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ABSTRACT

Splines, which were invented by Schoenberg more than fifty years ago, constitute an elegant framework for
dealing with interpolation and discretization problems. They are widely used in computer-aided design and
computer graphics, but have been neglected in medical imaging applications, mostly as a consequence of what
one may call the "bad press" phenomenon. Thanks to some recent research efforts in signal processing and
wavelet-related techniques, the virtues of splines have been revived in our community. There is now
compelling evidence (several independent studies) that splines offer the best cost-performance tradeoff among
available interpolation methods. In this presentation, we will argue that the spline representation is ideally
suited for all processing tasks that require a continuous model of signals or images. We will show that most
forms of spline fitting (interpolation, least squares approximation, smoothing splines) can be performed most
efficiently using recursive digital filters. We will also have a look at their multiresolution properties which
make them prime candidates for constructing wavelet bases and computing image pyramids. Typical
application areas where these techniques can be useful are: image reconstruction from projection data,
sampling grid conversion, geometric correction, visualization, rigid or elastic image registration, and feature
extraction including edge detection and active contour models.
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1.  INTRODUCTION

Almost anyone involved with medical imaging has been using splines, knowingly or nor: the most commonly-
used interpolation algorithm—bilinear interpolation—is equivalent to fitting the image with a spline of degree
1. Splines, however, start revealing their true power as one moves to higher degrees for they provide the best
cost-performance tradeoff among all interpolation methods33, 24. Since quality is a major concern with medical
images, it therefore makes good sense to use them in applications.

Polynomial splines are especially useful when one wishes to consider image data as a continuum
rather than a discrete array of pixels. Such a continuous modeling of the data is often required in medical
imaging. Interpolation, in particular, plays a crucial role at various stages of processing25, 33. For instance, it is
present—explicitly or not—for tomographic reconstruction, irrespective of the type of algorithm used (filtered
backprojection, inverse Fourier or iterative reconstruction). Another important area is medical image
visualization; this involves simple 2D operations such as image zooming, panning, rotation, or 3D
manipulations, such as reslicing or maximum intensity projection 29, which are often used by radiologists.
Interpolation models are also required for performing various types of image registrations10, 47; these include
intra-modal registration for rigid-body motion compensation35, inter-modal registration of CT, PET and MR
data sets of a same subject12, 36, as well as elastic matching for stereotaxic normalization18 or distortion
correction17. Considering an image as a continuously–defined function is also often desirable for feature
extraction, in particular, contour detection.  These are all examples of medical imaging tasks that can benefit
from the use of splines; a more complete inventory is given in Table I.
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Image processing task Specific operation Imaging modality

Tomographic
reconstruction

• Filtered backprojection
• Fourier reconstruction
• Iterative techniques
• 3D + time

Commercial CT (X-rays)
EM
PET, SPECT
Dynamic CT, SPECT, PET

Sampling grid
conversion

• Polar-to-cartesian coordinates
• Spiral sampling
• k-space sampling
• Scan conversion

Ultrasound (endovascular)
Spiral CT, MRI
MRI

2D operations
• Zooming, panning, rotation
• Re-sizing, scaling

All

• Stereo imaging
• Range, topography

Fundus camera
OCT

3D operations
• Re-slicing
• Max. intensity projection
• Simulated X-ray projection

CT, MRI, MRA

Visualization

Surface/volume rendering
• Iso-surface ray tracing
• Gradient-based shading
• Stereogram

CT
MRI

Geometrical correction • Wide-angle lenses
• Projective mapping
• Aspect ratio, tilt
• Magnetic field distortions

Endoscopy
C-Arm fluoroscopy
Dental X-rays
MRI

Registration • Motion compensation
• Image subtraction
• Mosaicking
• Correlation-averaging
• Patient positioning
• Retrospective comparisons
• Multi-modality imaging
• Stereotactic normalization
• Brain warping

fMRI, fundus camera
DSA
Endoscopy, fundus camera,
EM microscopy
Surgery, radiotherapy

CT/PET/MRI

• Contours
• Ridges
• Differential geometry

AllFeature detection

Contour extraction
• Snakes and active contours MRI, Microscopy (cytology)

Table 1: Summary of medical imaging applications that can benefit from high-quality
interpolation and splines in particular.
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In this paper, we will provide an introduction and overview of spline-related techniques in the context
of medical imaging. We will use a progressive approach to explain the important ideas at a general level,
without too many details. Our starting point will be the spline interpolation problem which is discussed in
Section 2. Next, we will consider the possibility of coarsening the spline grid, which leads to the powerful
idea of multiresolution analysis explained in Section 3. Finally in Section 4, we will uncover the wavelets
which provide a non-redundant decomposition of an image across scale. We will also emphasize the very
special role of splines in wavelet theory and applications.

A good complement to the present exposition is a tutorial paper38 specifically written for researchers
in signal processing. For a more classical treatment of splines, we refer to the books of de Boor14  and
Schumaker30, as well as to Schoenberg’s authoritative monograph28 on cardinal splines, i.e., splines on a
uniform grid.

 2. SPLINE INTERPOLATION

A polynomial spline of degree n  is a piecewise polynomial function of degree n with pieces that are patched
together such as to guarantee the continuity of the function and of its derivatives up to order n-1. Because of
this latter smoothness constraint, a spline has only one degree of freedom per polynomial segment (cf. B-
spline representation); this is much less than the (n+1) coefficients that are required to represent an
unconstrained polynomial of degree n. The price to pay, of course, is that the model fitting process is not
local. An additional ingredient that is essential for efficient processing is that the structure of the model be
regular; this is the case with the uniform splines for which the knots are equally spaced.

Schoenberg, who invented splines, also proved that any uniform spline can be represented
unambiguously in terms of a B-spline expansion, which uses shifted B-spline basis functions27. This B-spline
representation turns out to be most convenient for performing signal and image processing38. The leading idea
behind B-spline processing42, 43 is that the fitting process (as well as many other spline operations) can be
accomplished most efficiently by digital filtering without any need for matrix manipulations.

When working with multi-dimensional data sets like images or volumes, the underlying spline model
is usually chosen to be separable. Specifically, one represents the p-dimensional spline function
s x x Rp

p( ),  ( , , )x x = ∈1 L , by the expansion

s c
Z p

( ) ( ) ( )x k x k
k

= −
∈
∑ ϕ , (1)

where the c( )k ’s are the so-called B-spline coefficients. The basis functions in (1) are the integer shifts of the
separable B-spline ϕ( )x , which is a tensor product of univariate B-splines of degree n:

ϕ β β( ) ( ) ( )x = n n
px x1 L . (2)

The univariate B-splines are obtained from the (n+1)-fold convolution of the box function; their closed form
expression is

βn
n n

x
x

n
( )

!
=

+
+∆ 1

, (3)

where x xn n
+ = { }max ,0  is the one-sided power function and ∆n+1 is the (n+1)-iteration of the central finite

difference operator; i.e., ∆f x f x f x( ) ( ) ( )= + − −1
2

1
2 . The most important fact about (1) is that there is

exactly one basis function and one coefficient per grid point or pixel location; these are typically stored in a
floating point image array. What makes this model efficient computationally is that the basis functions are
short and separable.
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Given some multidimensional image array f Z p( ),  i i ∈ , the basic interpolation problem is to determine the
coefficients c( )k  in (1) such that the spline s( )x  fits the pixel values exactly: s f( ) ( )x ix i= = , i ∈Z p .
Imposing this constraint and re-sampling (1) at the integers yields

f c
Z p

( ) ( ) ( )i k i k
k

= −
∈
∑ ϕ , (4)

which has the form of a discrete convolution. Thus, one can determine the c( )k ’s by deconvolving this
equation, which is the key idea behind the algorithms described in our series of papers42, 43. Since the basis
functions are chosen to be separable, the deconvolution process is performed in a separable fashion by
successive one-dimensional filtering along the various dimensions of the data. The so-called direct spline
filter is implemented recursively as described elsewhere43.

One remarkable property of the interpolation model (1) is that the underlying interpolator can have

infinite support even though it is implemented using finite B-spline basis functions. This is possible only

because the c( )k ’s in (1) are different from the initial pixel values f ( )k . Thanks to the prefiltering step, the

interpolation model is not strictly local anymore for n ≥ 2 , which is one of the reasons why spline

interpolators tend to perform better than the conventional techniques that use short kernel interpolating

functions. Other more profound reasons for their better performance are found by looking at their

approximation theoretic properties7, 8, 46.
The graph in Fig. 1 shows the results of a cost performance comparison of some commonly used interpolators
in medical imaging. We compared the following algorithms: (a) nearest neighbor interpolation (spline of
degree 0), (b) bilinear interpolation (spline de degree 1), (c) Dodgson’s quadratic interpolator15, (d) several
versions of Keys’ cubic interpolator16 — often considered to be the state-of-the art method in the field 25, (e)
Shaum’s cubic Lagrange interpolator26, (f) windowed sinc interpolation using a Hamming window, and (g)
higher-order spline polynomial interpolation implemented using recursive filtering42, 43. The experiment, which
was designed to magnify distortions, consisted in applying a succession of 15 rotations to some test image.
The plot in Fig. 1 displays the final signal-to-noise ratio versus the total CPU time. It is clear from this
comparison that splines give the highest quality results and that their cost-benefit ratio is quite favorable.
More details on this comparison can be found elsewhere34. The superiority of splines for interpolation has also
been confirmed by other researchers24, 19, 20, but only rather recently.

Interestingly, the history of splines in medical imaging is a rather bumpy one. An early study25 in 1983
found cubic splines to yield the worst results among the standard interpolation algorithms [methods (a), (b)
and (d), above]. The problem with this finding is that the authors had not implemented what they claimed to
be a cubic spline interpolation, but rather a cubic spline smoothing algorithm. In effect, they had used the
expansion formula (1) with c f( ) ( )k k=  which does not provide a valid spline interpolator unless n≤1; i.e.,
s f( ) ( )k k≠ . From there on, the incorrect belief that spline were poor image interpolators somehow
perpetuated itself and was even documented in a number of otherwise respectable text books on image
processing. The mistake was pointed out twice, first by Maeland 22 and then by Unser et al.40 but this had little
effect overall because the cubic spline pseudo-interpolation algorithm had become a widely-used standard
against which to compare new interpolation algorithmsa. The consequence is that there was almost no work
with splines in medical imaging until rather recently so that there is still a lot of catching up to be done in this
area.

                                                       
a With respect to the development of science, it is interesting to note that a poor algorithm or method may get more
citations than a good one simply because it is so much easier to do better.
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As a motivation for further reading on splines, we end this section with a listing of their most attractive
properties:
• One can always obtain a continuous representation of a discrete signal by fitting it with a spline in one or

more dimensions. The fit may be exact (interpolation) or approximate (least-squares or smoothing
splines).  Spline fits are usually preferable to other forms of representations (e.g., Lagrange polynomial
interpolation) because they have a lesser tendency to oscillate (minimum curvature property)1.

•  The primary reason for working with the B-spline representation is that the B-splines are compactly
supported.  They are the shortest functions6 with an order of approximation L=n+1.  This short support
property is a key consideration for computational efficiency. Their simple analytical form also greatly
facilitates manipulations42, 43.

•  Splines are smooth and well-behaved functions (piecewise polynomials).  Splines of degree n are (n-1)
continuously differentiable.  As a result, splines have excellent approximation properties.  Precise
convergence rates and error estimates are available7.

•  The family of polynomial splines provides design flexibility.  By increasing the degree n, we can
progressively switch from the simplest piecewise constant (n=0) and piecewise linear (n=1)
representations to the other extreme, which corresponds to a bandlimited signal model ( n → +∞ ) 3.

This explains why splines tend to perform better and better as the order gets larger, as exemplified in Fig. 1.
The last property also makes it clear that higher order splines will not result in more and more image blurring
as has been incorrectly stated in the literature.
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Fig. 1: Cost-performance comparison of various image interpolation algorithm. The
experiment involves the application to an image of 15 successive rotation of 24 degrees each.
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 3. MULTIRESOLUTION

Other attractive reasons for working with splines are their multiresolution properties. In the context of multi-
scale processing, it is advantageous to consider a series of fine-to-coarse spline approximations of the image.
The corresponding spline model at resolution h i= 2  is

s c hh h
Z p

( ) ( ) ( / )x k x k
k

= −
∈
∑ ϕ . (5)

It has essentially the same form as (1), except that the B-spline basis functions are now enlarged by a factor of
h and spaced accordingly. This situation is illustrated in Fig. 2.
Clearly, for h > 1, the model (5) can no longer be exact; however, it can be specified such that the quadratic
error with the initial image is minimized.

This type of multiresolution approximation leads to image pyramids. These are typically constructed
iteratively by successive reduction by a factor of two in each direction (cf. Fig. 3). The “reduce” operator is
obtained by prefiltering the image and re-sampling thereafter—the design of the optimal prefilter is
considered in our earlier work 42, 43.
Image pyramids are very useful tools for image processing. Their primary application is multi-scale
processing where one typically starts by solving a coarse version of the initial problem using reduced size
arrays, and then progressively refines the solution as one moves to finer resolutions. This always results in
tremendous acceleration of the algorithm because most iterations are performed using very small image
copies. Often this also improves robustness because of the smoothing effect of the pyramid which reduces the
likelihood of getting trapped in local optima.
Image registration is a good example where this multiresolution strategy is advantageous. A complete
description and evaluation of such an algorithm can be found in the work of Thévenaz et al35. The method can
handle both rigid-body and affine transformations and it takes advantage of the spline model at all levels.
Thanks to the consistent design and to the use of a higher-order interpolation model (cubic splines), it is
among the most precise alignment techniques available and yet fast enough to be competitive. This algorithm
has been applied to the registration of a variety of biomedical images in 2D and 3D. These include high-
resolution electron micrographs for correlation averaging, and medical images such as PET, SPECT, CT, and

0 1 2 3 4 5

0 2 4

h = 1

h = 2

Fig.2: Basis functions for the linear splines at resolutions h = 20 and h = 21 .
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MRI. It is also well suited for motion compensation in image sequences of the retina (fundus camera) or fMRI
data.

4. WAVELETS

The connection between multiresolution analysis and wavelets can be made by considering the error images

(or residues) in a dyadic image pyramid (cf. Fig. 4a)—“dyadic” means that, at each step, the size of the image

is reduced by a factor of two in each dimension. Since the lower resolution approximation was obtained by

projecting the image onto some lower resolution subspace, the residual information has less degrees of

freedom than the number of displayed error pixels. It is therefore possible to represent these residues in a non-

redundant way using wavelet basis functions.

To simplify the discussion, we consider a one-dimensional signal s xi2 1− ( )  at scale h i= −2 1 , as

specified by (5) with p = 1, and its approximation s xi2
( )  at the next coarser scale h i= 2 . The approximation

error can thus be written as

s x s x d k xi i i i k
k Z

2 21− − =
∈
∑( ) ( ) ( ) ( ),ψ , (6)

where ψ ψi k
i ix x k,
/( ) ( / )= −−2 22  are the wavelet basis functions at the resolution i ; they are obtained by

translating a dilated version (by a factor 2i) of a basic wavelet template ψ( )x . To illustrate the concept, we

show in Fig. 4b the wavelet coefficients d1  (here, i = 1) of the error image in Fig. 4a. Note that, in 2D, the

wavelet coefficients are organized in three quadrants corresponding to the tensor product wavelets ϕ ψ( ) ( )x y ,

ψ ϕ( ) ( )x y  and ψ ψ( ) ( )x y , respectively, with ϕ  as in (5). In this way, we have obtained a one-to-one

decomposition of the image into the sum of its lower resolution approximation plus the residual information

coded by the wavelet coefficients. This decomposition process can be iterated on the lower resolution

approximation of the image to yield a multi-level wavelet decomposition, as exemplified in Fig. 4c.

Similarly, one obtains a full wavelet decomposition of an arbitrary function f x( )  by carrying out the

decomposition over all scales. In one dimension, the full wavelet expansion of f  reads

f x d k xi i k
k Zi Z

( ) ( ) ( ),=
∈∈
∑∑ ψ ; (7)

it involves an additional summation over scales from h → 0  ( i = −∞) to h → +∞  ( i = +∞).

Mathematically, the wavelet functions ψ i k i Z k Z, ,
{ } ∈ ∈

 form a basis of L2  (the space of square-integrable

Fig. 3: Example of a cubic spline image pyramid. Each level is represented by its sample
values at the grid point; these are in one-to-one correspondence with the B-spline
coefficients.
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functions), which also means that the wavelet representation is one-to-one. This can also be seen with the

wavelet decomposition in Fig. 4c; it has as many coefficients as there are pixels in the image in Fig. 4a and is

(a) = +

(b)   

(c)

=

Fig. 4: From pyramids to wavelets. (a) The initial image is decomposed into its lower resolution
approximation plus a residual. (b) Instead of the pixel-based representation of the residual, it is
more advantageous to use a non-redundant representation in terms of wavelet basis
functions—in 2D, there are 3 tensor-product wavelets, each corresponding to one quadrant. (c)
The process may be iterated to yield a multi-level wavelet decomposition.
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fully reversible. Usually, the wavelet transform will exhibit many more zero (or small coefficient) values as

the original pixel representation of the image. This can be used advantageously for image coding31, as well as

for threshold-based noise reduction49.

The choice of the wavelet in (6) (or (7)) is obviously quite constrained, even though the solution is not

unique. In the case of polynomial splines, the wavelets, which are splines as well, have been characterized

explicitly 44. The most prominent examples are the Battle-Lemarié wavelets4, 21, which are orthogonal, and the

compactly supported B-spline wavelets11, 41—the wavelet analogs of the classical B-splines.

There are many applications of wavelets in biomedical imaging, most of which are reviewed

elsewhere39. The primary ones are medical image compression, tomographic reconstruction, image

enhancement of mammograms, noise reduction in a variety of medical images including MRI, and the

statistical analysis of functional images of the brain (PET and fMRI). Some detailed algorithm descriptions

can be found in the following book2.

Various types and brands of wavelets have been described in the literature13, 32, 48, 23, many of which are not

splines. It is important to note, however, that each wavelet contains a spline convolution factor (associated

with the so-called regularity factor) which is fully responsible for the more involved mathematical properties

of wavelets (vanishing moments, order of approximation, and regularity). This is the reason why splines play

a very special role in wavelet theory32.  There is also a very interesting link between splines, fractals and radial

basis functions9. Moreover, spline wavelets have many features that are particularly relevant and desirable for

medical imaging37 and that make them stand apart from other the wavelets available. Their most important

properties are:

• Closed-form representation. This is a rather unique property; all other wavelet bases are defined indirectly

through an infinite recursion.

• Simplicity of manipulation. This is especially true for mathematical operations such as differentiation.

•  Symmetry. Symmetry (resp. anti-symmetry) is crucial for feature detection; without it, the zero-crossing

(resp. maximum) locations are shifted with respect to the corresponding image feature.

•  Shortest and most regular scaling function of order L . The order and degree of differentiability

(regularity) of the basis functions are key mathematical parameters. Having the shortest functions reduces

the amount of computation5.

• m-scale relation. B-splines satisfy a two scales relation for any integer m, and not just for powers of two

as is usually the case in wavelet theory. This turns out to be advantageous for designing fast, non-dyadic

wavelet algorithms45.

•  Best approximation properties. For a given order L , splines tend to give smaller scale-truncated

approximation errors than other standard wavelet families. Splines have been shown to be “P-times”

better (in some precise approximation theoretic sense) than Daubechies wavelets7.

•  Optimal time-frequency localization. B-spline wavelets have been shown to converge to modulated

Gaussians41. They therefore offer close-to-optimal time-frequency localization in the sense specified by

the uncertainty principle. This makes them the atoms of choice for time-frequency (or space-frequency)

analysis.
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SPLINE RESSOURCES

Spline-related software, WEB demos, art and  papers, including tutorials, can be found at

http://bigwww.epfl.ch/. An extensive bibliography on spline theory—mostly papers that have appeared in the

mathematics literature—is maintained by Carl de Boor at http://www.cs.wisc.edu/~deboor/.
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