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1. INTRODUCTION

This chapter is meant as an introduction to the four papers on splines and wavelets that are
reprinted here [P1-P4]. We give a general overview the subject, highlighting some of the main uses of
splines (and wavelets) in biomedical imaging. We also comment on the appropriateness of these
techniques in this particular context.

Both types of representations are useful when one wishes to consider image data as a continuum
rather than a discrete array of pixels. Such a continuous modeling of the data is often required in
medical imaging. Interpolation, in particular, plays a crucial role at various stages of processing [18,
24]. For instance, it is present—explicitly or not—for tomographic reconstruction, irrespective of the
type of algorithm used (filtered backprojection, inverse Fourier or iterative reconstruction). Another
important area is medical image visualization; this involves simple 2D operations such as image
zooming, panning, rotation, or 3D manipulations, such as reslicing or maximum intensity projection
[21], which are often used by radiologists. Interpolation models are also required for performing
various types of image registrations [8, 33]; these include intra-modal registration for rigid-body
motion compensation [P3], inter-modal registration of CT, PET and MR data sets of a same subject
[10, 25], as well as elastic matching for stereotaxic normalization or distortion correction. Considering
an image as a continuously–defined function is often desirable for feature extraction, in particular,
contour detection. Likewise, wavelets have been found to be well-suited for multi-scale processing,
noise filtration of medical images [36], statistical data analysis (fMRI and PET) [31], and feature
extraction (e.g., texture).

Almost anyone involved with medical imaging has been using splines, knowingly or nor: the most
commonly-used interpolation algorithm—bilinear interpolation—is equivalent to fitting the image with
a spline of degree 1. Splines, however, start revealing their true power as one moves to higher degrees
for they provide the best cost-performance tradeoff [24]. Since quality is a major concern with medical
images, it therefore makes good sense to use them in applications.

Even though splines and wavelets are often treated as separate topics, they are closely related, as
will be shown here. We will use a progressive approach to explain the important ideas at a general
level, without too many details. Our starting point will be the spline interpolation problem which is
discussed in Section 2. Next, we will consider the possibility of coarsening the spline grid, which
leads to the powerful idea of multiresolution analysis explained in Section 3. Finally in Section 4, we
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will uncover the wavelets which provide a non-redundant decomposition of an image across scale. We
will also emphasize the rather special role of splines in wavelet theory and applications.

2. SPLINE INTERPOLATION

A polynomial spline of degree n  is a piecewise polynomial function of degree n with pieces that are
patched together such as to guarantee the continuity of the function and of its derivatives up to order n-
1. Because of this latter smoothness constraint, a spline has only one degree of freedom per
polynomial segment (cf. B-spline representation); this is much less than the (n+1) coefficients that are
required to represent an unconstrained polynomial of degree n. The price to pay, of course, is that the
model fitting process is not local. An additional ingredient that is essential for efficient processing is
that the structure of the model be regular; this is the case with the uniform splines for which the knot
are equally spaced.

Schoenberg, who invented splines, also proved that any uniform spline can be represented
unambiguously in terms of a B-spline expansion, which uses shifted B-spline basis functions [20].
This B-spline representation turns out to be most convenient for performing signal and image
processing—for a recent overview of the subject, see [27]. The leading idea behind B-spline
processing [P1-P2] is that the fitting process (as well as many other spline operations) can be
accomplished most efficiently by digital filtering without any need for matrix manipulations.

When working with multi-dimensional data sets like images or volumes, the underlying spline
model is usually chosen to be separable. Specifically, one represents the p-dimensional spline function

  s(x), x = (x1,L,xp ) ∈Rp , by the expansion

s(x) = c(k)
k∈Z p

∑ ϕ(x − k), (1)

where the c(k)’s are the so-called B-spline coefficients. The basis functions in (1) are the integer shifts
of the separable B-spline ϕ(x) , which is a tensor product of univariate B-splines of degree n:

  ϕ(x) =β n (x1)Lβn (xp ). (2)

The univariate B-splines are obtained from the (n+1)-fold convolution of the box function (cf. (2.9)
and (2.6) in [P1]). The most important fact about (1) is that there is exactly one basis function and one
coefficient per grid point or pixel location; these are typically stored in a floating point image array.
What makes this model efficient computationally is that the basis functions are short and separable.

Given some multidimensional image array f (i), i ∈Z p , the basic interpolation problem is to
determine the coefficients c(k) in (1) such that the spline s(x) fits the pixel values exactly:
s(x) x= i = f (i), i ∈Z p . Imposing this constraint and re-sampling (1) at the integers yields

f (i) = c(k)
k∈Z p

∑ ϕ( i − k), (3)
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Fig. 1: Cost-performance comparison of various image interpolation algorithm. The experiment involves
the application to an image of 15 successive rotation of 24 degrees each.

which has the form of a discrete convolution. Thus, one can determine the c(k)’s by deconvolving this
equation, which is the key idea behind the algorithms described in [P1-P2]. Since the basis functions
are chosen to be separable, the deconvolution process is performed in a separable fashion by
successive one-dimensional filtering along the various dimensions of the data. The so-called direct
spline filter is implemented recursively as described in [P2].

One remarkable property of the interpolation model (1) is that the underlying interpolator can have
infinite support even though it is implemented using finite B-spline basis functions. This is possible
only because the c(k)’s in (1) are different from the initial pixel values f (k). Thanks to the prefiltering
step, the interpolation model is not strictly local anymore for n ≥ 2 , which is one of the reasons why
spline interpolators tend to perform better than the conventional techniques that use short kernel
interpolating functions. Other more profound reasons for their better performance are found by looking
at their approximation theoretic properties [6, 7, 32].

The graph in Fig. 1 shows the results of a cost performance comparison of some commonly used
interpolators in medical imaging. We compared the following algorithms: (a) nearest neighbor
interpolation (spline of degree 0), (b) bilinear interpolation (spline de degree 1), (c) Dodgson’s
quadratic interpolator [12], (d) several versions of Keys’ cubic interpolator [13]— often considered to
be the state-of-the art method in the field [18], (e) Shaum’s cubic Lagrange interpolator [19], (f)
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windowed sinc interpolation using a Hamming window, and (g) higher-order spline polynomial
interpolation using the technique described in [P1-P2]. The experiment, which was designed to
magnify distortions, consisted in applying a succession of 15 rotations to some test image. The plot in
Fig. 1 displays the final signal-to-noise ratio versus the total CPU time. It is clear from this comparison
that splines give the highest quality results and that their cost-benefit ratio is quite favorable. More
details on this comparison can be found in [24]. The superiority of splines for interpolation has also
been confirmed by other researchers [17, 16].

As a motivation for further reading on splines, we end this section with a listing of their most
attractive properties:

• One can always obtain a continuous representation of a discrete signal by fitting it with a spline in
one or more dimensions. The fit may be exact (interpolation) or approximate (least-squares or
smoothing splines).  Spline fits are usually preferable to other forms of representations (e.g.,
Lagrange polynomial interpolation) because they have a lesser tendency to oscillate (minimum
curvature property) [1].

• The primary reason for working with the B-spline representation is that the B-splines are compactly
supported.  They are the shortest functions with an order of approximation L=n+1 [5].  This short
support property is a key consideration for computational efficiency. Their simple analytical form
also greatly facilitates manipulations [P1-P2].

• Splines are smooth and well-behaved functions (piecewise polynomials).  Splines of degree n are
(n-1) continuously differentiable.  As a result, splines have excellent approximation properties.
Precise convergence rates and error estimates are available [6].

• The family of polynomial splines provides design flexibility.  By increasing the degree n, we can
progressively switch from the simplest piecewise constant (n=0) and piecewise linear (n=1)
representations to the other extreme, which corresponds to a bandlimited signal model (n → +∞ )
[3].

3. MULTIRESOLUTION

Other attractive reasons for working with splines are their multiresolution properties. In the context of
multi-scale processing, it is advantageous to consider a series of fine-to-coarse spline approximations
of the image. The corresponding spline model at resolution h = 2i  is

sh (x) = ch(k)
k∈Z p

∑ ϕ(x / h − k). (4)

It has essentially the same form as (1), except that the B-spline basis functions are now enlarged by a
factor of h and spaced accordingly. This situation is illustrated in Fig. 2.
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Fig.2: Basis functions for the linear splines at resolutions h = 20 and h = 21 .

Clearly, for h > 1, the model (4) can no longer be exact; however, it can be specified such that the
quadratic error with the initial image is minimized.

Fig. 3: Example of a cubic spline image pyramid. Each level is represented by its sample values at the grid
point; these are in one-to-one correspondence with the B-spline coefficients.

This type of multiresolution approximation leads to image pyramids. These are typically
constructed iteratively by successive reduction by a factor of two in each direction (cf. Fig. 3). The
“reduce” operator is obtained by prefiltering the image and re-sampling thereafter—the design of the
optimal prefilter is considered in [P1-P2].

Image pyramids are very useful tools for image processing. Their primary application is multi-scale
processing where one typically starts by solving a coarse version of the initial problem using reduced
size arrays, and then progressively refines the solution as one moves to finer resolutions. This always
results in tremendous acceleration of the algorithm because most iterations are performed using very
small image copies. Often this also improves robustness because of the smoothing effect of the
pyramid which reduces the likelihood of getting trapped in local optima.

Image registration is a good example where this multiresolution strategy is advantageous. A
complete description and evaluation of such an algorithm is given in [P3]. The method can handle both
rigid-body and affine transformations and it takes advantage of the spline model at all levels. Thanks to
the consistent design and to the use of a higher-order interpolation model (cubic splines), it is among
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the most precise alignment techniques available and yet fast enough to be competitive. This algorithm
has been applied to the registration of a variety of biomedical images in 2D and 3D. These include
high-resolution electron micrographs for correlation averaging, and medical images such as PET,
SPECT, CT, and MRI. It is also well suited for motion compensation in image sequences of the retina
(fundus camera) or fMRI data.

4. WAVELETS

The connection between multiresolution analysis and wavelets can be made by considering the
error images (or residues) in a dyadic image pyramid (cf. Fig. 4a)—“dyadic” means that, at each step,
the size of the image is reduced by a factor of two in each dimension. Since the lower resolution
approximation was obtained by projecting the image onto some lower resolution subspace, the residual
information has less degrees of freedom than the number of displayed error pixels. It is therefore
possible to represent these residues in a non-redundant way using wavelet basis functions.

To simplify the discussion, we consider a one-dimensional signal s
2 i−1 (x) at scale h = 2i −1 , as

specified by (4) with p = 1, and its approximation s
2 i (x) at the next coarser scale h = 2i . The

approximation error can thus be written as

s
2 i−1 (x) − s

2 i (x) = di(k)ψ i ,k(x)
k ∈Z
∑ , (5)

where ψ i,k (x) = 2−i /2 ψ(x / 2 i − k) are the wavelet basis functions at the resolution i ; they are obtained
by translating a dilated version (by a factor 2 i) of a basic wavelet template ψ(x). To illustrate the
concept, we show in Fig. 4b the wavelet coefficients d1  (here, i =1) of the error image in Fig. 4a.
Note that, in 2D, the wavelet coefficients are organized in three quadrants corresponding to the tensor
product wavelets ϕ(x)ψ(y), ψ(x)ϕ(y) and ψ(x)ψ(y), respectively, with ϕ  as in (4). In this way, we
have obtained a one-to-one decomposition of the image into the sum of its lower resolution
approximation plus the residual information coded by the wavelet coefficients. This decomposition
process can be iterated on the lower resolution approximation of the image to yield a multi-level
wavelet decomposition, as exemplified in Fig. 4c.

Similarly, one obtains a full wavelet decomposition of an arbitrary function f (x)  by carrying out
the decomposition over all scales. In one dimension, the full wavelet expansion of f  reads

f (x) = di(k)ψ i,k (x)
k ∈Z
∑

i∈Z
∑ ; (6)

it involves an additional summation over scales from h → 0 ( i =−∞) to h → +∞  ( i =+∞ ).
Mathematically, the wavelet functions ψ i,k{ }

i ∈Z ,k ∈Z
 form a basis of L2  (the space of square-integrable

functions), which also means that the wavelet representation is one-to-one. This can also be seen with
the wavelet decomposition in Fig. 4c; it has as many coefficients as there are pixels in the image in Fig.
4a and is fully reversible. Usually, the wavelet transform will exhibit many more zero (or small
coefficient) values as the original pixel representation of the image. This can be used advantageously
for image coding [22], as well as for threshold-based noise reduction [35].
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Fig. 4: From pyramids to wavelets. (a) The initial image is decomposed into its lower resolution
approximation plus a residual. (b) Instead of the pixel-based representation of the residual, it is more
advantageous to use a non-redundant representation in terms of wavelet basis functions—in 2D, there are 3
tensor-product wavelets, each corresponding to one quadrant. (c) The process may be iterated to yield a
multi-level wavelet decomposition.

The choice of the wavelet in (5) (or (6)) is obviously quite constrained, even though the solution is
not unique. In the case of polynomial splines, the wavelets, which are splines as well, have been
characterized explicitly [29]. The most prominent examples are the Battle-Lemarié wavelets [4, 14],
which are orthogonal, and the compactly supported B-spline wavelets [9, 28]—the wavelet analogs of
the classical B-splines.

There are many applications of wavelets in biomedical imaging, most of which are reviewed in
[P4]. The primary ones are medical image compression, tomographic reconstruction, image
enhancement of mammograms, noise reduction in a variety of medical images including MRI, and the
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statistical analysis of functional images of the brain (PET and fMRI). Some detailed algorithm
descriptions can be found in [2].

Various types and brands of wavelets have been described in the literature [11, 23, 34, 15], many
of which are not splines. It is important to note, however, that each wavelet contains a spline
convolution factor (associated with the so-called regularity factor) which is fully responsible for the
more involved mathematical properties of wavelets (vanishing moments, order of approximation, and
regularity). This is the reason why splines play a very special role in wavelet theory [23]. Moreover,
spline wavelets have many features that are particularly relevant and desirable for medical imaging [26]
and that make them stand apart from other the wavelets available. Their most important properties are:

• Closed-form representation. This is a rather unique property; all other wavelet bases are defined
indirectly through an infinite recursion.

• Simplicity of manipulation. This is especially true for mathematical operations such as
differentiation.

• Symmetry. Symmetry (resp. anti-symmetry) is crucial for feature detection; without it, the zero-
crossing (resp. maximum) locations are shifted with respect to the corresponding image feature.

• Shortest and most regular scaling function of order L . The order and degree of differentiability
(regularity) of the basis functions are key mathematical parameters. Having the shortest functions
reduces the amount of computation.

• m-scale relation. B-splines satisfy a two scales relation for any integer m, and not just for powers
of two as is usually the case in wavelet theory. This turns out to be advantageous for designing
fast, non-dyadic wavelet algorithms [30].

• Best approximation properties. For a given order L, splines tend to give smaller scale-truncated
approximation errors than other standard wavelet families. Splines have been shown to be “π-
times” better (in some precise approximation theoretic sense) than Daubechies wavelets [6].

• Optimal time-frequency localization. B-spline wavelets have been shown to converge to modulated
Gaussians [28]. They therefore offer close-to-optimal time-frequency localization in the sense
specified by the uncertainty principle. This makes them the atoms of choice for time-frequency (or
space-frequency) analysis.
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