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The variety of bioimage data and their quality have dramati-
cally increased over the last decade. In parallel, the number 
of proposed deep learning (DL) models for their analysis 

grows by the day. Yet, the adequate reuse of published tools 
by practitioners without DL expertise still raises many practi-
cal questions. In this article, we explore four categories of chal-
lenges faced by researchers when using supervised DL models 
in bioimaging applications. We provide examples in which each 
challenge arises and review the consequences that inadequate 
decisions may have. We then outline good practices that can 
be implemented to address the challenges of each category in 
a scientifically sound way. We provide pointers to the resources 
that are already available or in active development to help in this 
endeavor and advocate for the development of further commu-
nity-driven standards. While primarily intended as a practical 
tutorial for life scientists, this article also aims at fostering dis-
cussions among method developers around the formulation of 
guidelines for the adequate deployment of DL, with the ultimate 
goal of accelerating the adoption of novel DL technologies in the 
biology community.

Introduction
The automation of acquisition pipelines and the development 
of new microscopy technologies that push the resolution limits 
in both time and space have dramatically increased the amount 
of bioimage data currently generated. Advanced analysis algo-
rithms now allow one to produce images of ever-better quality 
and enable a truly quantitative assessment of complex biologi-
cal structures and their interactions.

Although initially considered as a particular case of image 
processing and computer vision, bioimage analysis has grown 
over the past 10 years into an independent field of research 
populated by its own community of scientists. Bioimage-anal-
ysis problems offer unique challenges that call for dedicated 
scientific approaches and solutions, while still clearly benefit-
ing from research developments in computer vision. Predict-
ably, recent breakthroughs in that field and the rise of DL have 
inspired the development of powerful automated methods for 
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many of the classical problems of bioimage analysis, from clas-
sification to segmentation and image restoration.

Landmark developments in bioimaging
In 2015, the deep convolutional neural network (CNN) ResNet 
reached first place on the ImageNet classification leader-
board [1]. Because of its ability to accommodate hundreds to 
thousands of neuron layers and still train efficiently, ResNet 
became a reference model for classification tasks involving 
natural images. ResNet models are CNN encoders that have 
an overall size that depends on the size of each of the model 
layers and the number of layers considered. These models 
and their variants, such as DenseNet [2], were quickly ad-
opted by the bioimage-analysis community and led to break-
throughs in the automation of classification for challenging 
microscopy data sets [3].

The U-Net model, presented at the MIC-
CAI the same year as ResNet appeared, 
experienced an even bigger success [4]. 
Unlike ResNet, U-Net was tailored from 
the start to biomedical images and reached 
an astounding performance on segmen-
tation problems. U-Net is an encoder–
decoder CNN composed of a contracting 
(downsampling) and an expansive (upsam-
pling) path. One of the key strategies of 
the U-Net model is the use of skip con-
nections that incorporate the multiresolution aspect of visual 
features in images and integrate spatial information. As a 
result, a large number of feature maps are available in the 
decoder path, which allows information to be transferred 
efficiently. Although many other architectures were proposed 
in the first years of the DL era, U-Net established itself as 
the most efficient and versatile backbone for bioimage anal-
ysis. Its superior robustness inspired many variants and 
led to the first U.S. Food and Drug Administration (FDA)-
approved DL algorithm for digital pathology [5]. Six years 
after its introduction, U-Net remains one of the most com-
monly used CNN architectures in bioimage analysis, with 
more than 5,000 citations at the start of 2021.

Based on this landmark supervised deep neural network 
model, excellent solutions were then proposed for classical 
bioimaging problems, such as deconvolution and denoising 
[6], single-molecule localization microscopy [7], [8], seg-
mentation [9], and object detection [10], [11]. A key goal of 
these methods is to be generalist enough to guarantee good 
performance on a wide range of imaging modalities, such as 
fluorescence, differential interference contrast, phase-con-
trast, and bright-field microscopy, among others. All these 
methods rely on the U-Net architecture, demonstrating once 
more its robustness to the variety of visual appearances in 
the data and the diversity of bioimage-analysis problems 
being addressed. 

In [6], for instance, the model is trained on pairs of images 
acquired at several light intensities and signal-to-noise ratios, 
and it is able to restore high-quality images from data acquired 

in low-light conditions. In [9], a U-Net model generates seg-
mentation masks on a wide variety of images based on gradi-
ent predictions. This model also allows identifying individual 
objects in the image as star-convex polygons [10] and para-
metric spline curves [11]. In addition to these established tools, 
which work on a wide range of bioimages, numerous applica-
tion-specific DL-based methods have been and are still being 
developed. We orient readers interested in an overview of the 
state of the art to [12].

Deep learning in the reuse era
While research in DL is still progressing at a quick pace, a con-
sensus on neural network architectures has started to emerge 
for bioimaging applications. As such, the urgency to develop 
new methodologies is steadily being replaced by the need for 

bioimage analysts to gain proficiency in 
the appropriate use of existing DL models. 
Concretely, bioimage analysis is shifting 
from a setting in which biologists had to 
team up with computer scientists to develop 
new tools, to a paradigm in which life sci-
entists are able to choose the best option for 
their data from a catalog of available and 
ready-to-use neural network models.

This situation is reminiscent of the one 
involving classical image processing algo-
rithms in the early 1990s, for instance, in 

image segmentation. Back then, the few robust and generally 
applicable algorithms that stood out in the computer vision 
community, such as the watershed algorithm and active con-
tours, were adopted by life scientists, adapted, and repurposed 
for a myriad of specific applications. As this transition now 
operates within the DL era, practitioners must be instructed 
on how to use this new technology appropriately, and develop-
ers of novel methods need to agree on a set of guidelines for 
their users.

Because of the obvious timeliness and importance of the 
topic, many review papers on the use of DL in bioimaging 
have been published recently [12]–[14]. These works pres-
ent an overview of the state of the art in the subject, dis-
cuss major accomplishments and current limitations, review 
ongoing directions of research, and outline the next meth-
odological challenges. They do not, however, focus on pro-
viding comprehensive practical advice for nonexperts in DL 
technology. Yet, because the bioimage-analysis community 
has reached a critical mass of published works that present 
successful supervised DL solutions, we believe that users will 
gain most by understanding how to reuse and adapt these 
existing tools in a scientifically sound manner, instead of 
trying to reinvent the wheel.

Terminology and key concepts
In supervised DL, the classical workflow first involves the 
training of a randomly initialized network with a large amount 
of annotated ground-truth data [Figure 1(a)]. Then, the trained 
model can be used in inference mode to make predictions for 

“Although many
other architectures were 
proposed in the first 
years of the DL era, U-net 
established itself as the 
most efficient and  
versatile backbone for 
bioimage analysis.”
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new data on which it has not been trained and for which no 
ground-truth labels are available [Figure 1(b)]. The trained 
model can also be used as basis to obtain a model that is spe-
cific to a new related problem [Figure 1(c)].

In this article, we define pretrained models as bundles of 
neural network architectures, trained weights, and suitable 
hyperparameters. Throughout the manuscript, selecting a 
pretrained model therefore means selecting such a bundle 
for direct reuse in inference mode on one’s own data. Once 

again, note that we will not discuss the process of train-
ing neural network architectures from scratch and tuning 
hyperparameters.

Neural networks can be pretrained in a range of different 
manners. A classical strategy consists of pretraining on large 
natural image databases, such as ImageNet. As already men-
tioned, we will, however, focus on the reuse of models that have 
been initially trained on a bioimage data set to solve a specific 
bioimage-analysis problem and on the questions this raises.
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FIGURE 1. A typical supervised DL workflow for nuclei segmentation in microscopy images. (a) During training, the randomly initialized network 
learns to segment nuclei in a specific type of microscopy data (hematoxylin and eosin stain, outlined in orange) from a large annotated data set. 
(b) The trained network can then be used in inference mode to segment unseen images of the same type. (c) The weights of the same network can 
also be fine-tuned for the related task of segmenting nuclei in another type of image data (Hoechst fluorescent stain, depicted in green), relying 
on a smaller amount of representative annotated samples. (Microscopy images are samples of the BBBC038v1 data set; source: Broad Bioimage 
Benchmark Collection [15].)
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It is important to note that bioimage-analysis tasks may be 
related in multiple ways. They may, for instance, exploit data 
acquired with the same microscope or focus on the same 
type of biological objects. As we shall see, the nature of the 
relationship between the problem on which a DL model was 
initially trained and the new task at hand is crucial in under-
standing how the model will transfer to the new problem.

Large annotated bioimaging data sets are rarely available 
because of the sheer amount of human re
sources that manual annotation requires 
and because the curation is particularly chal-
lenging [16]. Hence, strategies that exploit 
pretrained models to alleviate the need for 
large amounts of annotations are particu-
larly relevant for biology. In particular, the 
approaches of transfer learning and fine-
tuning, which we introduce later on in the 
manuscript, allow one to make the most of small, high-quality, 
curated training sets.

Article Scope and organization 
This article is targeted to life scientists who are enthusiastic 
about supervised DL but are not machine learning research-
ers or engineers by background. In contrast to the previous-
ly mentioned published reviews, our article approaches the 
topic of DL in bioimaging from a practitioner’s perspective. 
We focus on the concrete questions users may ask them-
selves when attempting to reuse DL models to analyze their 
data and propose an overview of good practices they can fol-
low. More precisely, our focus is on the supervised learning 
setting, which consists of situations in which the network is 
trained from a labeled set of ground-truth examples. There 
is ongoing research around other learning paradigms, such 
as semisupervised, unsupervised, and reinforcement learn-
ing, but we choose not to cover them here because of their 
current lower adoption by end users in the life sciences. We 
thus concentrate on questions that arise from the reuse of 

available pretrained supervised models for direct inference 
rather than on the process of model building and training or 
the design of neural network architectures.

Adopting a tutorial tone, we aim to address both practi-
tioners without DL expertise (to give them concrete tips and 
pointers toward helpful resources) and method developers (to 
help them identify how to make their tools more accessible 
and reusable to life scientists). Eventually, our hope is that this 

article will help foster further discussions 
and exchanges between the engineering and 
biology communities. 

Challenges and risks for  
the practitioner
Life scientists who want to reuse pretrained 
DL models to analyze their own bioimage 
data sets will stumble upon a number of 

practical questions: which pretrained model to choose, how to 
appropriately reuse it (what is the range of applicability of the 
chosen pretrained model), and, ultimately, what is the valid-
ity of the results (can the model’s prediction be trusted). By 
understanding the complications that these different consid-
erations bring, users may also want to reconsider their prem-
ise and question whether DL is even really needed at first. To 
navigate these various aspects, we have divided the practical 
challenges that practitioners may face on an everyday basis 
into four main categories, as shown in Table 1: 1) the choice of 
pretrained models, 2) data set shift, 3) trust in results, and 4) 
overuse of DL models. Each category is further discussed in 
its individual section.

Choice of pretrained model
Numerous custom DL approaches has been proposed over re-
cent years to solve similar analysis tasks in bioimaging. Hence, 
the first challenge a practitioner is likely to face when wanting 
to reuse an existing pretrained model for his/her own data is 
to identify the most appropriate one. To start, end users need 
to identify a series of DL models that are appropriate for their 
specific applications. After thorough consideration of the 
available literature, code bases, and expert recommendations, 
the follow-up is then to choose the one model they should use 
among the many that could be identified.

This task is not straightforward in practice. In contrast to 
computer vision and medical imaging (see grand-challenge.
org), few problems in bioimaging have well-established bench-
mark data sets on which performance can be objectively 
ranked and comparatively assessed. Reconstruction of single-
molecule localization superresolution microscopy images 
(srm.epfl.ch), nuclei segmentation (bbbc.broadinstitute.org/
BBBC038), and cell tracking (celltrackingchallenge.net) are 
notable examples for which benchmarks exist. The bioimag-
ing community is poised to further expand with community-
compiled resources. When available, such benchmarks provide 
valuable indications on the relative performance of the differ-
ent approaches addressing a similar task as well as insights on 
their strengths and weaknesses.

Table 1. The key challenges and risks for the everyday user  
of DL in bioimage analysis.

Challenge Cause Example Risks 
Choice of 
pretrained 
model

Many different 
models to choose 
from for the same 
task 

Which model is best 
to segment individual 
cells in bright-field 
microscopy images? 

Inconsistent 
results 

Data set 
shift 

Difference in dis-
tributions and/or 
domains between 
training and infer-
ence 

Can I use this model 
on my data although 
they are slightly differ-
ent from the ones 
used for training? 

Performance 
degradation 
and hallucina-
tion of results

Trust in 
results 

Black-box nature 
of DL 

How much can I trust 
an accuracy of 98%? 

Overconfidence 
or unwarranted 
skepticism 

Overuse  
of DL 

DL preferred over 
equally performing 
classical  
alternatives 

Is DL the best tool for 
my particular problem? 

Unnecessary 
complication of 
the analysis  
pipeline 

Strategies that exploit 
pretrained models to 
alleviate the need for large 
amounts of annotations  
are particularly relevant  
for biology.
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Following good scientific practice, most methods are open-
ly available in nonproprietary format on version-control plat-
forms, such as GitHub (github.com) or Zenodo (zenodo.org). 
Unfortunately, the richness of the documentation and the train-
ing information deposited with these models varies dramati-
cally. At one end of the spectrum, users can 
access exemplar repositories that permit 
them to fully reproduce published results 
by providing information that is not neces-
sarily embedded in the code, such as execu-
tion environment or external dependencies, 
in the form of self-contained Docker imag-
es (www.docker.com). At the opposite end, 
users may access minimalist platforms hosting uncommented 
software with little to no information about its execution, prac-
tice data, or user guidance.

The repositories that host well-documented code and 
provide example pipelines, for instance, in the form of Jupy-
ter notebooks (jupyter.org), enable users to forge their own 
opinion through quick testing. However, seemingly prom-
ising methods that either 1) address problems for which 
there exist no community-accepted benchmark data sets or 
2) lack appropriate documentation to enable code reuse or 
practice data to reproduce published results pose a particularly 
difficult challenge to the end user. For example, a lack of 
details about the initial training strategy and the nature 
of the data used for training makes it especially difficult 
to evaluate a possible data set shift (see the section “Data 
Set Shift”). Another difficulty is that popular models often 
keep on being developed after publication. Practitioners 
must then be careful to select the appropriate version of the 
model, keeping in mind that it may have an impact on the 
model performance.

The adoption of a well-thought-out approach to navigate 
the choice of pretrained models is crucial. Indeed, the use of 
a pretrained model that is not adequately suited to the task 
at hand may have dire consequences on end results, ranging 
from poor performance to blatantly erroneous predictions, 
as we further discuss and exemplify in the section “Trust in 
Results.” While less problematic from a methodological per-
spective but no less vexing for the end user, different suitable 
models may generate different, possibly conflicting, predic-
tions. Such inconsistencies can be particularly daunting to 
untangle when produced by a collection of apparently reliable 
methods. This again raises questions about trust and inter-
pretability, also discussed in the section “Trust in Results.” 
To complicate things further, the adoption of a seemingly 
appropriate model—for instance, one that is designed for the 
same problem and image data—that was initially trained on 
an insufficient amount of data may also result in a subpar per-
formance.

Data set shift
Once one relevant pretrained model (or a set of pretrained 
models) has been identified, the next question revolves around 
the understanding of whether a direct reuse in inference mode 

is appropriate, which is closely tied to the generalization ca-
pability of the network. A key complication in bioimaging is 
that experiments are rarely standardized. They instead exhibit 
an extreme variability at all steps, from sample preparation to 
imaging modality and conditions, scales, and biological phe-

notypes of interest. Hence, the challenge for 
the practitioner lies in understanding the ex-
tent to which a model designed for a specific 
task (e.g., the segmentation of cells stained 
with a membrane marker) can be reused 
in the context of a seemingly identical but 
slightly different task (e.g., the segmentation 
of membrane-stained cells with a different 

marker). Unfortunately, even when the new data set on which 
inference is performed is very close to the one used for train-
ing, the performance of a DL model may degrade unpredict-
ably, from slightly worse-than-expected results to completely 
irrelevant ones.

The degradation of the model performance due to discrep-
ancies in the data set used for training and the one used for 
inference is commonly referred to as data set shift [18]. Data 
set shift is studied extensively in probabilistic modeling and 
can be characterized in various ways; we refer the interested 
reader to [19] for a comprehensive overview. In Figure 2, we 
provide an illustration of the three main categories of data set 
shifts, namely:

■■ the covariance shift, which reflects a discrepancy in the dis-
tributions of the input features seen at training and inference 
stages (e.g., if the resolution, sample preparation, or acqui-
sition parameters change between training and inference)

■■ the prior probability shift, which reflects a discrepancy in 
the distributions of the classes present at training and infer-
ence stages (e.g., if the class balance in the training data 
does not match that in the inference data)

■■ the concept shift, which reflects a discrepancy in the rela-
tionship between the input features and the network predic-
tion (e.g., if the network trained on images from a specific 
modality is used to predict the same objects imaged with a 
different modality).
Some types of data set shift can be more easily identified 

than others. For instance, a risk of concept shift can be directly 
identified whenever a pretrained model is used to handle image 
data that have been acquired in a different way than the ones on 
which the model was trained. On the other hand, covariate and 
prior probability shifts will often be more subtle and require a 
thorough investigation of the properties of the original training 
set (e.g., in terms of object appearances or class balance). For 
this reason, methods developers committed to open science 
should always strive to make the original training set available. 
On the user side, pretrained models that do not provide access 
to their original training set should be considered incomplete 
and hence avoided.

While a good understanding of the types and consequences 
of data set shifts is undeniably useful, transfer learning and 
fine-tuning offer concrete mitigation strategies that practi-
tioners can adopt. Subsequent questions revolve around the 

Pretrained models that do 
not provide access to their 
original training set should 
be considered incomplete 
and hence avoided.
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amount of data needed for transfer learning or fine-tuning and 
the required degree of similarity with the data used for train-
ing. We introduce these various concepts in more detail in the 
section “Transfer Learning and Fine-Tuning.”

Trust in results
Once a supervised model has been chosen and possible data 
set shifts accounted for, the next challenge is to assess the 
reliability of the resulting predictions. The very nature of DL 
models makes it difficult to determine the role each feature 
plays in the inference process, a phenomenon colloquially 
referred to as the “black-box effect.” DL 
methods typically offer fewer theoretical 
guarantees than classical algorithms, for 
instance, with regard to convergence to 
their solution. In some cases, inappropri-
ately used supervised DL models can even 
hallucinate artificial results, as exempli-
fied in Figure  3: an image restoration 
model trained on images of microtubules 
will be strongly biased to produce tube-
like structures, even when the input image contains blob-
like nuclear pore complexes. Concrete examples of ques-
tions that practitioners may ask themselves at this stage thus 
include to what extent they can trust the predictions of a 
model obtaining a high accuracy after fine-tuning; whether 
all automatically inferred results must be scrutinized and 
assessed manually; or what to do when the output of the 
model looks qualitatively good, but the mechanisms leading 
to it are not immediately interpretable.

All things being considered, adequately chosen supervised 
models that have been fine-tuned appropriately can efficient-
ly automate many bioimage-analysis tasks that are otherwise 
performed manually. They can also help reveal patterns 

in data that are too complex for the human eye to perceive. 
The biggest risks around trust in DL models therefore include 
both blind trust in results, leading to flawed conclusions, and 
overskepticism, leading to unnecessarily scrutinized results 
and possibly disregarded or downplayed findings. Hence, 
one’s ability to identify the factors that may impact the per-
formance of a pretrained model and the understanding of how 
they can be mitigated are crucial for a right balance between 
trust and questioning.

Beyond data set shift, performance may also be affected 
by confounders that are of no direct biological interest. For 

instance, a classifier may be able to suc-
cessfully distinguish between two differ-
ent biological conditions using background 
image content only, if the same background 
noise statistics happen to be shared among 
samples of the same type [21]. Although 
practitioners may rightfully find it difficult 
to identify sources of bias in DL predictions 
without having been trained as a machine 
learning expert, general principles and 

accessible resources can be exploited to start on the right track, 
as discussed in the section “Validation.”

Overuse of deep learning
Considering the popularity and all-purpose nature of DL so-
lutions, a last-but-not-least important aspect to consider is the 
overuse of DL models in situations where conceptually sim-
pler and computationally lighter traditional image processing 
or machine learning solutions would perform equally well. 
Although often arising only after the complications inher-
ent to the use of DL (discussed in the sections “Choice of 
Pretrained Model,” “Data Set Shift,” and “Trust in Results”) 
have become apparent, the question of whether DL is 

In the life sciences 
community, a model zoo 
specifically dedicated 
to pretrained models 
for bioimage analysis is 
currently being developed: 
the Bioimage Model Zoo.
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FIGURE 2. Causes of data set shift with illustrative examples. (a) A covariate shift happens when the distribution of features in the data used for training 
and inference differ. In our example, a network trained on a batch of images featuring exclusively round cells is used to segment another batch where the 
cells exhibit much more complicated shapes. (b) A prior probability shift is caused by a change in the class distributions between training and inference. In 
our example, a classifier trained on a balanced two-class problem is used to infer on an imbalanced data set. (c) A concept shift occurs when the relation-
ship between the input features and network output(s) changes between training and inference. In our example, a network trained on fluorescence light 
microscopy images is used to segment phase-contrast microscopy images of the same sample. (Image sources: [17], BBBC010, bbbc.broadinstitute.org/
BBBC010 and Cell Image Library:11831, www.cellimagelibrary.org.)
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FIGURE 3. Inference of pretrained models on appropriate and inappropriate input images. (a)–(f) Predictions of two models provided in ANNA-PALM  
(annapalm.pasteur.fr). (a) The “Tubulin” model was trained on images of a microtubule structure, and (b) the “NPC” model was trained on images of a 
nuclear pore complex. The application of these models to structures on which they were trained [(c) and (d)] and to different ones [(e) and (f)] reveals the 
strong bias of the model toward the specific type of structure encountered during training. (g)–(l) Predictions of two trained models, “Masson Trichrome 
MT3” and “Jones,” for virtual staining [20]. The models were used to virtually stain objects seen during training [(i) and (j)] and (k) different objects [(k) 
and (l)]. Incorrect outputs are highlighted with red circles. (m) Illustration of the dependency on object size in a U-Net-based segmentation model. The input 
image is a phase-contrast microscopy image of stem pancreatic cells. The output is a probability map that indicates how well the cells are detected at a given 
position. The quality of the results is strongly influenced by the image size and, more specifically, by how similar this size is to the size of the training data.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 11,2022 at 13:25:51 UTC from IEEE Xplore.  Restrictions apply. 



80 IEEE SIGNAL PROCESSING MAGAZINE   |   March 2022   |

actually needed should ideally always come first. For instance, a 
practitioner desiring to segment nuclei on DAPI-stained confo-
cal fluorescence microscopy images may start annotating their 
data set to generate ground truth for fine-tuning, without first 
checking whether simple automated thresholding, watershed, or 
a random-forest pixel classifier would suffice.

The use of DL when classical image processing solutions (or 
non-DL machine learning tools) would provide equally good 
results at little extra cost or effort has direct 
consequences. It may unnecessarily com-
plicate the analysis pipeline and incur many 
of the previously mentioned issues that 
could have been avoided otherwise.

DL does, however, provide efficient solu-
tions to challenging bioimage-analysis tasks, 
in part due to its impressive adaptability 
to the data. When relying on appropriate 
pretrained models, it also offers massive simplification over 
many handcrafted pipelines that depend on fine, manual param-
eter tuning. The identification of whether a considered prob-
lem requires DL entirely depends on its complexity, which 
is difficult to assess for researchers without advanced exper-
tise in image processing or computer vision. In spite of this, 
assessing whether DL is the most appropriate solution to the 
problem at hand should be the de facto first step of any bio-
image-analysis pipeline.

We summarize in Figure 4 the various challenges we dis-
cussed throughout this section. We also indicate at which step 
they should be asked on the user’s path from the initial bioim-
aging data set to the desired end results.

A guide of good practices
It would be illusive to pretend one can provide a one-size-
fits-all solution to any of the challenges flagged previously. 
However, a wealth of tools and strategies is available to help 
practitioners navigate the practical questions outlined in the 
preceding section, “Challenges and Risks for the Practitioner.” 
Here, we enunciate a set of good practices, summarized in a 

few essential points at the end of each section, that help one  
address the different categories of challenges. We list existing 
resources and identify possible future directions of efforts from 
the community to support the development of usage standards.

Resources to choose appropriate pretrained models
The computer-vision community addressed the challenge of 
centralizing the distribution of pretrained DL models through 

the development of model zoos (modelzoo.
co). Model zoos are websites that host a 
collection of curated code and pretrained 
models for a wide range of platforms and 
uses. By offering a clearly identifiable entry 
point to the practitioner, model zoos ensure 
that the basic required amount of informa-
tion and documentation will be available to 
guarantee reproducibility. Typically, model 

zoos allow users to backtrack the specific nature of the data set 
and the training strategy.

In the life sciences community, a model zoo specifically 
dedicated to pretrained models for bioimage analysis is cur-
rently being developed: the Bioimage Model Zoo (bioimage.
io). Led by a consortium of method developers, this commu-
nity-driven initiative aims at providing a central repository 
for published DL models for a large panel of bioimaging 
applications. The Bioimage Model Zoo is primarily targeted 
to end users and focuses on model interoperability and easy 
testing. It hosts fully documented pretrained models that 
include trained weights, a description of the model architec-
ture, example inputs and outputs, and a configuration speci-
fication file to allow at least one of the Bioimage Model Zoo’s 
consumer software types to load and run the model. At the 
time of writing, the consumer software includes ilastik (www.
ilastik.org), ZeroCostDL4Mic (github.com/HenriquesLab/
ZeroCostDL4Mic), ImJoy (imjoy.io), ImageJ/Fiji (fiji.sc), and 
DeepImageJ (deepimagej.github.io/deepimagej). While still 
in its early days, the Bioimage Model Zoo is evolving quickly 
and is poised to become a reference resource for the search of 
pretrained models dedicated to bioimage analysis. It therefore 
is a good entry point for practitioners in their quest for models 
that can be tested right away in their favorite software.

Once a set of pretrained models has been identified, end 
users without programming expertise have several options to 
compare the performance of the models on their own data. 
The DeepImageJ plug-in offers a unifying interface to easily 
exploit pretrained models that solve various types of bioimage-
analysis problems in inference mode (available in the Bioim-
age Model Zoo for instance) through the ImageJ platform. In 
the same vein, the Fiji plug-in CSBDeep (csbdeep.bioimage 
computing.com) and the ZeroCostDL4Mic toolbox propose to 
simplify the training and transfer learning steps of most popu-
lar models for image segmentation, restoration, and object 
detection. ZeroCostDL4Mic provides user-friendly Python 
notebooks that package DL models for bioimage analysis into 
an entirely human-readable pipeline. While not being a model 
zoo in itself, ZeroCostDL4Mic offers an enticing platform in 

Image
Data Set

Do I need
deep learning?

Which Pretrained 
model do I choose?

Can I trust
my results?

Should I retrain
the model?

Quantitative Readout

FIGURE 4. A recap of the questions that arise, in their ideal chronological 
order, when considering the use of supervised DL to solve a bioimage-
analysis problem.

Community efforts to 
produce large-scale publicly 
available annotated datasets 
facilitate the practitioners’ 
choice among the wealth of 
available solutions.
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which new models are likely to be quickly incorporated upon 
their release. Finally, web apps, such as ML-SIM (ml-sim.com) 
and CDeep3M-Preview (cdeep3m.crbs.ucsd.edu/cdeep3m) 
also provide an easy way to test a variety of DL models for spe-
cific bioimage-analysis tasks, namely reconstruction of structured 
illumination microscopy images and large-scale segmentation 
of large electron and light microscopy data sets. For readers 
specifically interested in bioimage segmentation, the recent 
review [22] provides an exhaustive list of open source DL soft-
ware dedicated to that problem.

All of the aforementioned tools are useful to quickly test 
and explore the suitability of different DL models. To quantita-
tively assess and compare the performance of candidate mod-
els on their data, users can 1) carefully annotate a small set of 
images that are representative of the rest of the data set (using 
the tools described in the section “Transfer Learning and 
Fine-Tuning”) and 2) monitor the level of agreement between 
predictions from each DL model and their 
high-quality, expert-generated ground-truth 
annotations. It is worth keeping in mind that 
small differences in performance may not 
be statistically meaningful and that choos-
ing the best-performing model may there-
fore not always be sound. Ideally, the choice 
of the model should be driven by statistics, 
relying on multiple comparison tests [23]. 
The full process of choosing a pretrained model, along with 
the many steps involved, is illustrated in Figure 5.

In a longer-term perspective, the existence of a model zoo dedi-
cated to bioimage analysis has many positive outlooks for life 
scientists beyond a simplification of the selection process. Such a 
platform could facilitate the establishment of a community-driv-
en rating of reliable models, ensure the appropriate versioning of 
the deposited models, and set guidelines to enforce the proper 
documentation of the resources made available by the zoo. In 
parallel, community efforts to produce large-scale publicly avail-
able annotated data sets for a wide variety of bioimage-analysis 
problem, as pioneered by the Broad Bioimage Benchmark Col-
lection (bbbc.broadinstitute.org/image_sets), and benchmarking 
platforms, such as BIAflows (biaflows.neubias.org), can provide 
essential information that further facilitates the practitioners’ 
choice among the wealth of available solutions.

Transfer learning and fine-tuning
To assess the risk of data set shift in practice, the starting point 
is to evaluate the differences between the data set used for 
training the DL model and the new one on which it is to be 
deployed (see also the section “Data Set Shift”). If discrepan-
cies between the two problems are identified, the pretrained 
model should not be directly used for inference but, instead, 
should be adapted to the new problem at hand through transfer 
learning and fine-tuning. These two related strategies, some-
times used interchangeably, aim to exploit what a DL model 
previously learned from a first problem to facilitate learning 
in a new, similar problem. In both approaches, the use of a 
small amount of training examples is sufficient as the model 
is not retrained from scratch, hence bypassing the discourag-
ingly high data needs of DL. In the overwhelming majority of 
cases, good practice dictates that pretrained models should be 
adapted before reuse; as a first resource, we orient the reader 

interested in concrete examples to [24].
Classically, transfer learning in a pre-

trained DL model is carried out by “freez-
ing” the weights of some of the layers (e.g., 
the encoder path of a U-Net) and retraining 
the remaining layers (e.g., the decoder path 
of a U-Net) with a few ground-truth anno-
tations from the new data to be analyzed. 
Fine-tuning, in contrast, generally con-

sists in retraining the entire model using the newly generated 
training set. The recent review [25] discusses these concepts 
in more technical terms, touching upon the related question 
of domain adaptation, and is another excellent entry point for 
readers interested in the topic.

Both transfer learning and fine-tuning require the availabil-
ity of a small, high-quality training set that reflects the nature 
of the new problem at hand. To prepare such a data set, a first 
good rule of thumb is to identify any confounding factor or 
possible source of batch effect that may affect the statistical 
analysis of the biological data. Batch effects are changes in data 
that are due to factors with no link to the biological problem of 
interest. They can have many sources, from discrepancies in 
the acquisition protocols across labs (e.g., different microscopy 
setups) to subtle changes in the acquisition conditions dur-
ing a single experiment (e.g., changes in the brightness of the 
microscope lamp). Once such effects have been accounted for, 
the curated data set can be used to adapt the pretrained model 
to the new problem by transfer learning and/or fine-tuning, 
thereby mitigating the risk of data set shift. Note that trans-
fer learning strategies have also been proposed for situations 
where no ground truth can be produced for the new data set. 
While this “unsupervised transfer learning” paradigm, techni-
cally referred to as transductive learning, is beyond the scope 
of this article, we encourage interested readers to explore the 
in-depth review [26].

Various open source tools, such as YaPiC (yapic.github.io/
yapic), ImJoy, and DeepCell (www.deepcell.org) enable the 
fine-tuning of a pretrained model given a set of problem-specific 
annotations. At the time of writing, many other general-purpose 

The recommended good practice is as follows:

1)	 Search adequate pretrained models for your task in 
model zoos or in the recent literature.

2)	 Pay close attention to the quality of the associated 
documentation and training information in view of a 
possible fine-tuning process (see the section “Transfer 
Learning and Fine-Tuning”).

3)	 Relying on a small, high-quality set of ground-truth 
annotations, carry out a scout quantitative compari-
son of the performance of the candidate models on 
your own data.

“Through the exploration 
of basic solutions available 
at a very low entry cost, 
users can develop a  
sense of the difficulty  
of their problem.”
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image-analysis softwares have announced that this func-
tionality would soon be supported. Alternatively, a handful 
of all-purpose models trained on a large variety of images, 
such as CellPose (www.cellpose.org) and NucleAlzer (www. 
nucleaizer.org), can be reasonably used without fine-tuning. 
The reason behind this exception lies in the fact that these two 
models are regularly retrained by their developers on user-
submitted data. However, care should be taken to restrict their 
use to the problem and type of data (in terms of, for instance, 
imaging modality and objects of interests) 
these models have encountered during their 
extensive training.

Resources that facilitate the annotation 
process are also essential to enable the wider 
use of transfer learning and fine-tuning. 
Solutions currently range from basic anno-
tation tools, as found in ImageJ/Fiji and in 
the napari platform (github.com/napari/
napari), to classical machine learning, as provided through the 
ilastik software. The advent of powerful annotation tools and 
all-purpose and user-friendly interfaces that make the transfer 
learning process accessible to practitioners will be key to the 
democratization of the practice. The combination of these two 
resources will also bring new insights on the impact that the 
quality and the amount of problem-specific annotations have 
on the transfer learning process and, ultimately, on the perfor-
mance of the DL model.

Validation
The question of trust in the results produced by DL models is in 
general multifaceted and goes far beyond the scope of this ar-
ticle. In particular, questions related to the robustness and sta-
bility of supervised deep neural networks are being actively in-
vestigated in artificial intelligence research. For the end users, 
reliable ways to investigate and assess the validity of their su-
pervised models include an adequate cross-validation strategy,  
the monitoring of loss curves, and the reporting of standard 
metrics. Recent tutorials, such as [27], offer a good introduc-
tion to the key technical concepts required for the design of 
a sound validation procedure. In addition, end users with-
out DL or image-analysis expertise can reach out to experts 
and collect advice in the online forum forum.image.sc or in 
user/developer workshops, such as those provided in the I2K 
conference series (imagej.net/Conference). One avenue to 

strengthen these practices includes the continuous expansion 
of the interdisciplinary platform image.sc in its mission to 
bring together the broader community of computer scientists, 
software developers, and end users. In addition, many institu-
tions regularly organize internal events, such as hackathons 
or “consulting hours,” to guide users through the applica-
tion of DL in bioimaging. Dedicated recurring international 
meetings could also help further consolidate and facilitate 
interdisciplinary exchanges.

Several ongoing efforts aim at address-
ing the problem of explainability of DL 
models [28]. Explainable DL models, 
such as xDNN [29], and visual analytic 
frameworks, such as explAIner [30], aspire 
to facilitate the in-depth monitoring and 
investigation of what models are learning 
to increase their transparency and allow 
the identification of confounders and 

possible batch effects. Developed primarily for computer 
vision, these methods have yet to be adapted to bioimag-
ing problems.

Start simple
While fully acknowledging the many successes of DL in 
bioimaging, it remains sound practice to only progressively 
increase complexity when designing a bioimage-analysis 
pipeline. Concretely, this implies starting from simple, classi-
cal algorithms, and not necessarily with the latest DL model. 
Many GUI-based platforms allow for a quick test of classical 
image-analysis methods and non-DL machine learning strat-
egies, including ImageJ/Fiji (fiji.sc), Icy (icy.bioimageanalysis.
org), ilastik (www.ilastik.org), Weka (www.cs.waikato.ac.nz/
ml/weka), CellProfiler (cellprofiler.org), and QuPath (qupath.
github.io). These resources either maintain a collection of 
classical algorithms over the course of their different releases 
or rely on external contributions in the form of plug-ins. All 
of them are open source and targeted at users with little to 
no expertise in image analysis, making them a particularly 
well-suited entry point for researchers wanting to analyze 
their own data.

The recommended good practice is as follows:

1)	 Establish a cross-validation procedure, monitor loss 
curves, and report standard metrics.

2)	 Get the predictions of your model reviewed by ex-
perts in the field.

3)	 Ask for feedback on your validation strategy on in-
terdisciplinary online platforms (e.g., image.sc), in 
user/developer workshops, or in dedicated initia-
tives within your institution.

4)	 Publish your code and your results in a fully open 
manner to support reuse.

5)	 Rate and give feedback on the pretrained model you 
used in the Bioimage Model Zoo.

The recommended good practice is as follows:

1)	 Identify possible confounding factors in your data 
set.

2)	 Design a small, high-quality data set that reflects the 
nature of your problem. If possible, exploit classical 
image processing and classical/shallow machine 
learning tools to facilitate the annotation process.

3)	 Fine-tune your pretrained model with this curated 
data set.

Some members adopted 
deep learning immediately, 
while others swiftly rejected 
its use on the basis of its 
“black-box” nature and 
limited explainability.
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Through the exploration of basic solutions made available 
at a very low entry cost (e.g., automated thresholding for seg-
mentation), users can develop a sense of the difficulty of their 
problem and explore the many available solutions in a pro-
gressive manner. Such a trial-and-error approach is no waste 
of time but instead provides crucial hints at the particularities 
of one’s problem at hand. Furthermore, assessing and under-
standing the quality of the results obtained with classical 
methods provides clues on the complexity of the considered 
image-analysis problem, which can help users be on the watch 
when moving on to supervised DL models for which the pre-
cise formulation of the desired outcome is crucial to generate 
ground-truth data.

The benefit of this “starting simple” approach is thus to opt 
for a DL-based approach only when the right conditions are 
met: 1) the challenges of the considered problem have been 
well understood, 2) the shortcomings of classical approach-
es have been clearly identified, 3) an appropriate pretrained 
model has been isolated, and 4) a robust validation strategy has 
been devised. As such, it helps one to evaluate where it is most 
appropriate to invest efforts for solving the problem at hand, 
either in the tuning of classical algorithms or in the generation 
of high-quality annotated data sets.

The community of bioimage analysts is providing invalu-
able training, documentation, and assistance with classical 

image-analysis tools through initiatives such as the Network of 
European Bioimage Analysts (eubias.org/NEUBIAS) and the 
Center for Open Bioimage Analysis (openbioimageanalysis. 
org/training). The well-established trend toward the develop-
ment of user-friendly solutions for bioimage analysis further 
consolidates this positive perspective, giving life scientists 
precious tools to develop interdisciplinary technical exper-
tise. We visually recapitulate the main resources introduced 
in this section in Figure 6. Additionally, we provide the full 
list of every tool and method mentioned in the article in our 
supplementary downloadable material (available at https://
doi.org/10.1109/MSP.2021.3123589) along with their com-
panion references and websites when applicable. 

Model Choice

Fine Tuning

Image Data Set
Quantitative Readout

Starting Simple

Validation

I2K
Conferences

ilastik

Fiji ImageJ

Icy

Weka

QuPath

CellProfiler

Bioimage.io

deepImageJ

ZeroCostDL4Mic

image.sc

ImJoy

Loss Monitoring

FIGURE 6. A recap of the main resources for each step of a bioimage-analysis path with pretrained supervised DL models, grouped according to the best 
practice they help support. References and links to the tools listed on the figure are provided in the text. The selection appearing on the figure is not meant 
to be representative of all existing resources but, instead, lists the most general and widely used ones. (Source of the Python logo: Python Foundation.) 

The recommended good practice is as follows:

1)	 Start by exploring classical image analysis and non-
DL machine learning solutions that have been exten-
sively validated.

2)	 When classical approaches do not yield satisfying 
results, identify possible causes (e.g., complexity of 
the data, sensitivity to the algorithm’s input param-
eters) and keep them in mind when moving on to 
more sophisticated DL methods.
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Open questions and outlook
Many exciting resources are currently being developed by the 
bioimaging community to facilitate the adoption and reuse 
of supervised DL models in a scientifically rigorous manner. 
However, there remain several facets of the DL machinery that 
can strongly impact the everyday use of pretrained models and 
yet cannot be easily explored by end users at the time of writ-
ing this article. For instance, the development of a user-friendly 
validation and explainability platform would without a doubt 
significantly contribute to strengthen the trust in DL-based ap-
proaches by allowing end users to safely exploit them at their 
full potential.

A question that is being actively investigated in DL 
research is that of the robustness of the models, particularly 
in the context of adversarial attacks. Adversarial attacks are 
visually imperceptible but precisely structured perturbations 
in the input image that radically throw off the performance 
of a model. They ensue from the very high dimensionality 
of the spaces on which DL models are operating, of which 
only a very small fraction is “seen” during training. In such 
high-dimensional spaces, even a minor perturbation can suf-
fice to let the network reach a part of the space it has never 
seen before and produce unexpected outputs. In classifica-
tion tasks, for instance, changes as small as the removal of a 
small patch from the input image have been shown to lead to 
entirely wrong predictions that nevertheless yield extremely 
high confidence scores.

The characterization of the extent to which a network 
can be subject to adversarial attacks and the type of input 
perturbations that produce such effects is crucial for bio-
imaging tasks. Even though a DL model designed to ana-
lyze microscopy data is admittedly less at risk of being 
voluntarily attacked by human-designed sets of perturbed 
inputs, it is nevertheless very likely to encounter unex-
pected real-world perturbations in the data it will process. 
To defend DL models against such “natural” adversarial 
attacks, one strategy consists in the inclusion of all of the 
relevant perturbations in the training set. Unfortunately, 
the identification of all possible sources of variability 
is extremely challenging, if not impossible. Hence, the 
development of user-friendly frameworks that allow for 
the evaluation of the robustness of models and facilitate 
the design of defense strategies is an urgent need for the 
bioimaging community.

On another front, an exciting perspective of modern biol-
ogy is the possibility to combine the information from visual 
(image-based) and omics data. The incorporation of these 
many quantitative readouts through multimodal DL models 
is attracting a lot of attention. As research progresses in this 
direction, new reference architectures and training strate-
gies for the processing of multimodal data sets are likely to 
emerge. Yet, the use of these advanced DL models will come 
with challenges similar to those discussed in the section 
“Challenges and Risks for the Practitioner,” possibly aggra-
vated by the deeper complexity of the problem. The establish-
ment of good practices for the safe reuse of pretrained models 

may thus have an even-stronger importance in the coming 
multimodal era.

Time and again, the bioimage-analysis community has 
demonstrated its extraordinary ability to rapidly develop tools 
that are tailored to the needs and specificity of its research 
field. We believe that the trend is bound to continue and that 
reliable open source resources helping users to navigate the 
challenges they encounter will emerge in the coming years. 
Equipped with these user-friendly platforms and a clear set of 
community-driven best practices, we are confident that prac-
titioners will be well armed to exploit the full potential of DL 
methods in a safe way.

Concluding remarks
The past decade has seen the development of numerous 
supervised DL models for tasks in bioimage analysis. Fol-
lowing open-science principles, many of these pretrained 
models are freely available for reuse. To fully exploit their 
potential in a scientifically sound manner, efforts are re-
quired at the practitioner level (to use pretrained models in 
an informed way, understand their limitations, and interpret 
results appropriately) and at the community level (to share 
experiences, create a culture of best practices, and increase 
confidence in DL-based predictions). Throughout this man-
uscript, we have outlined several questions and challenges 
that practitioners are likely to encounter in their use of DL 
models. We have reviewed concrete examples of strategies 
and provided selected pointers to open source resources that 
are generic enough to be relevant in many different types of 
bioimage-analysis problems, from image restoration to clas-
sification and segmentation.

In its early days, DL has been polarizing within the bio-
imaging community. Some members adopted it immediately, 
while others swiftly rejected its use on the basis of its “black-
box” nature and limited explainability. By proposing a con-
crete set of good practices that generally apply to the use of DL 
in a range of bioimage-analysis problems, our hope is twofold: 
to reassure skeptics and provide them with a strategy that min-
imizes the risks when experimenting with DL, and to equip 
long-time DL enthusiasts with additional safeguards on their 
exploratory journey.
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