data as observed in Figure 5.18, yielding
imprecise segmentation of the tips. Such errors can easily be corrected in a semi-
automated way by manually dragging the extremities while the rest of the curve

8Images courtesy of J. Esser, Laboratory of Intestinal Immunology, École polytechnique fédérale
de Lausanne (EPFL), Lausanne, Switzerland.
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gets automatically adjusted.

Epidermal Cell Membrane Outline

We processed images of epidermal cells from Drosophila larvae. These open-access
data [147] feature cells immunostained for Fasciclin III, which labels their basolat-
eral surface. Detecting cell shape in these images is challenging for two reasons:
first, images are low resolution and noisy. Second, due to the wound healing assay
experimental setting, cells can be extensively deformed. Because of the poor data
quality, active contour approaches solely driven by distance maps are practically
unusable. They are too sensitive to initialization and therefore diverge most of the
time. Relying on a properly designed steerable ridge detector following (5.12) and
a custom multiscale symmetry center detector constructed following the procedure
introduced in 4.3, we were able to outline cells using landmark snakes. The en-
ergy was composed of a mixture of the purely-directional energy (5.9) and of the
local feature-based energy (5.16) targeted towards three-fold junctions. Results are
shown in Figure 5.19. The addition of the local feature-based energy is crucial to
make the optimization process less sensitive to initial conditions. In this frame-
work, it is sufficient for the snake to lie inside the cell in order to get proper results.
Seed points for the initialization can thus easily be automatically provided using
for instance a watershed transform. It is worth pointing out that, although the lo-
cal feature-based energy dramatically improves the robustness of the optimization,
result quality does not only depend on it. As seen in Figure 5.19 on the right, the
detector sometimes fails to catch a corner or badly locate some of them. Since the
snake relies on a combination of ridge- and local feature-based energies, missing
information about feature locations can be compensated by information from cell
boundaries. In the same figure, we also illustrate the best results we could obtain
using exponential snakes [70] with at most twice more control points. For these,
several attempts were required in order to obtain segmentation results without
loops and self intersections. Undesirable wiggling effects can be observed around
the corners as several control points accumulate to try to properly outline these
sharp features.
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Figure 5.16: H. bakeri nematodes in clean (top row) and cluttered (bottom row)
environments. From left to right column: original image, snake initialization, auto-
mated segmentation using a classical cubic B-splines snake, automated segmenta-
tion using landmark snakes. Fixed points at the extremities are depicted as disks.
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Figure 5.17: Translucent H. bakeri nematodes. From left to righ column: orig-
inal image, detected landmarks using a properly tuned Harris corner detector,
active-contour initialization, automated segmentation using an exponential spline
snake [70], automated segmentation using landmark snakes.

Figure 5.18: Example of badly located landmark at the tips of H. bakeri requiring
manual correction. From left to right column: original image, detected landmark
using a properly tuned Harris corner detector, segmentation result after automated
optimization, segmentation result after manual correction, which simply amounts
to dragging the snake extremities to match the real tips of the nematode.
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Figure 5.19: Epidermal cell membrane. Left: original image with final overlaid
segmentation results for a region of interest. Right: step-by-step illustration of the
segmentation process. For the three sample cells, from left to right column: original
image, detected landmarks using a multiscale steerable symmetry center detector
(see 4.3 for more details), active contour initialization, segmentation results after
automated optimization of exponential snakes [70], segmentation results after au-
tomated optimization of landmark snakes. Landmark snakes with 5 control points
and exponential snakes with up to 10 control points were used.
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Chapter 6

Practicing Landmark Active
Contours

In this chapter, we present three examples of bioimage analysis applications of the
various tools we introduced up to now. First, we focus on the problem of analyzing
fly leg and body motion. To do so, we rely on custom feature detectors built in
the spirit of what we presented in Chapter 4. In our second example, we tackle a
tracking problem involving Mycobacterium smegmatis. There, we require Hermite
spline models to represent smooth open curves. Finally, in our third application,
we study the dynamics of swimming C. elegans nematodes using the full potential
of our landmark snake. The nematodes are first segmented with landmark snakes,
mixing contour finding and landmark detection. Then, we analyze their motion
with a novel procedure inspired from eigenshape analysis. The latter heavily relies
on the Hermite spline representation of the segmented shapes and provides a good
illustration of the many practical interests of the landmark snake model.

153
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6.1 Fly Motion Analysis using Custom Feature
Detectors

Many terrestrial animals rely on complex limb movements to locomote, groom,
court, mate, and fight. Discovering how these and other fundamental behav-
iors are orchestrated by the nervous system requires manipulations of both the
genome and the nervous system as well as quantitative measurements of behav-
ior. The vinegar fly, Drosophila melanogaster, is an attractive model organism
for uncovering the neural and genetic mechanisms underlying behavior. First, it
provides formidable genetic tools that allow experimenters to remotely activate,
silence, visualize and modulate specific gene function in identified neurons [148].
Second, a number of sophisticated methods have been developed that permit ro-
bust tracking of Drosophila body movements a promising set of tools for biological
screens [149, 150, 151, 152, 153, 154]. By contrast, similarly robust methods with
the precision required to semi-automatically track leg segments are largely absent.
State-of-the-art approaches suffer from several drawbacks. For example, the most
precise methods require the manual placement of visible markers on tethered ani-
mals [155] as well as sophisticated fluorescence-based optics ([156] provides another
example in cockroaches). Marking insect leg segments is a time-consuming process
that limits experimental throughput. On the other hand, the most high-throughput
approach for marker-free leg tracking in freely behaving Drosophila uses complex
optics to measure Total-Internal-Reflection Fluorescence (TIRF) when the distal
leg tips (claws) of walking animals scatter light transmitted through a transparent
floor [157]. An image-processing based method relying on hidden Markov models
has been developed to track leg tips only [158]. Other approaches involve special-
ized setups that maintain the moving fly inside the camera frame by controlling the
position of the x–y stage based on the camera image in real time, thus reducing
the problem to simple registration (or image alignment) [159, 160]. Although these
methods can resolve the claws of each leg, they cannot detect their segments. Thus,
they provides only binary information about whether or not a leg is touching the
surface and cannot resolve the velocity of joints during swing phases, stance adjust-
ments, or non-locomotive limb movements such as reaching [161] or grooming [162].
Ultimately, such measurements will be necessary to gain a complete understanding
of how the nervous system controls each limb.

The first practical application of our theory uses feature detection implemented
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with the steerable filter framework. In [163]1, we developed FlyLimbTracker, a
method that permits semi-automated, marker-free tracking of the body and leg
segments of freely walking Drosophila. Our approach relies purely on the analy-
sis of high-speed, high-resolution videos and does not require complicated optical
setups. FlyLimbTracker uses a combination of different parametric spline-snakes
to process objects in high-frame-rate image sequences. Using this approach, we
show that our method can semi-automatically track freely walking or grooming D.
melanogaster in video data that span a wide range of spatial and temporal reso-
lutions. FlyLimbTracker reduces the number of user clicks required a proxy for
annotation speed by approximately 6-fold (see 6.1.2). We implemented this ap-
proach as a plug-in for the open-source software Icy, a community-maintained and
user-friendly image processing environment for biological applications [11, 164, 165].
This makes it amenable to customization for behavioral measurements in flies with
altered morphologies (e.g., following leg removal) and, potentially, in other species
(e.g., stick insect, cockroach).

6.1.1 Description of the Method

Drosophila Behavior Experiments

We used adult female Drosophila melanogaster of the Canton-S strain at 2 to 4 days
post-eclosion. Flies were raised on a 12h light:12h dark cycle at 25◦C. Experiments
were performed in the late afternoon (Zeitgeber time) after flies were starved for
4 to 6 hours in humidified 25◦C incubators. During experiments, we placed the
flies in a custom designed acrylic arena (pill shaped: 30mm × 5mm × 1.2mm)
illuminated by a red ring light. We captured behavioral video using a high-speed
(236 frames-per-second), high-resolution (2560×918 pixels) camera viewing animals
from below.

Automated Body and Leg Tracking

FlyLimbTracker performs tracking in several steps. First, the user is asked to
manually initialize the position of the body and leg segments of the fly in a single
frame of the image sequence. To perform image segmentation, FlyLimbTracker uses

1This work has been carried out in collaboration with Prof. P. Ramdya, Neuroengineering
Laboratory, EPFL, Lausanne, Switzerland.



156 Practicing Landmark Active Contours

a closed spline snake to segment the Drosophila body and open spline snakes to
model each of the legs of the fly. The segmentation results from the initial frame are
combined with image features to propagate body and leg segmentation to the frames
immediately preceding or following in the sequence. At any time, the user can stop,
edit, and restart automated segmentation proceeding forward or backward in time.
Manual corrections are taken into account when tracking is resumed. Hereafter, we
formalize and illustrate the construction of the segmentation models for the body
and legs of the fly, respectively. We then describe how these models are propagated
to track the fly through the image sequence.

Drosophila Body Model. The body of the fly is defined as a two-dimensional
closed spline snake curve r composed of M control points as in (2.3), that is

r(t) =

[
r1(t)
r2(t)

]
=

M−1∑
k=0

c[k]φper(Mt− k), (6.1)

with t ∈ [0, 1], where {c[k]}k∈Z = {(c1[k], c2[k])}k∈Z is the M -periodic sequence
of control points and φper(t) =

∑∞
n=−∞ φ(t −Mn) the M -periodization of a basis

function φ. We use ellipse-reproducing splines [64] as basis functions (discussed
in 2.3.1). Formally, the generator we rely on is given by

φ(t) =



cos( 2π|t|
M ) cos( πM )−cos( 2π

M )
1−cos( 2π

M )
, 0 ≤ |t| < 1

2 ,

1−cos

(
2π( 3

2
−|t|)
M

)
2(1−cos( 2π

M ))
, 1

2 ≤ |t| <
3
2 ,

0, |t| ≥ 3
2 .

(6.2)

The model of the body of the fly is composed of M = 18 nodes.
To optimize the snake automatically from a coarse initial position to the precise

boundaries of the body of the fly, we define a snake energy composed of three
elements. It is a function of the snake representation Θ and is formulated as

Ebody(Θ) = Eedge(Θ) + Eregion(Θ) + Eshape(Θ). (6.3)

The first element Eedge is a classical edge-based energy term relying on gradient
information to detect the body contour already introduced in (2.9). It is formally
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expressed as

Eedge(Θ) = −
∮
C(Θ)

〈∇I(r),nr〉dr, (6.4)

where ∇I(r) =
(
∂I(r)
∂r1

, ∂I(r)
∂r2

)
is the gradient of the image at position (r1, r2), nr

denotes the inward-pointing unit normal to the curve at (r1, r2), and C(Θ) is the
snake curve determined by the control points {c[k]}k∈Z. The energy term is neg-
ative since it has to be minimized during the optimization process. From Green’s
theorem, we can transform the line integral into a surface integral

Eedge(Θ) = −
∫

Ω(Θ)

∆I(r)dr, (6.5)

with Ω the region enclosed by the snake curve, and ∆I(r) the Laplacian of the
image at position r = (r1, r2). The energy Eedge is minimized when the snake
curve is aligned to the direction of the gradient.

The second term Eregion uses region statistics to distinguish the object from
the background, in the spirit of (2.10). Specifically, it is computed as the intensity
difference between the region enclosed by the snake Ω and the region surrounding
it Ωµ\Ω as

Eregion(Θ) =
1

|Ω(Θ)|

(∫
Ω(Θ)

I(x)dx−
∫

Ωµ(Θ)\Ω(Θ)

I(x)dx

)
, (6.6)

where I is the image, Ω the region enclosed by the snake curve, and |Ω| the signed
area of the snake, which is defined as

|Ω(Θ)| =
∮
C(Θ)

r2 dr1, (6.7)

with r1, r2 given by (6.1). Minimizing this term encourages the snake to maximize
the contrast between the area it encloses and the background.

Finally, the last term Eshape is a shape-prior energy detailed in [166]. This term
measures the similarity between the snake and its projection onto a given reference
curve. It favors the convergence of the contour to an affine transformation of the
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reference shape. The smoothness and regularity of the reference shape are thus
preserved. Moreover, this term prevents the formation of loops and aggregation
of nodes during the optimization process. In our case, the reference shape is a
symmetric fly body contour with 18 nodes (Figures 6.1A and 6.2B).

The algorithm depends on an initial user input to coarsely locate the fly in a
frame of the image sequence. With a single mouse click, a two-step multiscale opti-
mization scheme is initiated. A spherical active contour composed of three control
points is first created, centered at the mouse position. The snake is optimized on
Eedge +Eregion to form an elliptic curve surrounding the fly. In this way, the major
axis of the elliptical snake aligns with the anteroposterior axis of the fly, and the
minor axis is perpendicular to it. The 3-point elliptical snake fit to the body of the
fly can be expressed following [70] as

r(t) = R0 + R1 cos(2πt) + R2 sin(2πt), (6.8)

where t ∈ [0, 1] and

R0 =
1

3

2∑
k=0

c[k], R1 =

2∑
k=0

hc[k]c[k], R2 =

2∑
k=0

hs[k]c[k], (6.9)

with

hc[k] =
2

3
cos
(π

3

)
cos

(
2πk

3

)
, hs[k] =

2

3
cos
(π

3

)
sin

(
2πk

3

)
, (6.10)

and k ∈ Z. Note that the c[k] are the control points of the snake appearing
in (6.1). Relating this to the general parametric equation of an ellipse of major
axis a, minor axis b, and center (xc, yc) allows extracting the parameters of the
3-control points snake fit to the body of the fly. Namely, (xc, yc) = R0, a =
max(‖R1‖, ‖R2‖) and b = min(‖R1‖, ‖R2‖). Knowing a, the orientation of the
ellipse in the image can be computed. The ellipse fit is then replaced by an 18-node
fly-shaped closed snake that has been rotated and dilated to match the ellipse’s
length and orientation (Figure 6.1A). An ambiguity remains since two potential
snake models can be initialized for a given ellipse, with opposite anteroposterior
axis orientation. To resolve it, snakes with both possible orientations are optimized
in the image on Ebody in addition to Eedge and Eregion. The solution resulting in
the lowest cost (i.e., the lowest energy value at convergence) is kept.
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Drosophila Leg Model. Once the body of the fly is properly segmented, models
for each of its legs are added. First, the positions of leg coxa-thorax attachment
points (hereafter referred to as anchors) are automatically computed based on the
body segmentation. The location of the six leg anchors with respect to the refer-
ence body model are empirically determined as linear combinations of three axes
defined by the head-thorax junction, the thorax-abdomen junction, and the thorax
length (Figure 6.1B). These reference locations are then adapted in accordance with
deformations of the body model over the image sequence.

User input is required to initialize the position of each leg prior to tracking.
Initialization is based on a single click per leg: the user indicates the claw (hereafter
referred to as tip) of each leg with a mouse click. The click location is assigned to
the most likely body anchor using a probabilistic formulation based on the distance
and intersection with the body model of the fly and that of other leg models. Once
a leg tip and a leg anchor have been paired, a dynamic programming method [167] is
initiated to automatically trace the leg from the anchor to the tip. To be identified
in a robust way, the legs of the fly are enhanced by processing the image frame with
a ridge-sensitive steerable filter of the form (4.5).

Dynamic programming yields the globally optimal solution for a given separa-
ble problem. In particular, it can be used to implement algorithms solving shortest
path problems. The Viterbi algorithm [168] is a particular instance of dynamic
programming and relies on a graph-based representation: the shortest path is rep-
resented as a sequence of successive nodes in a graph that minimize a cost function.
To trace a leg from its anchor to its tip, the graph is built by interpolating image
pixels along two orthonormal axes. The first axis (axis k, indexed by k) is defined
by the unit vector along the straight segment linking the anchor of a leg to its tip.
The second axis (axis u, indexed by u) is perpendicular to the first axis and is
thus defined by the normal vector to k. On a path, we denote by uk the index u
corresponding to a given k. A path is described by a collection of nodes (k, uk).
The cost of the path at index k + 1 along axis k is given by

C[k + 1] = C[k] + λ

 1

LS

∑
(x,y)∈S

Ifeat(x, y)

+ (1− λ)|uk − uk+1|, (6.11)

where C[k] is the cost of the path at location k on axis k, S is the collection of image
pixels (x, y) belonging to the segment between nodes (k, uk) and (k+1, uk+1), LS is
the pixel length of the considered segment, Ifeat is the version of the current frame
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filtered by the steerable feature detector, and λ ∈ [0, 1] is a weighting coefficient.
The first term corresponds to a discretized integral of the image along the segment
linking nodes k and k+ 1, and tends to favor paths going through low pixel values.
The second term is composed of the distance on axis u between two successive
nodes and thus prevents large jumps along the u axis. As a result, the optimal
path follows relatively dark regions in the image with respect to the background in
accordance with the first term, while retaining a certain level of smoothness due to
the second term. The relative contributions of each term are determined by λ.

In contrast to body segmentation, leg segmentation uses open snakes rather
than closed ones. Fly legs are parameterized by a curve composed of M = 4 con-
trol points (Figure 6.1C and 6.2C). For each leg, the body anchor, l[0], is fixed.
The discrete path obtained with dynamic programming is used to initialize the leg
snake. The rationale behind this two-step procedure is two-fold. First, dynamic
programming is very robust and can therefore effectively trace the leg from a body
anchor to its tip. However, it is computationally expensive. By contrast, snake-
based methods are more likely to diverge when initialized far from their target but
are computationally inexpensive since only a few control points need to be stored
and modified to update the curve. We combined these approaches by finding an
initial path for each leg using dynamic programming once, and then transform-
ing this path into a parametric curve for further optimization. The parametric
representation of the leg snake curve is defined as

s(t) =

[
s1(t)
s2(t)

]
=

M−1∑
k=0

l[k]φ(Mt− k), (6.12)

where t ∈ [0, 1] and {l[k]}k∈Z = {(l1[k], l2[k])}k∈Z are the leg snake control points.
Since Drosophila legs are composed of relatively straight segments between each
joint, we use linear splines as basis functions φ. The leg control points are linked
with linear interpolation, yielding a piecewise-linear curve. Each control point has
a unique identifier that can be used for subsequent data processing (Figure 6.1D).
The full process finally consists in taking a single raw image (Figure 6.2A) and
using active contours to segment the body (Figure 6.2B) and legs (Figure 6.2C).

Segmentation Propagation (Tracking). High frame-rate videos ensure that
the displacement of the body of the fly between successive frames is small. Fly-
LimbTracker takes advantage of this fact to propagate body and leg snakes from one
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Figure 6.1: Drosophila body and legs model. (A) The body model is a closed
snake consisting of 18 control points (c[0] to c[17]). Control points c[0] and c[9]
correspond to the posterior-most position on the abdomen and the anterior-most
position on the head, respectively. All other control points are symmetric along
the anteroposterior axis of the body (e.g., control points c[3] and c[15]). (B) Six
leg anchor positions (yellow) between the coxa and thorax are defined empirically
based on a linear combination of distances from the head-thorax boundary, the
thorax-abdomen boundary, and a distance from the thoracic midline. These posi-
tions are then adapted depending on how the body model is deformed to fit the
contours of a specific animal. (C) The leg model consists of four control points
including a thorax-coxa attachment l[0], the femur-tibia joint l[1], the tibia-tarsus
joint l[2], and the pretarsus/claw l[3]. For simplicity, control points are only shown
for a single leg. (D) In total, 27 positions are extracted for each fly per frame: a
centroid (0), anterior point (A), posterior point (P), as well as the body anchor,
first intermediate, second intermediate and tip for each of the six legs. Our data
labeling convention is as follows. Right and left legs are numbered 1 to 3 (front
to rear) and 4 to 6 (front to rear), respectively. Each leg has four control points
labeled 1 to 4 depending on whether they correspond to a body anchor (1), leg
joints (2 and 3), or claw (4). In each label, the leg number is shown in the tenths
digit and the control point in the units digit. For example, label 11 refers to the
body anchor of the right prothoracic leg 1. For simplicity, only the control points
of leg 3 are shown.
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frame to the next during tracking. The body snake in frame t+ 1 is segmented by
optimizing a contour initialized as the corresponding snake from frame t using the
body snake energy (6.3). This approach is sufficient to obtain good segmentation
provided that there is some overlap between the body of the animal in successive
frames.

Compared to body movement, leg displacement can be larger between frames.
Therefore, leg snakes require a more sophisticated algorithm to be properly prop-
agated. First, the anchor of each leg is automatically computed from the newly
propagated fly body. Since each leg is modeled as a 4-node snake, the three re-
maining leg snake control points are optimized using the snake energy

Eleg(Θ) = Efeat(Θ) + EEDT(Θ) + Esegments(Θ) + Eextremity(Θ), (6.13)

where Θ is the snake representation. The first term corresponds to the integral
along the leg of the current frame filtered by a custom steerable filter tuned to
detect leg features. It is expressed as

Efeat(Θ) =

∮
C(Θ)

Ifeat(s)ds =

∫ 1

0

Ifeat(s(t))|s′(t)|dt, (6.14)

where Ifeat is the version of the current frame filtered by the steerable feature
detector, and C(Θ) is the snake curve determined by the control points {l[k]}k∈Z as
described by (6.12). The second term is computed in a similar way as the integral
along the leg of the Euclidean distance transform (EDT [169]) as

EEDT(Θ) =

∮
C(Θ)

IEDT(s)ds =

∫ 1

0

IEDT(s(t))|s′(t)|dt, (6.15)

with EEDT the Euclidean distance-transformed version of the current frame and
s the snake curve as described by (6.12). Each individual linear segment in a leg
should be roughly constant in length across a video, aside from changes introduced
by projecting the three-dimensional leg onto a two-dimensional image. Taking this
into account, the third term of the leg energy penalizes solutions where leg joint
positions result in segments whose lengths vary considerably from one frame to the
next. This prevents unrealistic configurations of the leg joints. Formally, Esegments

is computed as the sum of absolute differences in length between each segment of
the target leg at two successive frames. Finally, the fourth term is used to determine
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Figure 6.2: FlyLimbTracker uses active contour models to annotate Drosophila
body and legs. (A) An example raw image of the ventral surface of a fly used
for segmentation. (B) This image is first segmented using the parametric body
snake consisting of 18 control points (red and blue crosses). (C) Subsequently, leg
segmentation is initialized by automatic tracing from body anchor points to user-
defined leg tips. From this initialization, open snakes consisting of four control
points are generated (yellow crosses). (D) Body and (E) leg segment annotations
for flies during a 455-frame (1.93s) sequence. Annotation results (red) and the
centroid in D or leg tip positions in E (blue) for each frame are overlaid.
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the leg tip position at time t, denoted by lt[3] as it corresponds to the last control
point of the leg snake. Since the distal tip of the leg may move considerably
between successive frames, we designed a dedicated energy term to attract the tip
toward candidate locations in the image. These candidate landmark locations are
identified by filtering the image with a tip feature detector. A potential map P of
points p = (px, py) that are tip candidates is then created according to

Eextremity(Θ) = 1− wp∗e
− ‖lt[3]−p∗‖4

σ2 , (6.16)

where

p∗ = arg min
p∈P

‖lt[3]− p‖2 (6.17)

is the tip candidate closest to lt[3], wp∗ ∈ [0, 1] is its associated weight, and σ2

is a fixed parameter determining the width of the basin of attraction of the tip
candidate. The weight wp∗ is a measure of how tip-like p∗ is, and is computed
based on the magnitude of the response of the tip feature detector. A strong
weight results in a deeper potential, and is therefore more likely to attract lt[3].
The energy (6.16) can be seen as a simplified version of our local feature-based
energy. Here, landmarks are only used to attract control points. This is achievable
because the curve is defined with linear B-splines. Control points therefore lie
directly on the snake curve and can act as landmarks as in the Hermite spline case.

In summary, the four anchor points characterizing each leg are propagated as
follows. First, the leg body anchors are determined using the body model. Sec-
ond, the remaining three control points (two leg joints and tip) are updated by
optimizing an energy that incorporates both image information (Efeat and EEDT)
and a temporal smoothness constraint (Esegments). Finally, the tip is attracted to
nearby tip-like locations in the image. The complete tracking workflow is depicted
in Figure 6.3.

Software and Data Availability

User instructions, FlyLimbTracker software, sample data, and a demonstration
video of a complete data analysis pipeline can be found online2.

2http://bigwww.epfl.ch/algorithms/FlyLimbTracker/ and https://doi.org/10.6084/m9.

figshare.4688962.v1.

http://bigwww.epfl.ch/algorithms/FlyLimbTracker/
https://doi.org/10.6084/m9.figshare.4688962.v1
https://doi.org/10.6084/m9.figshare.4688962.v1
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Figure 6.3: FlyLimbTracker semi-automated body and leg tracking workflow. (A)
The user manually indicates the approximate location of the body of the fly in an
arbitrarily chosen initial video frame t1. FlyLimbTracker then optimizes a closed
active contour that encapsulates the body of the fly in the correct orientation. The
user manually indicates the location of the tip of each leg, and FlyLimbTracker
optimizes an open active contour that outlines each leg. (B) These manual anno-
tations are used to automatically propagate segmentation to prior or subsequent
frames. (C) Either during or after automated tracking, the user can correct track-
ing errors. After manual editing, automated tracking can be resumed, taking into
account and propagating user edits. In each image, the frame number is indicated.
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Data Output. Once the full image sequence is annotated, data can be extracted
as a CSV file for each fly. These measurements include the locations of the three
reference points on the body of the fly (A, P, and 0), as well as each of the an-
chor points of the legs (see Figure 6.1 for details about the labeling convention).
FlyLimbTracker is linked to the Track Manager plug-in of Icy (Publication Id: ICY-
N9W5B7), allowing additional data to be extracted. In particular, segmentations
of the body (Figure 6.2D) and legs (Figure 6.2E) of the fly can be visualized for
the entire sequence at once, illustrating their complete trajectories. Each individual
control point of the leg snakes as well as centroid of the body snake can be indepen-
dently visualized. Tracks are also numbered according to the labeling convention
described in Figure 6.1D.

Tracking multiple flies. FlyLimbTracker can track multiple flies in a single field
of view. Additional flies are marked and tracked in a similar way as the first one.
The tracking algorithm relies on a multithread implementation to avoid increased
processing time. Since the location of the tracked flies is manually determined by
user clicks in an initial frame, the presence of other objects in the field of view
does not disturb the tracking algorithm as long as they do not occlude the flies.
If occlusion occurs, the user can switch to manual mode to annotate problematic
frames. Note that, from the design of the fly body model, each fly must be at least
10 pixels long and 8 pixels wide. The quality of segmentation and tracking strongly
depends on resolution since higher resolution images contain more information.
However, segmentation of large images also requires more computer memory and
might thus be slower. This trade-off is further investigated and discussed in 6.1.2.

Cross-Platform Compatibility. Because the most memory-intensive step of
the algorithm is image loading, FlyLimbTracker can be used in any computer capa-
ble of opening the image sequence of interest. Execution times are not expected to
be strongly dependent on the operating system since the software is implemented
in Java, a multiplatform language. Processing times reported in 6.1.2 can thus be
used as a reference.
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6.1.2 Results

Algorithm Robustness

FlyLimbTracker can be used to segment and track fly bodies and legs in videos
spanning a wide range of spatial and temporal resolutions. Resolution determines
the nature of the annotation process: tracking in high-resolution data is more auto-
mated, while low resolution data requires more user intervention. To quantify the
dependence of computing time and number of user interventions on data quality,
we systematically varied the spatial and temporal resolution of videos featuring five
common Drosophila behaviors: walking straight (3 walking cycles using a tripod
gait), turning (> 90◦ turn), foreleg grooming (3 leg rubs), head grooming (3 head
rubs), and abdominal grooming (3 abdominal rubs). These five videos were de-
rived from two longer movies: one movie of a fly walking straight and grooming
its forelegs, and another movie of a different fly turning, grooming its head, and
grooming its abdomen. Raw videos were originally captured at 236 fps and with a
resolution of 2560× 918 pixels.

First, we studied FlyLimbTracker’s robustness to variations of spatial resolution.
To cleanly isolate the effects of spatial resolution, instead of acquiring different
datasets with lower resolution cameras, we downsampled each of the original five
videos by a factor of N in space, meaning that N ×N pixels patches were averaged
into a single value. This resulted in image sequences that are N times smaller than
the original one along both spatial dimensions but that have an identical temporal
resolution of 236 fps (Figure 6.4A). Alternatively, to vary temporal resolution, we
downsampled each video by a factor of N in time, meaning that only one frame
in every N was retained. This resulted in image sequences of varying temporal
resolution but consistently high spatial resolution of 2560×918 pixels (Figure 6.4B).

For each movie, body and leg snakes were manually initialized in the first image
frame. Segmentation was then automatically propagated forward through the re-
mainder of the image sequence. Whenever the automated tracker made a mistake,
the process was interrupted and the user manually corrected the error. Automated
tracking was then restarted from this frame until the next mistake was observed.
In all cases, automated body tracking did not require any manual intervention.
Therefore, we only took note of manual corrections in leg annotations.

The throughput of FlyLimbTracker can be determined by comparing the soft-
ware results with fully manual annotation. Rather than the time spent annotating—
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a metric that can dramatically vary between users—we quantify the number of re-
quired mouse clicks. Fully manual annotation of four control points for each of the
six legs, and one additional click to move to the next frame, amounts to 25 mouse
clicks per frame (24 clicks for the final frame). By contrast, FlyLimbTracker re-
quires manual initialization in the first frame (four clicks to set up the body model
and at least one click to initialize each leg model) and, in the worst-case scenario
(head grooming), less than two corrections per frame with high spatial and tempo-
ral resolutions (Figure 6.4C, far left, 1× spatial downsampling). By conservatively
assuming that there is one error in each frame, two mouse clicks per frame must be
added to stop and then restart tracking. Therefore, using FlyLimbTracker it is rea-
sonable to expect an average of four mouse clicks per frame. This is approximately
a 6-fold increase in throughput when compared to fully manual annotation.

To quantify the performance of FlyLimbTracker across this range of spatial and
temporal resolutions, we calculated two normalized quantities. First, we computed
the average number of manual corrections per frame (Figure 6.4C and D). To do
this, we measured the total number of user interventions needed to process an entire
image sequence and normalized this quantity by the number of frames T , which
contain each eighteen free parameters (six legs with three editable control points
each). We also quantified the average time required to annotate a single image frame
(Figure 6.4E and F). To do this, we recorded the total time required to annotate
an image sequence and divided this value by the total number of frames. This
normalized quantity combines both the computing time required for automated
annotation, as well as the time required to manually correct annotation errors.
Overall, we observed that reducing the spatial (Figure 6.4A, C, E) or temporal
(Figure 6.4B, D, F) resolution resulted in an increase in the number of manual
interventions (Figure 6.4C and D) as well as a longer time required for annotation
(Figure 6.4E and F).

While the number of corrections was similar for videos with equivalent amounts
of downsampling (up to 8-fold), annotation time was appreciably longer for se-
quences involving flies walking straight and turning. This reflects the importance
of having overlapping images in successive frames for automated tracking, a feature
that may be less common during locomotion. Notably, in a number of other cases
(e.g., grooming), the annotation time per frame flattens across spatial and tempo-
ral resolutions. This is probably due to the trade-off between resolution and speed.
Resolution strongly influences the computing time required for automated tracking:
smaller images or sequences composed of fewer frames are processed more quickly



6.1 Fly Motion Analysis using Custom Feature Detectors 169

Figure 6.4: Sensitivity of leg tracking to changes in spatial or temporal video res-
olution. (A) Sample video image (top-left) after 2× (top-right), 4× (bottom-left),
or 8× (bottom-right) spatial downsampling. Adult female flies are approximately
375, 187, 93, and 46 pixels in length in the 1×, 2×, 4×, and 8× spatial downsam-
pled videos, respectively. (B) Representations of the difference between successive
images in videos (t1 and t2 overlaid in magenta and green, respectively) after tem-
poral downsampling. Number of required corrections per frame as a function of
spatial resolution (C), or temporal resolution (D). Average time required to semi-
automatically annotate a single frame as a function of spatial resolution (E), or
temporal resolution (F). In (C) to (F), data for videos depicting a fly walking
straight, turning, grooming its forelegs, head, or abdomen are shown in orange,
purple, green, cyan, and red, respectively.
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due to reduced demands on computer memory. However, a decrease in resolution
also implies a reduction in the quantity of image information and an increase in
the likelihood of errors. More user intervention is therefore required to correct mis-
takes. These interventions then in turn dominate the time required to annotate each
frame. In summary, intermediate image resolutions are ideal for FlyLimbTracker
since very low resolution images may require almost fully manual annotation while
annotating very high resolution images can be prohibitively memory intensive.

Visualization and Analysis of Leg Segment Tracking Data

FlyLimbTracker provides a user-friendly interface that allows body and leg seg-
ment tracking data to be exported in a CSV file format, simplifying data analysis
and visualization. Data interpretation and the number of experiments required to
test statistical significance of biological observations are study- and experiment-
dependent and are therefore out of the scope of this discussion.

First, within FlyLimbTracker itself, leg joint and/or body trajectories can be
displayed overlaid upon the final raw video frame (Figure 6.5A1 to E1) using the
TrackManager plug-in of Icy. This representation provides a way to project time-
varying data onto a static image and illustrates the symmetric or asymmetric limb
motions that control straight walking/grooming or turning, respectively. Second,
leg segment trajectory data can be exported and processed externally using ad
hoc Matlab or Python scripts. An example of such a script is provided in the
FlyLimbTracker website. Second, these data can be rotated along with the frame
of reference of the fly (Figure 6.5A2 to E2) for a direct comparison of leg segment
movements across distinct actions. FlyLimbTracker permits to visualize previously
inaccessible leg joints, as well as new, non-locomotive behaviors (e.g., grooming
or reaching) using a similar representation. In a third visualization, the speed
of each claw is plotted to provide an exceptionally detailed characterization of
locomotor gaits (Figure 6.5A3 to B3) or grooming movements in stationary animals
(Figure 6.5C3 to E3). These are just a few examples of how tracking data can be
analyzed. In addition, simple post-processing permits, for example, measurements
of joint angles as well as the relative position of each joint with respect to any other
annotated body part (e.g., head, thorax, or abdomen).



6.1 Fly Motion Analysis using Custom Feature Detectors 171

Figure 6.5: Visualizations of leg segment annotation results for videos of a fly (A)
walking straight, (B) turning, (C) grooming its forelegs, (D) grooming its head, or
(E) grooming its abdomen. First column: Leg segmentation results (red) and joint
positions (color-coded by frame number) are overlaid in the final frame of the image
sequence. Second column: Leg segment trajectories are rotated and color-coded by
frame number. This alignment allows comparing leg movements across different
datasets. Third column: Color-coded representation of the instantaneous speeds of
each leg tip (claw).
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6.1.3 Discussion

Existing methods for tracking insect leg segments rely on sophisticated optical
equipment and/or laboriously-applied leg markers, often in tethered animals [155,
156, 157]. While these approaches are extremely valuable, they may potentially
disrupt natural behaviors and cannot report the motions of multiple leg joints
in untethered animals. Our method addresses these technical limitations. Fly-
LimbTracker only requires a single high-resolution, high-speed camera and no prior
marking of leg segments. It can be used with video data across a range of spatial
and temporal resolutions, permitting a flexible blend of automated and manual
annotation. Importantly, when automation has difficulty segmenting low quality
data, FlyLimbTracker remains a powerful tool for manual leg annotation since it
relies on spline-snakes that can be easily manipulated and provides an interface
for user-friendly data import and export. Exported data (i.e., fly limb and body
position in image coordinates) can serve as basis for computing a range of statistics
describing fly motion. Of course, the nature of the statistics of interest depend
entirely on the considered experimental setting and biological problem.

The open-source nature of FlyLimbTracker facilitates community-driven im-
provement and customization of the software. We envision a number of improve-
ments that may be implemented. First, tracking currently requires overlap of the
body of the fly in successive frames. This constraint places a lower bound on tem-
poral resolution and could be improved using, for example, nearest-neighbor match-
ing approaches to pair control points in successive frames. Second, additional leg
control points may be added to FlyLimbTracker to more precisely annotate thorax-
coxa-trochanter segments. The current system with a single camera projects three-
dimensional joint position data onto two dimensions, making it difficult to accu-
rately measure every joint angle. Additional camera views could allow full three-
dimensional reconstruction of each limb’s orientation and position in space. Third,
FlyLimbTracker’s requirement of user initialization makes it only semi-automated
and restricts batch processing of multiple videos for high-throughput data analysis.
This may be overcome using additional prior information to automatically identify
and optimize the fly body and leg snakes. Fourth, the snake-based approach in
FlyLimbTracker could easily be adapted for the study of other species (e.g., mice,
stick insects, and cockroaches) by modifying the prior shape imposed on the snake
curves.
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6.2 Detection and Tracking of Mycobacteria using
Hermite Splines

Mycobacteria are the pathogenic agents responsible for tuberculosis, one of the
top killing infectious diseases, especially in third-world countries [170]. Curing in-
fections caused by Mycobacterium tuberculosis requires long-term antibiotic treat-
ments in order to completely eradicate bacterial colonies. On top of that, the
presence of mutant strains makes it necessary to alternate between different an-
tibiotic compounds, further complexifying the curing process. In practice, irreg-
ular antibiotic intake and extended pauses in the treatment often lead to a fatal
evolution of the disease [171]. Improper antibiotic treatments also favor the devel-
opment of multi-resistant mutant strains, calling for the discovery of new chemical
compounds that either kill or restrict the growth of mycobacteria. Studying the
behavior of mycobacteria is the essential initial step towards a better understand-
ing of the mechanisms of resistance and for investigating potential drug candidates.
Basic parameters of interest include growth rate, interdivision time, and length at
division among others. More advanced ones include all information coming from
fluorescent protein reporters, ranging from quantifying the expression of a protein
to monitoring its cytoplasmic localization over the cell cycle. For long, biological
studies relied on observations at level of the cell population, or colony. It is how-
ever now known that cell populations are not normally distributed, neither at the
genetic nor at the phenotypic level [172]. Significant individual cell-to-cell varia-
tions are observed between bacteria coming from a same colony, even when derived
from a single ancestor [173]. The multimodal nature of cell populations rules out
the use of colony-based statistics, which assume Gaussian or uniformly distributed
individual characteristics. Analysis at the single-cell level is thus required in order
to be able to identify small subpopulations of mutants. Also, the subcellular orga-
nization of bacteria is often dependent on the local environment and can undergo
sophisticated spatial variations, further reducing the legitimacy of global population
statistics. The most common raw material for microbiology studies are sequences
of images of bacterial colonies growing and evolving over time in different experi-
mental conditions and acquired with various microscopy modalities (fluorescence,
brightfield, phase contrast). From these, individual cells are segmented (outlined)
and tracked (followed over time) in the image data. It is required to rely on large
enough datasets to produce statistically meaningful observations, meaning that the
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amount of data to process can be huge [174]. In addition, quantitative and re-
producible results are needed to be able to capture possibly small variations in an
objective way. For these two reasons, relying on manual, human-based efforts to
perform this work is not only technically intractable for time and resources reasons,
but also not desirable.

A plethora of generic softwares for image analysis of bacteria have been pro-
posed. Among them, MicrobeJ [175], MicrobeTracker [176], Oufti [177], ObjectJ
[178], Schnitzells [179], and MAMLE [180] can be mentioned as popular in the bi-
ology community. All of these methods have been mainly developed and tested for
E. coli, B. subtilis or C. crescentus. These bacteria exhibit low variations in shape
and size among individuals, exhibit clear boundaries and contours, or both at the
same time. None of these aspects are present in mycobacteria, making existing
approaches of limited to no use.

Automating the tracking of mycobacteria poses two main challenges, illustrated
in Figure 6.6. First, the nature of the cells and of the colony they form (e.g.,
tightly packed with bad contrast between neighboring cells, absence of strong shape
prior as cells can adopt complicated morphologies) calls for the development of a
method that solves the problem globally. Local ambiguities make it necessary to
pick information from both upstream and downstream of a given frame to provide
a solution in which errors are not propagated. The presence of many similar and
closely located individuals calls for a globally optimal solution in order to avoid
introducing order dependencies. Second, division events are non-standard: they
are not visible on phase contrast data as cell division occurs much earlier than cell
body separation [181]. One must rely on the fluorescence signal of a protein located
at the cells’ poles (wag31 [181]) in order to accurately segment the cells. Complete
segmentation thus requires the incorporation of joint information from signals of
both the phase contrast and fluorescence channels. So far, the only published
approach specifically dedicated to mycobacteria is BactImAS [182], a Java-based
image analysis tool. It however has several strong limitations, including the fact
that it can only incorporate information from phase contrast images, thus leading to
imprecise division identification, and that it is mostly manual as all division events
have to be manually annotated. Tracking is moreover performed frame-by-frame
in a greedy manner, introducing order dependency and propagating errors as they
occur.

Hereafter, we present an automated pipeline to analyze time-lapse microscopy
images of mycobacteria. We propose a three-step approach relying on graphical
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(a) (b) (c)

Figure 6.6: Challenges when analyzing images of mycobacteria. (a) Sample phase-
contrast image illustrating poorly defined cell boundaries and high variety of shapes
in term of length and bending. (b) Sample image of Mycobacterium smegmatis in
phase-contrast and (c) fluorescence microscopy. The wag31 protein, gathering at
cell extremities, indicates that four cells are present in this image, although only
two can be distinguished from the phase-contrast data. This is due to the fact that
cytokinesis happens much earlier than physical cell separation when mycobacteria
cells divide.
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models for joint detection and tracking. In the first stage, we process each frame
of the image sequence to generate a collection of candidate bacteria, or detection
hypothesis. We link detections from successive frames to model cell transition and
division, and obtain a graph. The problem annotating the sequence boils down
to selecting the correct detections, transitions and divisions, considering the prob-
abilistic graphical model whose nodes represent random variables with features
describing the probability of each detection, transition or division event. The solu-
tion of the joint hypotheses selection and tracking problem is found as the optimal
labeling of the graph based on these probabilities, as schematically represented in
Figure 6.7. Such approaches have already been successful applied in similar prob-
lems [183, 184, 185]. The graphical model formulation allows solving the problem
globally: the graph contains much more detection and linking possibilities than
needed. They are then discarded or kept considering the information of the se-
quence as a whole. As image frames do not get processed sequentially, the need for
taking decisions based on ambiguous frames is obviated and no order is imposed
on the assignment of individual tracks. It is, to the best of our knowledge, the first
automated approach addressing the image analysis challenges that are unique to
mycobacteria. From its global spirit, our approach can be related to that of [186],
where a Viterbi-like algorithm is used to track E. coli in an order-independent
manner. The main differences lie in the already-mentioned particularities of myco-
bacteria, such as non-conventional division events and the impossibility to impose
strong priors on shape and size.

This second practical bioimage analysis problem3 illustrates a direct use of our
landmark snake model. As we shall see shortly, candidate bacteria are represented
by open spline curves.

6.2.1 Description of the Method

Time-lapse Sequences of Mycobacteria

Our data come from Prof. John McKinney’s Laboratory of Microbiology and Mi-
crotechnology (LMIC) at EPFL, Lausanne, Switzerland. They feature Mycobac-
terium smegmatis, the classically used model for mycobacteria studies. The se-
quences are generally composed of two channels with 100 frames of 512×512 pixels

3This work has been carried out in collaboration with C. Haubold and Prof. F. Hamprecht,
Heidelberg Collaboratory for Image Processing (HCI), University of Heidelberg, Germany.
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Figure 6.7: A schematic explanation of joint segmentation and tracking using graph-
ical models. The original sequence features objects of interest (blue) and artifacts
(grey). A set of detection candidates (dark red areas) and transition candidates (red
lines) is generated. For the sake of simplicity, division events are here omitted. The
set of detections and transitions is built in a very conservative way and therefore
includes many wrong elements. All detections and transitions can take an on- or an
off- state, with some attached probabilities. The solution is obtained by identifying
the collection of states for each element in the set of transitions and detections
that maximizes the overall probability. The result is visualized by retaining only
elements that are in on-state (green) in the solution.

16 bits .tif images.

Image Analysis Pipeline

The pipeline we propose for the automated tracking of mycobacteria can be roughly
decomposed into three main steps.

1. Generating detection hypotheses by identifying bacteria candidates.

2. Building a graphical model by linking detection hypotheses in consecutive
frames through transition and division hypotheses if they are spatially close
enough. Features are also extracted for all hypotheses and combined to train
a per-hypotheses classifier, which is then used to reduce the dimensionality
of the problem by pruning out too implausible hypotheses.

3. Finding the globally most probable configuration by solving an integer linear
program (ILP) [187].
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Figure 6.8: Schematic view of the image analysis pipeline. First, images are ana-
lyzed in Fiji or ImageJ in order to extract detection candidates. Then, the graphical
model is constructed and the globally optimal solution is finally found relying on
commercial ILP solvers.

A schematic view of the pipeline is provided in Figure 6.8. Hereafter we describe
each step in detail, assuming that trained classifiers and tuned weights are available.

Extraction of Detection Hypotheses. In order to generate detection hypothe-
ses, two sources of information are available for each time frame: the fluorescence
channel, featuring blobs which correspond to cell extremities, and the phase con-
trast channel, where cell contours can be identified (Figure 6.9). These two sources
of information must be used together to obtain a full segmentation of every cell.
To simplify the problem, we search for the medial axis of each bacteria, which we
refer to as a trace (Figure 6.10). The rationale behind this design choice is twofold.
First, it makes it easier to handle information from both channels, as the bacteria
identification problem is reduced to finding a meaningful path in the phase channel
image between two locations corresponding to blobs in the fluorescence channel
image. Second, traces provide a compact way of representing the complete cell.
As mycobacteria grow mostly at the extremities and have a rather conserved cell
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(a) (b) (c)

Figure 6.9: Dot selection pipeline. (a) Fluorescence channel image filtered with
a Laplacian of Gaussian, (b) tip probability map from a two-stages autocontext
Ilastik workflow, and (c) candidate extremities (overlaid as red dots) obtained by
combining detections from the two previous sources and applying non-maxima sup-
pression.

width, a good estimate of the cell contour can be obtained by searching for area of
strong gradient around the trace and completing by interpolation in areas where
no boundaries are available.

As a first step, using the open-source image processing software Ilastik [13],
we interactively train a per-pixel Random Forests classifier [188] on one dataset to
identify mycobacteria-looking parts of the images. This gives us a probability map
for every frame in every dataset, indicating how likely each pixel is to belong to a
bacterium. We refer to it as the foreground probability map. Similarly, using Ilastik,
we also train a two-stage autocontext [189] pixel classification workflow to detect
end-point-looking parts of the images. This results in a tip-looking probability map
for every frame in every video, which we call tip or endpoint probability map. Each
of the two probability maps alone is not sufficient to properly resolve the bacteria.
For each frame, the three following steps are then performed.

1. Identifying cell extremity candidates. Cell extremity candidate locations are
extracted from the fluorescence channel filtered by a Laplacian of Gaussian
(i.e., a blob detector) and from the endpoint probability map. Relying on
these two sources increases the robustness of the algorithm. The fluorescence
channel is required to identify divisions as long as cells have not yet physically
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(a) (b) (c)

Figure 6.10: Traces generation pipeline. (a) Identified extremity locations overlaid
as red dots on the foreground probability map. (b) Extremity locations are used as
seed points for dynamic programming (DP) on the foreground probability map. An
open landmark snake is fitted for the resulting DP path and optimized in order to
obtain a smoother and more precise trace. (c) The procedure is repeated between
all pairs of dots in the frame.

separated, and the probability map is needed to avoid losing extremities as
the fluorescence signal of old tips decays over time. These two images are
thresholded to identify strong local maxima of intensity, and detections from
the two sources are combined while applying non-maxima suppression.

2. Linking all pairs. Dynamic programming is performed on the foreground
probability map obtained from the phase contrast image to find the shortest
path between each pair of endpoints. The dynamic programming graph is
built as described in the Drosophila leg model of 6.1.1. The cost of a path
is given as (6.11), where Ifeat is replaced by Iforeground prob, the negative (i.e.,
image inverse) of the foreground probability map. To increase the robustness
of this search for the medial axis, a collection of M -diverse shortest paths
is generated for each possible pairs of points following the approach we in-
troduced in [190]. The actual value of M (the number of shortest paths)
is not fixed a priori. Instead, the next best path subject to some diversity
constraints keeps on being computed and its cost is monitored. The search is
stopped when the cost of the most recently found Mth path differs by a too
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large extent from the cost of the previously found (M − 1)th path. In our
implementation, the search for shortest paths continues as long as the cost
of the newly found path does not exceed 10% of that of the previously found
path.

3. Refining traces. We fit an open landmark snake with loose ends follow-
ing (5.3), using the dynamic programming result as initialization. Using a
snake model based on cubic Hermite splines instead of, e.g., cubic B-splines,
is preferable as the open nature of the curves make it necessary to handle
boundary conditions. While cubic B-splines involve complicated construc-
tions involving the introduction of artificial control points at the extremities
of the curve, no difficulty arises with Hermite splines when considering open
curves instead of closed ones. Our motivation for using a spline-snake here
is two-fold. First, it refines the trace. We optimize the snake allowing only
its endpoints (first and last control points) to move in order to fine-tune the
localization of cell extremities. This corrects errors that might have been
introduced when representing the blobs detected in the fluorescence channel
with a single point location. To do so, an endpoint energy is computed as the
integral of a circular area around the control points at the extremity of the
snake curve on the endpoint probability map. The rest of the curve remains
fixed, while the extremities search for the most tip-looking location around
them. Second, the continuous spline curve representation offers the possibility
to compute interesting features describing the bacteria.

Construction of the Graphical Model. Based on the extracted detections, we
construct a factor graph [191], which is a particular type of probabilistic graphical
model solved by relying on the factorization of individual terms. The graph covers
all time frames of the input sequence. It is set up as a trellis graph in which
each column contains nodes representing the detections of a specific time frame.
Consecutive columns thus model subsequent time frames. Transition and division
hypotheses are inserted between those columns as separate nodes connected to two
or three detection nodes, respectively. Transition and division hypotheses outgoing
from any detection i at time t are determined by considering the 20 detections j
in the following frame t + 1 that are the closest in terms of overlap. The overlap
is estimated as the Jaccard index (5.23) between dilated versions of the spline
traces, which provide good approximations of the full bacteria body. The whole
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process of extracting detections and generating transition and division hypotheses
is illustrated in Figure 6.11.

The factor graph is composed of random variables for each detection, transition
and division hypothesis, hard constraints and factors. Hard constraints allow to
model requirements for a consistent solution. We use them to ensure flow conserva-
tion and mutually exclude detection hypotheses in the same frame based on whether
and to which extent they cross and overlap. Factors encode local probabilities. In
our model, the variables are binary and can take two possible states. A state of 1
implies that the hypothesis is conserved in the final tracking solution, while a state
of 0 means that it is discarded. The factors attached to each of these nodes encode
the probability for using (state 1) or not (state 0) the corresponding hypothesis.
These values are obtained by first computing an extensive set of features for each
detection, transition, and division hypothesis, and then relying on Random Forests
classifiers to predict, based on these features, the probability for the hypothesis
to be valid or not. Classifier predictions non-linearly combine features of possibly
different dynamic ranges into a single value that can be readily interpreted thanks
to its probabilistic nature. Because the initial sets of hypotheses are large enough
to ensure that no correct solution is missed, we also use the predicted probabilities
to prune out too implausible hypotheses. To do so, we apply very conservative
thresholds and discard from our model detections with probabilities lower than 1%,
as well as transitions and divisions with probabilities lower than 0.01%.

Optimal Tracking Solution. To formally enunciate the optimization problem
that leads to the optimal tracking solution, let us first define the factor graph more
precisely. As previously stated, all detection, transitions, and division hypotheses
are represented by nodes. Nodes corresponding to divisions are connected to one
detection at time t and two detections at time t + 1, and nodes corresponding to
transitions connect one detection at time t to one detection at time t + 1. Detec-
tions can appear and disappear, which is modeled by special transition nodes with
one unconnected endpoint, which could as well be connected to a virtual source or
sink. Hence, in the equations below, transitions also include appearances and dis-
appearances. Configurations of the graph are encoded in the form of a state vector
x, composed of as many binary components as there are nodes in the graph. The
state vector thus contains one component for each detection, transition and division
hypothesis. Each binary components of x indicates the state of the corresponding
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Figure 6.11: Pipeline for building the graphical model. Detection hypotheses are
first extracted by linking the cell extremity candidates. From there, based on the
amount of overlap and crossing between detection hypotheses, exclusion constraints
forbidding the simultaneous use of incompatible detections are introduced. Then,
transition hypotheses are generated between close pairs of detections in the succes-
sive frame. Finally, division hypotheses are constructed in a similar way between
cells in a given frame and close-by pairs of cells in the successive frame.
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detection, transition, or division node in the graph. We use sub- and superscripts
to address the state of individual variables in x such as xdet

t,i for the state of the
detection hypothesis i in frame t. The solution is then retrieved as the subset of
nodes that are active in the state vector.

Any detection node i in any frame t is attached to a factor θdet
t,i , which contains

the cost of using (xdet
t,i = 1) or not (xdet

t,i = 0) this particular detection in the
final solution. Factors are constructed similarly for transition and division nodes,
with the difference that they respectively require 2 and 3 indices to be uniquely
characterized. The probabilities predicted by the Random Forest classifiers are
transformed into energies by applying a negative logarithm, which turns the product
over all factors constituting the joint probability into a sum over energies. Thus,
factors all take a form similar to

θdet
t,i (xdet

t,i ) = −wdet log
(
Pdet(xdet

t,i = 1)
)
, (6.18)

with wdet a weighting term. The global objective function can then be formulated
as

min
x

T∑
t=0

∑
i∈Xt

θdet
t,i (xdet

t,i ) +

T−1∑
t=0

∑
i∈Xt

∑
j∈Xt+1

θtrans
t,i,j (xtrans

t,i,j )

+

T−1∑
t=0

∑
i∈Xt

∑
j∈Xt+1

∑
k∈Xt+1

k 6=j

θdiv
t,i,j,k(xdiv

t,i,j,k), (6.19)

such that

∀ t, ∀ i ∈ Xt : xdet
t,i −

∑
j∈Xt+1

xtrans
t,i,j −

∑
j∈Xt+1

∑
k∈Xt+1,k 6=j

xdiv
t,i,j,k = 0 (6.20)

∀ t, ∀ i ∈ Xt : xdet
t,i −

∑
j∈Xt−1

xtrans
t,i,j −

∑
j∈Xt−1

∑
k∈Xt,k 6=i

xdiv
t,j,i,k = 0, (6.21)

and

∀ i, j ∈ Ct : xdet
t,i + xdet

t,j ≤ 1, (6.22)

where Xt denotes the set of all detection hypothesis at frame t. Ensuring in (6.20)
that, given a detection, its value equals the sum of active outgoing transitions
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and divisions enforces flow conservation and guarantees that parent cells are not
involved in more than one division at the time. Analogously, it must be ensured
that every detection value also equals the sum of incoming active hypotheses, which
is achieved through (6.21). Finally, the exclusion constraints are imposed in (6.22),
where Ct denotes the set of mutually exclusive pairs of detections in frame t.

Since each individual term θi(xi) can be written as

θi(xi) =

{
−w log (P(xi = 1)) xi = 1,

log (P(xi = 0)) xi = 0,
(6.23)

the optimization problem (6.19) is an instance of an ILP. Such problems can be
solved by the commercial solvers Gurobi and CPLEX4.

6.2.2 Results

We gathered results from our joint segmentation and tracking pipeline on five
datasets for which a manually generated ground truth was available. Each dataset
is composed of 100 image frames. Sequences always begin with a single bacteria in
the field of view and end with approximately 30 individuals on the last frame.

Precision and recall scores of the segmentation and tracking results are provided
in Table 6.1. Precision is defined as the ratio between the number of true positives
to the total number of positives (i.e., true and false altogether) and recall, or
sensitivity, as the ratio between the number of true positives to the total number of
theoretically correct hypotheses (i.e., true positives and false negatives altogether).
For all datasets, we observe that precision is generally close to perfect while recall
scores remain slightly behind, although being also generally good. It means that our
pipeline typically tends to miss correct hypotheses rather than selecting erroneous
ones.

To get a better sense of the quality of these results, we also consider the acyclic
oriented graphs matching (AOGM) measure described in [192]. The core idea be-
hind this metric is to evaluate the resemblance between two joint segmentation and
tracking result graphs. Considering a first tree corresponding to ground truth an-
notation and a second one corresponding to the results to be evaluated, the AOGM
measures how much editing operations are required to turn the results tree into

4In our experiments, we rely on CPLEX.
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Table 6.1: Precision and recall scores for five mycobacteria datasets.

Dataset ID 3 4 6 10 12 13 16

Detections Precision 1 0.99 1 1 1 1 1
Recall 0.97 0.98 0.99 1 0.99 0.93 0.99

Transitions Precision 0.99 0.99 1 1 1 1 1
Recall 0.97 0.97 0.98 0.99 0.98 0.91 0.99

Divisions Precision 1 0.96 1 1 1 1 1
Recall 0.88 0.96 1 0.96 0.85 0.77 1

Overall Precision 0.99 0.99 1 1 1 1 1
Recall 0.97 0.97 0.98 0.99 0.99 0.92 0.99

the ground truth one. As a first step, computing the AOGM requires to match the
results and ground truth detections at each frame. The ith ground truth detection
at frame t, denoted as dGT

t,i , is considered as matched to the jth results detection
at frame t, designated as dres

t,j , if

|dGT
t,i ∩ dres

t,j | > 0.5 |dGT
t,i |. (6.24)

An important consequence of this criterion is that each ground truth detection can
be assigned to at most one results detection, whereas one results detection can
have multiple ground truth detections assigned to it. From there, the following
types of errors are considered. First, the missed detections, or false negatives, are
denoted as FN. Similarly, the false detections, or false positives, are designated by
FP. The missed transitions are denoted as EA since correcting them requires an
add edge operation in the results tree, and the wrong transitions are labeled as ED
since fixing them involves a delete edge operation. The detections that have more
than one ground truth detection assigned are referred to as NS for non-split vertices.
Their count is obtained as the difference between the number of true positives (TP)
and matched detections (MD). Finally, the erroneous divisions are referred to as
EC since editing them requires an edge correction operation in the results graph.
The AOGM is computed as

AOGM =wFNCFN + wFPCFP + wEACEA

+ wEDCED + wNS(CTP − CMD) + wECCEC, (6.25)
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Table 6.2: AOGM scores for five mycobacteria datasets.

Dataset ID 3 4 6 10 12 13 16

Detections Missed 0.033 0.010 0.007 0 0.075 0.006 0.001
False 0.005 0.001 0.001 0 0.012 0.003 0

Transitions Missed 0.040 0.018 0.014 0 0.101 0.013 0.003
False 0 0.004 0.007 0.003 0.007 0.007 0.001

Divisions Missed 0.154 0.037 0 0.035 0.258 0.238 0
False 0.087 0.074 0 0 0.042 0.111 0

AOGM 285.5 111.5 81 2 835 58 14

where the wi ≥ 0 are weights and the Ci correspond to counts of the number of
occurrences of events of type i. The percentage of missed (i.e., FN) and false (i.e.,
FP) detections, transitions and divisions, as well as the resulting AOGM scores,
are given in Table 6.2. We have set the weights values as suggested in [192], namely
wNS = 5, wFN = 10, wFP = 1, wED = 1, wEA = 1.5, wEC = 1. This particular
choice of values has been demonstrated to faithfully represent the manual workload
required to fix each type of errors. The AOGM measure is then a good indication
of how tedious the manual editing would be for a user who would correct the
automatically obtained results. The AOGM measure is bounded from below by
zero and reaches this value when the ground truth and results graphs are perfectly
identical for the type of errors penalized by non-zero weights. It has no upper
bound and can thus technically grow to infinity. Smaller AOGM values indicate
results that are closer to the ground truth.

In all studied datasets, the amount of both missed and false events lie below
10% for detections and transitions. Division events obtain inferior scores, with as
much as 25% missed divisions in some cases. It is however worth noting that the
estimation of division error is exaggerated. Here, a division event detected one
frame before or after the corresponding one in the ground truth is considered as
missed, although it remains acceptable in practice. This translates to high FN
scores. Comparatively, the amount of FP divisions lies in the same range as those
of detections and transitions. Most of the division errors therefore actually corre-
spond to slight mismatches in the time point where the division is identified. This is
confirmed by visual inspection of the results. In Figure 6.12, we illustrate examples
of end results in more or less crowded bacteria colonies. Individual mycobacteria
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are properly identified even when they are in close contact and exhibit no clear
boundaries. The joint segmentation and tracking approach indeed relies on infor-
mation from larger portions of the sequence (in fact, on the sequence as a whole)
to resolve situations that are ambiguous when considering isolated frames. This
mimics the natural approach adopted by humans, who tend to check frames before
and after the one being processed to resolve ambiguities when manually annotating
a sequence.

6.2.3 Discussion

Although its complete execution time might range from hours to a few days, the
segmentation and tracking pipeline we designed is fully automated in the sense
that no manual intervention is needed to process a dataset. Edits might however
be required after the processing to correct erroneous results. The correction process
is made intuitive through a dedicated interactive ImageJ plug-in.

Properly trained Random Forests as well as appropriate weighting terms wdet,
wtrans, and wdiv for the different types of factors (see (6.18)) were here assumed to
be available. In practice, these ingredients must be carefully tuned from examples
of annotated data so as to benefit from the full potential of the pipeline. To train
the Random Forests used to turn the set of features for every detection, transition,
or division hypotheses into a probability, positive and negative training examples
must be provided. In our case, we used all samples from the training datasets. The
first motivation for this choice is the large variety of cell density (i.e., colony size)
over the course of the sequences, which precludes the selection of few isolated time
frames. The second reason is an attempt to increase the generalization power of
the classifier through datasets variability, reducing the risk of batch effects [193].
The optimal weighting terms are searched by training a structured support vector
machine (SSVM) [194] with maximal margin, similar to [195, 196].

The next experimental step consists in assessing the predictive power of the
classifiers we rely on. This involves running the pipeline on additional, untested
data. Having been designed to yield good results on our five training datasets,
our hope is that the detection, transition and division classifiers as well as the
weight values are general enough to accommodate sequences of similar nature. At
the time of writing, these validation experiments were still under preparation. In
the unfavorable event that the general classifiers fail to give sensible predictions
on new datasets, additional user intervention would be needed in order to provide
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(a) (b) (c)

Figure 6.12: Example of results for dataset 6 (top row) and 16 (bottom row) for (a)
small colonies corresponding to the first 50 frames of the sequences, (b) mid-sized
colonies corresponding to the frame range 50-80, and (c) crowded environment
towards the last frames of the sequences. The colors have been chosen so as to
obtain good color contrast.
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training examples for detections, transitions and divisions. The same ImageJ plug-
in designed to edit segmentation and tracking results was also designed to be used
for this purpose. It allows the user to select correct hypothesis among the set of
all generated ones in a fast and user-friendly way. The minimal amount of training
examples that should then be provided and, therefore, the minimal amount of
annotation required to obtain satisfying results should be the topic of future studies.
Although very encouraging, the results we provide here should thus be seen as a first
step towards a fully automated solution for mycobacteria tracking. More validation
is still needed in order to assess the generalization power of the approach and make
it practically usable by the biologists.

6.3 Study of C. elegans Dynamics using Land-
mark Active Contours

The roundworm C. elegans has emerged as an attractive model organism in biomed-
ical research, as it offers one of the best compromises between the simplicity of cell
models and the complexity of vertebrate models [197, 198]. Some of the character-
istics of this invertebrate model that contributed to its success include its sequenced
genome that is easy to manipulate, its invariant and fully-described development,
its relatively easy maintenance, its short and prolific life-cycle, and its small body
size [199]. The nematode has additional favorable attributes, including the ability to
generate large numbers of recombinant offspring, the ability to preserve and revive
strains indefinitely through cryo-freezing, and the availability of ample phenotypic
variations. These features, along with the conservation of many disease and stress
response pathways between C. elegans and humans, have spurred the use of C. ele-
gans in biomedical research, including but not restricted to the field of neuroscience.
There, the study of C. elegans locomotion is crucial for many biological problems.
Several solutions have already been proposed based on measures of deformation
using geometrical features [200], on the construction of dictionaries, or on feature
extraction and subsequent statistical analysis or classification [201, 202]. Most ex-
isting approaches rely on separation of background and foreground by thresholding
and require an a posteriori reparameterization of the detected shape, as well as
extra processing steps for identifying the orientation of the nematodes.

C. elegans locomotion is a particularly well-suited application for our land-
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mark snake as nematodes feature pointy extremities and exhibit a variety of curved
shapes. Although initially designed for static image analysis, our parametric model
can be adapted to the problem of analyzing nematode motility. From the landmark
snake construction, the segmentation outlines are automatically parameterized with
landmarks matching the extremities, which facilitates further shape analysis and
feature extraction. It thus provides a good example benefiting from joint feature
detection and contour extraction. We present in the following our image analysis
framework based on landmark active contours for nematode motility assays5. A
novelty that stems from our approach is the formulation of a continuous shape-
space, which allows to decompose nematode motion into a collection of “modes”,
or eigenworms, in the spirit of [203] to gain insight into the nature of the different
locomotion patterns present in a dataset. As we shall see shortly, this is uniquely
feasible thanks to the Hermite spline representation of the nematode contours. We
present the derivation of the shape space and propose an efficient way of imple-
menting it, before showing results on real datasets.

6.3.1 Description of the Method

C. elegans Nematodes on a Microfluidic Chip

Traditional C. elegans handling protocols rely almost entirely on manual manipu-
lations and direct observation by the operator. There, C. elegans nematode culture
is usually performed on the surface of nematode growth medium agar plates cov-
ered with Escherichia coli bacteria for feeding. Such manual protocols tend to be
especially tedious when analyzing large numbers of animals. They require special-
ized and advanced manual skills and lack both reproducibility and high-throughput
potential. To address this problem, the past decade has seen significant advances
in culture conditions and assay development to facilitate the use of C. elegans in
high-throughput and high-content screening [204]. However, automated image ac-
quisition and data analysis proved to be non-trivial in C. elegans systems. While
microplate readers can be adapted for capturing images of entire wells, automated
analysis of such images remains very challenging. Assays requiring quantification

5This work has been carried out in collaboration with D. Schmitter, Biomedical Imaging Group,
EPFL, Lausanne, Switzerland; M. Cornaglia and Prof. M. Gijs, Microsystems Laboratory 2,
EPFL, Lausanne, Switzerland; and L. Mouchiroud, Nestl Chair in Energy Metabolism, EPFL,
Lausanne, Switzerland.
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of more complex phenotypes, such as those involving morphological changes in ne-
matodes and differences in behavior or locomotion types appear to be very difficult
to process [205]. Lab-on-a-chip technologies and microfluidics stand out as the
most convenient approaches in term of functional exploration of C. elegans [206].
Microfluidics can in fact combine the advantages of high-throughput liquid-based
well-plate screens with a fine-tuned control over genetic or pharmacological inter-
ventions, as well as detailed imaging and phenotypic analysis. It can also allow
data acquisition at single-nematode resolution rather than at the population level.
Furthermore, it opens the possibility to replace traditional error-prone manual cul-
ture, handling, and treatment of C. elegans by standardized operations integrated
in a fully automated fashion.

In the following, we focus on brightfield time-lapse sequences of swimming ne-
matodes placed in a prototype of microfluidics platform for multiplexed nematode
culture and imaging designed at the Microsystems Laboratory 2 at EPFL. They
thus have the characteristics expected from image data of high-throughput mi-
crofluidic experiments.

Automated Nematode Segmentation

Existing methods for analyzing image sequences of C. elegans can be broadly cate-
gorized into two groups depending on whether the focus is put on providing mostly
tracking or segmentation information. Approaches of the first category usually al-
low studying multiple nematodes in images of medium or low resolution. They
do not provide precise segmentation in the sense that they mostly keep track of
nematode centroids and are, for this reason, often referred to as centroid-based
methods. Such approaches do not allow the extraction of precise morphological
parameters related to each nematode body, but do give precise tracking informa-
tion for each individual. Examples of centroid-based image analysis solutions can
be found in [207, 208]. The second category comprises methods where most ef-
forts are allocated for segmentation in terms of accurate outlining of the nematode
body. They require high-resolution images and can usually only handle a single
nematode per image. In most cases, they rely on a custom optical setup where
the camera moves so as to maintain the nematode in the center of the field of
view, thereby entirely circumventing the tracking problem. For this reason, issues
related to background noise are avoided as well. Segmentation most often con-
sists in standard thresholding and mathematical morphology techniques, followed
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by the identification of the nematode centerline (called the skeleton). A spline
curve is finally fitted onto the skeleton in order to facilitate feature extraction.
Most algorithms extract the centerline only, although recent approaches have been
proposed to obtain full body outlines. Example of such so-called skeleton-based
methods are reviewed in [200, 209, 210]. A few skeleton-based methods handle the
segmentation of multiple nematodes. When available, they are restricted to slow
swarming motion [211]. It is generally worth noting that most existing approaches
have been tailored for swarming nematodes [212]. Swimming C. elegans are slowly
getting attention but remain understudied [205]. We can get a sense of this prob-
lem by looking at the complexity of sequences of swimming over those of swarming
nematodes. When swimming, C. elegans can bend into more complicated shapes
involving occluded body parts, as it is freely moving in a three-dimensional volume.

Overall, the development of image analysis methods for high-content screening
in microfluidic chips presents the five following requirements.

1. Efficiently tracking multiple nematodes: the use of a custom camera setup
following individual nematodes in each well is excluded.

2. Providing precise nematode outline at high resolution: segmentation of the
whole nematode body is required to accurately extract, e.g., motility pheno-
types.

3. Handling swimming nematodes.

4. Discriminating nematodes against possibly complex and dynamic background.

5. Providing maximal amount of automation.

To the best of our knowledge, there exists no proposed solution for this problem.
An image analysis approach for the processing of high content data of swimming C.
elegans therefore remains to be developed. Ideally, image analysis should be flexi-
ble enough to deal with nematodes at different life stages, refined enough to handle
multiple individuals, occlusion events, and complex background at high resolution,
and to provide a data-driven approach to extract discriminative phenotypical fea-
tures. In the following, we do not claim to fully address all these problems, but
rather to show that our landmark snake holds a lot of potential for this application.
The proof-of-concept examples we provide hereafter show that our method would
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be well-suited in a global image analysis pipeline for the segmentation, tracking
and analysis of swimming C. elegans.

To perform C. elegans segmentation, we use our closed landmark snake model
given by (5.7) and optimize it on a combination of feature energies. In each frame,
a local feature-based energy (5.21) relying on the output of a fine-tuned tip detector
is used to attract selected control points at the extremities of the nematodes. In
combination with this, an edge-sensitive steerable filter is designed following (4.5),
and the purely directional energy (5.9) is used to distribute the remaining control
points along the nematode body while their tangents adapt to the local orientation
of the contour. The total number of control points composing the snake curve
is adapted through a multiresolution approach. First, we start by optimizing an
M = 4 points snake. Its first and third control points are attracted to the head
and tail of the nematode, while the others approach the nematode contour. In
this way, all segmentation curves share a common parameterization imposed by the
two nematodes extremities (head and tail), which correspond to the first (k = 0)
and mid-curve (k = M/2) control point, respectively. This allows aligning and
comparing the segmentation curves obtained at different frames. We then increase
the number of control points by introducing pairs in the portions of the snake curve
that are along each sides of the nematode, such that M ranges from 4 to 12. This
amount to having from 1 to 5 control points along each side of the nematode.
Before adding a new pair of control points, we record the segmentation outline and
corresponding energy at convergence. At the end of the procedure, the snake curve
corresponding to the number of control points that yields the lowest energy is kept.
This approach increases the robustness of the algorithm and lowers the risk of self-
intersections on complicated nematode shapes as the snake gets optimized step by
step with increasingly large number of parameters. In this way, no other energy
term is actually needed to obtain proper segmentation results. Tracking nematodes
in successive frames is not needed per se as, in the sequences we consider, the time
resolution is good enough for the nematode bodies to overlap from one frame to
the next. We thus simply reuse the segmentation curve from the previous frame
as initialization for the new one. An example of landmark snake at convergence
overlaid on a nematode is shown in Figure 6.13.

Once the entire image sequence is processed, segmentation errors are subse-
quently corrected by the user through an interactive interface allowing manual
edits on the snake curve. In Figure 6.14, we show segmentation results for a sample
frame of each of the three considered sequences.
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Figure 6.13: A sample C. elegans nematode overlaid with a landmark snake at
convergence, here composed of M = 8 control points. Notice that the first (r[0])
and middle (here, fifth, corresponding to r[4]) control points act as landmarks for
the extremities of the nematode.

Computation of Nematode Features. The spline nature of segmentation out-
lines obtained with landmark snakes offers many advantages for the extraction of
features. The spline formalism provides a closed-form expression of each of the
contours. The coordinates of the control points and the expression of the basis
functions is sufficient to retrieve the continuous spline contour r following (5.7) in
a resolution-independent manner and without pixel or discretization artifacts. The
continuous length

L =

∫ 1

0

(
r′1(t)2 + r′2(t)2

) 1
2 dt (6.26)

and instantaneous curvature

κ =

∫ 1

0

(
r′′1 (t)r′2(t)− r′′2 (t)r′1(t)

(r′1(t)2 + r′2(t)2)
3
2

)2

dt (6.27)

are examples of physically-meaningful features that can be directly computed from
r.
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(a) First sequence (b) Second sequence (c) Third sequence

Figure 6.14: Raw images (top row) and segmentation results (bottom row) of
sample frames of the three considered image sequences featuring (a) a single nema-
tode swimming and coiling, (b) three nematodes swimming, and (c) two nematodes
undulating in a swarming-like motion.
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Eigenworms Analysis

Identifying the main modes of variation in a collection of similar shapes is at the
heart of shape-space analysis. The idea of extracting the main modes of motion
from a collection of nematode outlines (actually, skeletons) was initially proposed
in [203]. There, the main eigenshapes, called eigenworms, are obtained using a
Fourier descriptors-based analysis. This approach shines new light on dynamics
patterns and motility phenotypes as it offers a rich yet simple description of mo-
tion [203]. In particular, it allows easily identifying and clustering different motion
types. The eigenworms analysis method yielded very promising results, although it
is, in its original formulation, limited to the case of swarming nematodes.

The spline nature of our outlines opens the way to a novel shape-space for-
mulation, which also permits to decompose C. elegans motion into a collection of
modes. The starting point of our method is a dictionary of nematode shapes, that
is, a collection of outlines. From this dictionary, the average shape or the shape
capturing most of the variation can be extracted. The latter is what we refer to as
an eigenworm. Each eigenworm is associated with the amount of variance it is able
to capture in the dictionary. In real datasets, one usually observes that the first one
or two eigenworms are sufficient to capture more than 90% of the variance. The
eigenworms decomposition provides useful information on the nature of a dataset.
It allows assessing how similar shapes composing a dictionary are, and estimating
how different dictionaries resemble each other. As we shall see, dictionaries can
also be built from shapes of the same nematode at different time frames, giving
valuable information on the evolution of the dynamics of a single individual.

Formulation of the Shape-Space. We hereafter describe how our novel, con-
tinuous spline shape-space is constructed. In the original formulation of shape-space
analysis, which dates back to the late eighties [213, 214, 215], shapes specified by
discrete sets of points are considered. There, a collection of N shapes is described
by N image vectors (i.e., collection of point coordinates that represent the shape
contour) denoted by si ∈ R2M , i = 1, ..., N , where M is the number of (many)
discrete two-dimensional landmarks defining the shape contour. Each shape vector
si is built as si = (xi,0, yi,0, . . . , xi,M , yi,M ), where (xi,j , yi,j) are the coordinates of
the jth landmark of the ith shape. First, a geometric normalization step is per-
formed on each si ∈ R2M , i = 1, ..., N to obtain an “aligned” shape ŝi = T̂isi + b̂i,
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with (
T̂i, b̂i

)
= arg min

T,b
‖sref −Tsi − b‖2, (6.28)

where sref ∈ R2M is a reference shape, T ∈ R2M×2M is a transformation matrix, and
b ∈ R2M is a translation vector of the form b = (tx, ty, . . . , tx, ty) with tx, ty ∈ R.
Principal components analysis (PCA) is then performed on the collection of aligned
shapes {ŝi}. This amounts to extracting the eigenvectors of AA∗, where A =
[ ŝ1 . . . ŝN ] and A∗ is the unique adjoint of A such that sTi (Asj) = (A∗si)

T sj [216].
Since A is a matrix, its adjoint is the transpose of the complex conjugate of A.
The matrix A, composed of all aligned shapes, is referred to as the data matrix.

In our approach, shapes are characterized as continuous Hermite spline curves
instead of collections of discrete point coordinates. Our dictionary is composed of
N shapes, which are Hermite splines ri ∈ L2

2([0, 1]), i = 1, ..., N . We recall that
L2

2([0, 1]) is the Hilbert space associated with the inner product

〈ri, rj〉L2
2

=

∫ 1

0

ri(t)
T rj(t)dt =

∫ 1

0

(r1,i(t)r1,j(t) + r2,i(t)r2,j(t)) dt. (6.29)

We restrict ourselves to the set of similarity transformations, i.e., T = aQθ where
a ∈ R is a scaling parameter and Qθ : L2

2([0, 1])→ L2
2([0, 1]) the operator applying

a rotation of angle θ. This requires two modifications in the standard formulation
enunciated above. Each ri ∈ L2

2([0, 1]), i = 1, ..., N , must be “aligned” to obtain
r̂i ∈ L2

2([0, 1]), i = 1, ..., N . However, since our shapes lie in the continuous domain,
we cannot do point-to-point normalization like in the discrete case. We thus perform
the alignment by projecting our shapes onto the spline-based shape-space for simi-
larity transformation, as described in [217]. The projected curve r̂i = âiQθ̂i

ri + b̂i
is obtained through the minimization of the continuous L2

2 norm as(
âi, θ̂i, b̂i

)
= arg min

a,θ,b
‖rref − aQθri − b‖2L2

2
, (6.30)

where b ∈ R2 is a vector of the form b = (tx, ty) with tx, ty ∈ R, which allows
translating the curve. The reference shape rref is chosen to be a good representative
(i.e., an “average”) of the N shapes composing the dictionary. In that way, we take
into account the continuous nature of the curves, and we are also able to obtain
closed-form solutions in the continuous domain.
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Then, we extract the principal components of {r̂i} using AA∗, where A =
(A(i, t)) = (r̂i(t))i=1,...,N, t∈[0,1]. In the same way that a matrix A ∈ R2M×2M

specifies a linear mapping from R2M to R2M , A defines the linear mapping A :
RN → L2

2([0, 1]). More precisely, for x = (xi)i=1,...,N ∈ RN , we have that A : x 7→
r = Ax, where r ∈ L2

2([0, 1]) and r(t) =
∑N
i=1A(i, t)xi =

∑N
i=1 xir̂i(t) for all t ∈

[0, 1]. In particular, for ei = (0, . . . , 0, 1, 0, . . . , 0), where the 1 is the ith component
of ei, we have that Aei = r̂i. It is worth noting that, although A seems to be of
“∞×N” dimensions, it actually maps RN to Span(r̂i), which is a finite-dimensional
subspace of L2

2([0, 1]). The unique adjoint A∗ of A is the operator from L2
2([0, 1])

to RN that satisfies 〈Ax, r〉L2
2

= 〈x, A∗r〉RN for every x ∈ RN and r ∈ L2
2([0, 1]).

Also, AA∗ : L2
2([0, 1]) → L2

2([0, 1]) and A∗A : RN → RN . Importantly, the linear
mapping A∗A is therefore a matrix in RN×N which coefficients correspond to the L2

2

inner products between all possible pairs of r̂i for i = 1, . . . , N . To perform PCA,
we rely on Proposition 5, which is the extension of the known result for M × N
matrices to the “∞×N” case. For the sake of simplicity, we drop in the following
the hat notation and use {ri}, assuming that we are from now on working with
aligned shapes.

Proposition 5 (Computation of continuous-domain PCA). Let u1, ...,uN with
ui ∈ RN be the orthonormal set of eigenvectors of the symmetric positive semidefi-
nite N ×N Gram matrix

A∗A =

 〈r1, r1〉L2
2

. . . 〈r1, rN 〉L2
2

...
...

〈rN , r1〉L2
2

. . . 〈rN , rN 〉L2
2

 (6.31)

corresponding to the eigenvalues λ1 ≥ ... ≥ λN ≥ 0. Let 0 ≤ N1 ≤ N be the
integer such that λN1

is the smallest strictly positive eigenvalue of A∗A. Then,
AA∗ : L2

2([0, 1])→ L2
2([0, 1]) admits the eigenvalue decomposition

AA∗ =

N1∑
i=1

λiũi ⊗ ũi (6.32)

where ⊗ is the tensor product. The eigenfunctions ũi ∈ L2
2([0, 1]), i = 1, ..., N1 of

AA∗ satisfy

AA∗{ũi} = λi{ũi} (6.33)



200 Practicing Landmark Active Contours

and form an orthonormal set, that is, 〈 ũi, ũj 〉L2
2

= δ[i − j]. They are in addition
related to the eigenvectors ui of A∗A as

ũi =
1√
λi
Aui. (6.34)

Proof. We first assume that λi > 0 and show that ũi is an eigenfunction of AA∗ as

AA∗ũi = A (A∗A) ui/
√
λi = Aλiui/

√
λi = λiũi, (6.35)

where we used (6.34) and the fact that ui is the eigenvector of A∗A associated to
the eigenvalue λi. Next, we show the orthogonality of the Aui as

〈Aui, Auj 〉L2
2

= 〈A∗Aui,uj 〉L2
2

= 〈λiui,uj 〉L2
2

= λiδ[i− j]. (6.36)

The orthonormality of the ũi for i = 1, ..., N1 (i.e., for λi > 0) in L2
2([0, 1]) im-

mediately follows by substituting (6.34) in the above. The considered collection of
shapes might contain duplicates or, more likely, shapes that very closely resemble
each other although not being exact duplicates. In such cases, A∗A is ill-conditioned
and N1 < N , which makes it worth addressing the possibly remaining N −N1 van-
ishing eigenvalues. For them, we have

〈Aui, Aui 〉L2
2

= ‖Aui‖2L2
2

= λi = 0, (6.37)

which implies that Aui = 0 for i = N1 + 1, ..., N .
In the situation where none of the eigenvalues are vanishing (i.e., whenN1 = N),

we have

N∑
n=1

λiũi ⊗ ũi =

N∑
n=1

λi
Aui√
λi
⊗ Aui√

λi
=

N∑
n=1

Aui ⊗Aui

=A

(
N∑
n=1

ui ⊗ ui

)
A∗ = AA∗, (6.38)

which gives the eigendecomposition of AA∗. The last step is obtained from the
orthonormality of the ui, which implies that ui⊗ui = IN , where IN is the identity
matrix of size N . In cases where N1 < N , we have from (6.37) that

N∑
n=N1+1

Aui ⊗Aui = 0. (6.39)
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Therefore, we can write as well

N1∑
n=1

λiũi ⊗ ũi =

N1∑
n=1

Aui ⊗Aui =

N∑
n=1

Aui ⊗Aui, (6.40)

which completes the proof.

The eigenvectors obtained from the above continuous-domain PCA are our
eigenworms. It is important to notice that, in our setting, the eigenworms are
composed of contributions of all dictionary atoms.

Efficient Computation of Inner-Products. To extract continuous spline
eigenworms with our approach, the only required ingredient is an eigendecomposi-
tion of a finite-dimension matrix. However, this matrix is composed of continuous
L2

2([0, 1]) inner products. An efficient way of computing them is therefore needed.
To do so, we adapt the method of [218] to Hermite splines.

Let ck,l[m,n] =
∫ 1

0
φk,per(t−m)φl,per(t−n)dt with k, l ∈ {1, 2} and where φ1,per

and φ2,per are the M -periodized versions of φ1 and φ2, given by (5.5) and (5.6),
respectively. Then, the inner product between any two closed landmark snake
curves defined as (5.7) is given by

〈ri, rj〉L2
2

=

∫ 1

0

ri(t)
T rj(t)dt (6.41)

M−1∑
m=0

M−1∑
n=0

(
ri[m]T rj [n]c1,1[m,n] + r′i[m]T rj [n]c2,1[m,n]

+ ri[m]T r′j [n]c1,2[m,n] + r′i[m]T r′j [n]c2,2[m,n]
)
. (6.42)

Now let us set

Bkl =

[
Φkl 0
0 Φkl

]
, (6.43)



202 Practicing Landmark Active Contours

where [Φkl]m,n = ck,l[m,n], and

r̃i =



r1,i[0]
...

r1,i[M − 1]
r2,i[0]

...
r2,i[M − 1]


, s̃i =



r′1,i[0]
...

r′1,i[M − 1]
r′2,i[0]

...
r′2,i[M − 1]


. (6.44)

Note that Bkl is easily precomputable in closed form and can be stored in computer
memory. It is in fact extremely sparse due to the small support of φ1 and φ2. The
vectors r̃i and s̃i only contain the coordinates of the control points and are therefore
directly given by the position of the active contours in the image.

The inner product can finally be computed as

〈ri, rj〉L2
2

=r̃Ti B11r̃j + r̃Ti B12s̃j + s̃Ti B21r̃j + s̃Ti B22s̃j

=
[

r̃Ti s̃Ti
]
B

[
r̃j
s̃j

]
, (6.45)

with

B =

[
B11 B12

B21 B22

]
. (6.46)

We note that B is of dimension 4M×4M and the two vectors around it are 1×4M
and 4M × 1, respectively. The inner product of any two closed Hermite spline
curves thus boils down to simple and computationally inexpensive linear algebra.

6.3.2 Results

We illustrate eigenworm analysis results for the three microfluidic time-lapse im-
age datasets introduced in Figure 6.14. The sequences are all composed of 188
frames of 800×640 pixels. The first sequence features a single nematode swimming
and coiling, the second one contains three nematodes swimming, and the third one
shows two nematodes undulating in a swarming-like motion. In all cases, the anal-
ysis pipeline is composed of the three same steps: nematode segmentation using
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landmark snakes, construction of a shape-space dictionary, and extraction of the
eigenworms. What differs in each example is the nature of the dictionary and, as a
consequence, the kind of information that the eigenworms provide.

Analysis of Dominating Dynamics

In a first setting, we study different populations of C. elegans in different chambers
of the microfluidic chip. This is meant to illustrate situations in which different
experimental conditions are tested, for instance by delivering different type of drugs
to each chamber. We consider the second and third sequences. They feature several
nematodes (three and two, respectively) in each chamber, and one characteristic
motion type per chamber (regular swimming and undulating, respectively). We
build one dictionary for each nematode by gathering all its segmentation outlines
over the sequence, and extract the first eigenworm of the resulting shape-space.
We therefore have three dictionaries of 188 shapes for the second sequence and two
dictionaries of 188 shapes for the third one. We show the first eigenworms of each
dictionary in Figure 6.15. We also indicate the amount of variance they capture in
their own dictionary, which is in all cases very high. This indicates that each of the
five dictionaries most likely contains a single motion type.

The first eigenworms of individuals in the same chamber are similar. This in-
dicates that, within each chamber, nematodes share the same kind of dynamics.
Conversely, the eigenworms are strongly dissimilar between chambers, as expected
from the different dynamic in these two environments. Interestingly, the eigen-
worms of the second sequence appear as very straight, which might seem to be
contradictory for swimming C. elegans. This result however still makes sense since,
in the swimming process, most of the nematode body remains steady while the
extremities are swiftly wiggling. A straight shape is therefore best suited to get a
first order approximation of the shape of the nematode while swimming. The small
variations due to bending at the tips correspond to high frequency features and are
captured by further eigenworms.

Analysis of Motion-Type Evolution

In a second setting, we focus on the first sequence, which displays a single nematode
with changing motion dynamics. We first construct a shape dictionary by simply
considering the segmentation outlines in all frames of the sequence. In Figure 6.16,
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(a) λ = 88%, λ = 86%, and λ = 93% (b) λ = 93% and λ = 95%

Figure 6.15: Qualitative estimation of types of motion relying on eigenworms
analysis. Sample raw image frames (top row) and first eigenworm (bottom row) for
each nematode in the (a) second and (b) third image sequence. The eigenworms are
obtained by performing continuous principal component analysis on a dictionary
composed of the collection of outlines of each individual nematode across the image
sequence. The amount of variance that each eigenworm captures is indicated as λ.
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(a) Raw image (b) λ = 86% (c) λ = 10%

Figure 6.16: Identification of multiple motion modes relying on eigenworms analysis.
(a) Sample raw image frame, (b) first and (c) second eigenworm for the nematode
in the first image sequence. The eigenworms are obtained by performing continuous
principal component analysis on a dictionary composed of the collection of outlines
at each frame of the image sequence. The amount of variance that each eigenworm
captures is indicated as λ.

we display the two first eigenworms along with their associated variance. The shapes
composing the dictionary can be mainly represented by these two eigenworms,
indicating the presence of two dominating dynamics. The first one is representative
of standard swimming behavior as discussed in the previous experiment, and the
second one hints at coiling events.

To investigate more precisely the time evolution of the motion through the
sequence, we add temporal resolution to our eigenworm analysis and build dictio-
naries using segmentation outlines from a sliding window around each frame. At
frame t, the dictionary is thus composed of outlines from frames t − δ to t + δ,
where δ corresponds to half the size of the sliding window. In this way, a collection
of eigenworms can be extracted from every frame of the sequence to describe the
main modes of motion in a close temporal neighborhood. The first eigenworms for
a collection of selected time points in the sequence are displayed in Figure 6.17.
The transition from coiling in the first part of the sequence to standard swimming
dynamics gets clearly noticeable.
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Figure 6.17: Eigenworms analysis with temporal resolution. For a collection of
time points, we show the first eigenworm obtained from the dictionary composed of
outlines in frames surrounding the considered time point. It offers a compact view
of the dynamic of the nematode through the sequence. The color code indicates
the frame value (blue, top left: beginning of the sequence, red, bottom right: end
of the sequence).
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6.3.3 Discussion

The study of C. elegans dynamics is a good illustration of the potential held by land-
mark active contours for image analysis problems involving the outlining of objects
with clear landmarks. Our approach is flexible enough to provide precise outlines
of swimming nematodes in time-lapse microscopy images in a mostly automated
fashion. Segmentation errors do arise but can easily be corrected manually. In or-
der to further enhance automation, segmentation robustness could be reinforced by
incorporating learning-based energy terms. Another approach could be to monitor
segmentation quality and automatically flag frames where problems are detected,
for instance when the value of the energy at convergence is too high, in order to ef-
ficiently guide user input and feedback. The eigenworms analysis, although remain-
ing only qualitative, provides an interesting decomposition of the nematode motion
and allows identifying different types of dynamics. Combining landmark snakes
with such an analysis is a first step towards the design of automated pipelines for
high-throughput microfluidic experiments involving C. elegans. Obvious required
improvements include the introduction of more refined tracking strategies, allevi-
ating the need for overlap in successive frames. In addition, more quantitative
measurements of motion could be extracted from the eigenworms. Clustering al-
gorithms could for instance be used to get quantitative estimations on how distant
different eingenworms are. In our last example involving dictionaries at different
time steps, eigenworm analysis also provides an automated way of identifying tran-
sitions in motion types. Such events could be automatically detected by monitoring
the distance between eigenshapes extracted from successive time points.

This application is a typical example where landmark snakes appear to be a
convenient solution, mainly because of the salient features (here, the nematode
extremities) that characterize the objects of interest. Outlining nematodes could
in fact be achieved by other spline snake models, but would involve a lot of control
points and imply an increased risk of entanglement at the extremities. Similarly,
continuous shape space analysis analogous to the one we propose could be derived
for other spline models. However, shape alignment requires that all objects have
the same parameterization origin. If tips were to be represented by a collection of
aggregated control points, imposing a rule stating which control point should be
considered as the origin of the parameterized curve would not be an easy task. In
our case, however, since landmark snakes offer a one-to-one correspondence between
control points and landmarks on the curve, a standardized parameterization is
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straightforwardly obtained.



Chapter 7

Concluding Remarks

We close this thesis with a few concluding remarks. First, we propose to look down
the road and recap our technical contributions. Then, we briefly discuss future
research possibilities.

7.1 Taking a Look Back

Our work focused on the problem of segmentation, or outlining, in the context of
bioimage analysis. We could identify two different angles to approach this problem,
namely identifying contours or detecting features in the image. Bringing these
two ideas together, we designed landmark active contours, which consist in curves
that deform according to both contour and feature information. Various technical
contributions came up along the way. We summarize them in the following, grouped
by field.

In the Fields of Spline and Approximation Theory

• We explicitly made the link between the well-known cubic Hermite spline
interpolation scheme and more classical ones such as Bézier curves and cubic
B-splines.

• We studied the approximation error of the cubic Hermite interpolation scheme

209
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and compared it with other methods using multigenerators in a generalized
sampling context.

• We demonstrated several optimality results of cubic Hermite splines, both in
terms of smoothness properties and of MMSE estimation.

• We briefly illustrated further generalization possibilities in the spirit of L-
splines. In particular, we introduced the exponential Hermite splines, a
novel Hermite spline family generating piecewise-exponential curves with C1-
continuity at the knots.

In the Fields of Wavelet Theory and Steerable Filters Design

• We introduced a procedure to design angular profile for the detection of sym-
metric patterns. We showed proof-on-concept application examples in bioim-
ages featuring K-fold symmetries.

• We proposed a scheme to design radial wavelet profiles that optimize different
measures of localization. We illustrated how they improve performances in
experiments involving steerable filters for local orientation estimation and
image reconstruction from a sparse subset of image features.

In the Field of Bioimage Analysis

• We introduced the landmark snake model based on cubic Hermite splines,
which differs from classical spline snake models by offering direct control over
the tangents of the curve at the control point locations. It allows interpreting
control points as landmarks, and adapting their tangents to the nature of
local image features.

• We proposed novel local feature-based energies designed for the landmark
snake and showed proof-of-concept examples of their usefulness in practice.

• We illustrated the use of landmark snakes by segmenting objects in a collection
of bioimages from various microscopy modalities. We also compared results
with those obtained with classical spline snakes.
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• We described three collaborative projects where our steerable feature detec-
tors, cubic Hermite splines and landmark snakes were used individually or
together to tackle a particular bioimage analysis problem.

More aspects are left to be investigated in all the fields we explored. About
splines, a complete theoretical framework characterizing Hermite L-splines in all
generality remains to be developed in a mathematically rigorous way. Similarly,
regarding the design of steerable filters, preliminary results obtained with filters
learned from templates call for further investigation and extensive tests in practical
applications. Our main novelty, the landmark snake, was observed to bring a
true added value in practical applications. However, a virtually infinite number
of variations on this theme could still be explored. Many other approaches can
be considered to extract landmarks locations and descriptors, and specific energies
can be constructed to exploit the information that they provide. Also, we only
focused on first-order Hermite interpolation, but the Hermite framework is actually
much richer. Exploring higher orders of Hermite interpolation and higher order
Hermite splines built from a variety of differential operators opens the way to an
endless number of snake model variants. Our landmark snake model is based on
cubic polynomial Hermite splines, but another model using exponential Hermite
generators could directly be constructed from (5.3) and (5.7) by simply changing the
generators φ1 and φ2. Similarly, more refined landmark snakes could be designed
by considering Hermite interpolation of higher order. One additional order would
result in a snake variant that relies on three basis functions and has direct control
over the first and second derivative at each control point, making it possible to
constrain the local curvature at landmark locations.

Taking a look back at the road traveled through this thesis, several technical
contributions can be pulled out, both theoretical (in the fields of steerable filters
and spline) and practical (in the domain of segmentation and, more precisely, of
bioimage analysis). This excursion is however far from being self-sufficient. All
studied elements can serve as starting points for further research directions. More
than proposing answers to the questions presented at the beginning of this work,
our results open a multitude of additional paths remaining to be carved.
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7.2 Future Prospects

In the introduction, we described the segmentation problem and highlighted how
the challenges it poses differ in the fields of computer vision and bioimage analysis.
An interesting aspect of the landmark snake is that it bring these domains closer
together in its ability to take into account both the specificity of the objects being
searched for (as in computer vision settings) and the flexibility of their nature (as
in bioimage informatics applications). Landmark energies allow introducing poten-
tially very specific information on the appearance of the objects of interest, which
stands out of the classical snake energy paradigm. Individual snake energy terms
are usually more generic, based on global intensities or textures considerations, or
on the overall shape the curve is expected to adopt. The specificity then emerges
from the unique combination of such general terms. The use of landmarks and their
association with control points introduces targeted specificity in the segmentation
process, without affecting the overall flexibility and generality of snake algorithms.
Designing energies for classical keypoint detectors such as SIFT and exploring the
use of landmark snakes in computer vision-type segmentation problems is a natural
future direction for our work.

From a broader perspective, the landmark snake also provides a primer to rec-
oncile learning and more classical image processing approaches to the segmentation
problem. The snake model is built in a classical image analysis spirit, relying on
well-established results from spline and approximation theory. The nature of the
detected landmark and the incorporation of landmark-related information remains
however open to learning-based methods. Although not explored here, it is very
well imaginable to rely on the output of appropriately trained deep neural networks
in order to identify landmark locations and their local properties, which would al-
low to directly reuse the local feature-based energy terms we introduced. The next
step consists in coming up with more refined energies, possibly being themselves
shaped by a learning process, thus making full use of the deep learning poten-
tial. This combination would yield mathematically sound and well-characterized
segmentation outlines obtained from a learned combination of available image in-
formation. In the age of glory of deep neural networks, such a construction could
offer a pleasant compromise using the best of both worlds.
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