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Abstract: The purpose of this presentation is to describe a recent family of basis
functions—the fractional B-splines—which appear to be intimately connected to
fractional calculus. Among other properties, we show that they are the convolution
kernels that link the discrete (finite differences) and continuous (derivatives)
fractional differentiation operators. We also provide simple closed forms for
the fractional derivatives of these splines. The fractional B-splines satisfy a
fundamental two-scale relation. Consequently, they can be used as building blocks
for constructing a variety of orthogonal and semi-orthogonal wavelet bases of L2;
these are indexed by a continuous order parameter γ = α + 1, where α is the
(fractional) degree of the spline. We show that the corresponding wavelets behave
like multiscale differentiation operators of fractional order γ. This is in contrast
with classical wavelets whose differentiation order is constrained to be an integer.
We also briefly discuss some recent applications in medical and seismic imaging.
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1. INTRODUCTION

The fractional splines are a recent extension of
the polynomial splines for all fractional degrees
α > −1 (Unser and Blu, 2000). Their basic con-
stituents are piecewise power functions of degree
α. One constructs the corresponding B-splines
through a localization process similar to the clas-
sical one, replacing finite differences by fractional
differences (see, Section 2). The fractional B-
splines share virtually all the properties of the
classical B-splines, including the two-scale rela-
tion, and can therefore be used to define new
wavelet bases with a continuously-varying order
parameter (Unser and Blu, 1999). They only lack
positivity and compact support. The fractional
splines have the following remarkable properties:

• Generalization: For α integer, they are equiv-
alent to the classical polynomial splines

(Schoenberg, 1946). In some sense, the frac-
tional B-splines interpolate the polynomial
ones.

• Regularity: The fractional splines are α-
Hölder continuous; their critical Sobolev ex-
ponent is α+ 1/2.

• Decay: The fractional B-splines decay at least
like |t|α−2; they are compactly supported for
α integer.

• Order of approximation: The fractional splines
have a fractional order of approximation α+
1; a property that has not been encountered
before in wavelet theory.

• Vanishing moments: The fractional spline
wavelets have dα + 1e vanishing moments,
while the fractional B-splines reproduce the
polynomials of degree dαe.

• Fractional derivatives: Simple formulae are
available for obtaining the fractional deriva-



tives of B-splines. In addition, fractional
spline wavelets essentially behave like mul-
tiscale fractional derivative operators.

• Stretching the bounds of wavelet theory: for
− 1/2 < α < 0, the fractional B-splines

do not have the standard regularity factor
(1+z). Yet, they yield perfectly valid wavelet
bases with some unusual characteristics (or-
der of approximation lesser than 1, singular-
ities at the integers, etc...).

Despite their non-conventional properties and
lack of compact support, the fractional spline
wavelets are perfectly implementable. The most
efficient computational solution is to implement
the wavelet filtering in the Fourier domain using
the FFT (Fast Fourier transform). Generic Matlab
and JAVA software is available for computing
the various brands of semi-orthogonal fractional
wavelet transforms in one and two dimensions
(Blu and Unser, 2000). The parameter α > − 1

2
can be adjusted in a continuous fashion. These
wavelet transforms are non-redundant and fully
reversible. Moreover, their orthogonal version con-
stitutes the natural generalization of the Battle-
Lemarié wavelet transform (Battle, 1987) which is
recovered for α integer.

2. FRACTIONAL SPLINES AND
FRACTIONAL DIFFERENTIATION

2.1 Fractional differential operators

Here, we consider the fractional differentiation
operator ∂γ of order γ ∈ R+, which is most
conveniently characterized in the Fourier domain:

F{∂γf(t)}(ω) = (jω)γ f̂(ω),

where j =
√
−1 and f̂(ω) = F{f} denotes

the Fourier transform of f . If f(t) ∈ L1 then
F{f}(ω) =

∫ +∞
−∞ f(t)e−jωtdt; otherwise, F{f} is

defined in the distributional sense.

The discrete version of this operator is the causal
fractional difference operator, ∆γ

+, whose Fourier
definition is

F{∆γ
+f(t)}(ω) = (1− e−jω)γ f̂(ω), (1)

where we note that (1− e−jω)γ = (jω)γ+ higher-
order terms. By applying the generalized binomial
expansion to (1−e−jω)γ and by taking the inverse
Fourier transform of (1), we find that:

∆γ
+f(t) =

+∞∑
k=0

(−1)k
(γ
k

)
f(t− k).

The generalized binomial coefficients are given by(u
v

)
=

Γ(u+ 1)
Γ(v + 1)Γ(u− v + 1)

where Γ(u) is Euler’s celebrated gamma function.

Fig. 1. Artistic rendition of the causal fractional
B-splines of degree α ≥ 0 (authors: Annette
Unser and Michael Unser). These functions
interpolate the conventional B-splines, repre-
sented using thicker lines, in very much the
same way as the gamma function (included
in the definition) interpolates the factorials.

2.2 Fractional B-splines

The causal fractional B-spline of order γ = α+1 is
most conveniently defined in the Fourier domain
by taking the ratio of the frequency responses of
the operators ∆γ

+ and ∂γ
+. Specifically, we have

that

F{βα
+(t)}(ω) =

(
1− e−jω

jω

)α+1

. (2)

A direct implication of this method of construc-
tion is the distributional relation

∆γ
+f(t) =

(
βγ−1

+ ∗ ∂γ
+f

)
(t),

which relates the discrete and continuous frac-
tional differential operators introduced above. In
fact, we have learned recently that Zheludev
(1983) in Russia had identified the fractional
B-splines many years before us while trying to
characterize the convergence properties of a dis-
crete, finite-difference-based algorithm for solv-
ing Abel’s fractional integral equation (which
amounts to the calculation of a fractional deriva-
tive). However, he did not consider them as gener-
ating functions for constructing fractional splines.
Because of this fundamental connection with frac-
tional differentiation, it is also quite likely that the
fractional B-splines may have been (re-)discovered
independently by other researchers having a direct
interest in this type of operators.

The last step in our spline construction is to take
the inverse Fourier transform of (2), which yields
the elegant and concise formula

βα
+(t) =

∆α+1
+ tα+

Γ(α+ 1)
, (3)



with tα+ = max(0, t)α, which is compatible with
Schoenberg’s initial B-spline definition for α inte-
ger (Schoenberg, 1946). These functions are shown
in Fig. 1.

Last but not least, we can apply a similar Fourier
technique to derive an explicit formula for the
fractional derivative of a B-spline

∂γβα
+(t) = ∆γ

+β
α−γ
+ (t), (4)

which yields a fractional spline of reduced degree
α − γ. If we take γ = α + 1, we hit the spline
singularities and are left with a stream of Dirac
impulses

∂α+1βα
+(t) = ∆α+1

+ δ(t) =
+∞∑
k=0

(−1)k
(γ
k

)
δ(t− k).

The whole point here is that there is a very sim-
ple, convenient calculus for taking the fractional
derivatives of the fractional B-splines, and, by
extension, of any function (spline or wavelet) that
can be expressed as a linear combination of such
basic atoms.

2.3 Fractional splines

Following Schoenberg (1946) once again, we call
“cardinal fractional spline of degree α” any func-
tion s(t) that can be written as

s(t) =
∑
k∈Z

ckβ
α
+(t− k) (5)

with ck ∈ `∞. Such a function has a unique
and stable representation in terms of its B-spline
coefficients ck. Another more general way of defin-
ing fractional splines is to consider that the ap-
plication of the fractional differential operator
∂α+1 to s(t), as defined by (5), yields a weighted
stream of Diracs. Thus, we will say that s(t) is a
fractional spline of degree α and knots sequence
-∞ < · · · < t0 < t1 < · · · tk < +∞ if and only if:

∂α+1s(t) =
∑
k∈Z

akδ(t− tk)

with ak ∈ `∞.

2.4 Fractional spline wavelets

A basic fractional spline wavelet

ψ(t/2) =
∑
k∈Z

qkβ
α
+(t− k)

can be specified by selecting a suitable sequence
qk such that 〈ψ(·/2), βα

+(· − k)〉 for all k ∈ Z
(Unser et al., 1993). Using such a prototype, it
is then possible to specify a basis of L2 which
takes the form {ψi,k}i∈Z,k∈Z, where ψi,k(t) =
2−i/2ψ(t/2i−k). The remarkable property is that
these wavelets essentially behave like multiscale
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Fig. 2. Fractional B-spline wavelets with α ≥ 0
corresponding to the B-splines in Fig. 1. The
remarkable property is that any one of these
functions generates a wavelet basis of L2.

fractional differentiation operators of order γ =
α+ 1. Specifically, we have that

〈ψ
(
· − b

a

)
, f(·)〉 = ∂γ (φa ∗ f) (b)

with φa(t) = φ(t/a), where φ(t) is a suitable
smoothing kernel (typically, a fractional spline of
degree 2α+1). The mathematical justification for
this result can be found in (Unser and Blu, 2003).

The semi-orthogonal B-spline wavelets are shown
in Fig. 2. The first one with α = 0 is piecewise con-
stant; it corresponds to the classical Haar trans-
form. Likewise, the functions that are represented
in thicker lines are piecewise polynomial and have
been characterized by us more than a decade ago
Unser et al. (1993). The ones in thinner lines
are much less conventional in that they are truly
fractional (Unser and Blu, 1999).

3. APPLICATIONS

The key advantages of fractional splines for appli-
cations in signal and image processing are three-
fold.

• Explicit fractional differentiation: It is possi-
ble to obtained closed-form expressions, and
hence efficient computational algorithms, for
computing any fractional derivative of a sig-
nal expressed in a fractional spline or wavelet
basis.

• Family of adjustable wavelets: The fractional
B-spline wavelets are tunable in a continuous
fashion. By varying α, we have a direct con-
trol over a number of key wavelet properties:
the parametric form of the basis functions,
their smoothness, their space-frequency lo-
calization, the order and multiscale differ-
entiability properties of the transform, and,



finally, the number of vanishing moments.
The parameter α also directly controls the
size (i.e., the spatial extent) of the basis func-
tions. For instance, for the B-spline family,
the basis functions (resp., wavelets) converge
to Gaussians (resp., modulated Gaussians or
Gabor functions) with a standard deviation
(or equivalent window size) that is propor-
tional to

√
α (Unser et al., 1992). This also

means that these functions, for α sufficiently
large (say, α > 2), will tend to be optimally
localized in the sense of the Heisenberg un-
certainty principle; in other words, the prod-
uct of their time and frequency uncertainties
will tend to the minimum that is achievable.

• Fast algorithms: All fractional spline wavelet
transforms can be implemented efficiently
in the Fourier domain with an O(N logN)
complexity, where N is the size of the signal
(Blu and Unser, 2000). A further advantage
is that the algorithm is completely generic;
it is the same irrespective of the choice of α.
The software is available on the web at:
bigwww.epfl.ch/demo/fractsplines/

An example of application where the explicit dif-
ferentiation property is particularly useful is to-
mographic image reconstruction from projections.
Indeed, the first computational step of the filtered-
backprojection algorithm is the evaluation of the
so-called ramp filter that corresponds to a certain
kind of (symmetric) fractional derivative for which
one can also define fractional B-splines (Unser
et al., 2000). Note that it is also possible to
extend the B-spline family for dealing with an
even larger family of fractional derivatives of the
form (jω)

γ
2 +τ (−jω)

γ
2−τ (Blu and Unser, 2003).

In particular, this enlarged family includes the
Hilbert transform—an important tool in signal
processing, especially in the context of ampli-
tude and frequency modulation. Other applica-
tions where the fractional differentiation proper-
ties are relevant are the wavelet-based genera-
tion of fractional Brownian motion-like processes
(Meyer et al., 1999), and the analysis of signals
with fractal properties (Flandrin, 1992). In par-
ticular, we note that a γth-order wavelet will es-
sentially whiten processes whose power spectrum
decays like O(ω−γ).

The fact that the fractional wavelets are ad-
justable in a continuous manner has been used
advantageously for the statistical analysis of func-
tional magnetic resonance (fMRI) data (Feilner
et al., 2000). The idea here is to tune the wavelet
transform to optimize the detection of activation
patterns. Interestingly, it has been found that the
value α = 1.2 has a special significance since it
establishes a relation between the effect of down-
sampling and the notion of resel used in the
standard SPM approach which applies a Gaussian

prefilter to the data (Van De Ville et al., 2003).
Another promising application is seismic imaging.
Herrmann argues that the fractional discontinu-
ities of the type (t − t0)α

+ (or (t0 − t)α
+) are well

matched to the description of seismic data. He has
developed a fractional spline wavelet-packet-like
algorithm for analyzing these signals (Herrmann,
2001).
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