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Abstract—Our purpose in this talk is to advocate the use
of wavelets for advanced bioimaging. We start with a short
tutorial on wavelet bases, emphasizing the fact that they pro-
vide a concise multiresolution representation of images and
that they can be computed most efficiently. We then discuss a
simple but remarkably effective image-denoising procedure that
essentially amounts to discarding small wavelet coefficients (soft-
thresholding); we show that this type of algorithm is the solution
of a variational problem that promotes sparse solutions. We
argue that the underlying principle of wavelet regularization is
a powerful concept that can be used advantageously in a variety
of inverse image-reconstruction problems, including MRI and
computed tomography. We illustrate our point by presenting a
novel wavelet-based deconvolution algorithm for 3-D fluorescence
microscopy, as well as some preliminary results for dynamic PET
reconstruction. We will also discuss wavelet techniques for the
analysis of functional MRI data and optical microscopy (extended
depth of field).

Index Terms—Wavelets, sparsity, denoising, soft-thresholding,
regularization, deconvolution, image reconstruction

I. INTRODUCTION

Wavelets are a powerful way of decomposing signals or
images into their elementary constituents across scales (mul-
tiresolution decomposition). They provide a one-to-one repre-
sentation (orthogonal transform) in very much the same way as
the Fourier transform does, except that the basis functions are
localized in both space (or time) and frequency. Wavelets have
many remarkable properties and are extremely versatile. It is
therefore no surprise that they have been applied to a variety
of problems in biomedical imaging, often with good success
[11, [2]. The property that is often emphasized in current
applications is their ability to yield sparse representations of
piecewise-smooth signals and images.

Rather than providing a partial account of the plenary
presentation whose content we just summarized above, we
have chosen to give in this brief some pointers to the relevant
literature, together with some personal remarks.

1) Introduction to wavelets: Among the many books avail-
able, we recommend the ones who were written by the pioneers
of the field; in particular, Stéphane Mallat [3] and Ingrid
Daubechies [4]. The reader who wants to dive into the more
theoretical aspects of wavelets may be interested in [5], which
has the advantage of being self-contained. At the other end of
the scale of complexity, we mention a low-level introduction
in the form of a humorous dialog between father and son [6].

2) Wavelet denoising by soft-thresholding: A not-so-well-
known fact is that this approach was pioneered by Weaver
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et al. in the context of magnetic resonance imaging [7]. The
technique is usually attributed to Donoho who gave a rigorous
statistical justification and was very proactive in terms of
promotion and software diffusion [8], [9]. Interestingly, it took
quite a few years until Chambolle ef al. finally showed that
the algorithm solves a penalized least-squares problem with
a wavelet-domain /¢;-regularization [10]. Another important
point, which is also central to the field of “compressed
sensing,” is that the ¢;-norm is a good (convex) proxy for
the ¢p-norm—the latter simply counts the number of non-
zero coefficients. It is also known that one can solve the
basic denoising/approximation problem with an ¢, penalty in
any orthonormal basis by the straightforward application of a
hard threshold in the transformed domain; unfortunately, this
type of ¢y result is much harder to generalize because the
corresponding criterion is non-convex.

It should also be mentioned that better performance for
image denoising can be obtained by adapting the wavelet-
domain non-linearity to the type of noise and to the information
content of the image [11], [12], [13].

3) Image reconstruction by iterative thresholding: This
powerful algorithm was discovered by engineers who noted
that they could improve traditional gradient-based iterative
image-reconstruction schemes by inserting a wavelet-denoising
step in the feedback correction loop (denoising of the residual).
Figueireido and Nowak were among the first to provide a
rigorous statistical justification of the method within the EM
framework [14]. Daubechies, De Frise and De Mol took a
general deterministic variational point of view (¢;-regularized
least-squares inverse problem) and were able to prove the con-
vergence of the algorithm (often termed D?) under relatively
mild conditions [15]. While several variants and generalization
of the technique are now available, researchers are still working
hard on finding ways to accelerate the convergence. The in-
creasing interest in this type of convex optimization problem is
also a consequence of the popularity of “compressed sensing”.

4) Wavelet regularization in biomedical imaging: A chal-
lenging application is 3-D fluorescence deconvolution, mainly
because of the huge data size [16]. Making the wavelet
approach practical requires the development of an effective
divide-and-conquer acceleration strategy.

While wavelet regularization is usually applied in the space
domain, it can be extended to the time domain for dynamic
imaging. An interesting application is the reconstruction of
dynamic PET which can be improved by combining spatial



wavelets with exponential splines that are specially tailored to [20] —, “Surfing the brain—An overview of wavelet-based techniques
S . c e P for fMRI data analysis,” IEEE Engineering in Medicine and Biology

the time dome%m (.:haracterlstlcs of the aCtl'Vlty curves [17]. Magazine, vol. 25, no. 2, pp. 65-78, March-April 2006.

Other applications that are briefly reviewed are: wavelet-  [21] D. Van De Ville, M. Seghier, F. Lazeyras, T. Blu, and M. Unser, “WSPM:

based image fusion for extended depth of focus [18], and Wavelet-based statistical parametric mapping,” Neurolmage, vol. 37,
a general framework for the statistical analysis of functional no. 4, pp. 1205-1217, October 1, 2007.
imaging data [19], [20], [21].
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