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Abstract. We introduce a complete parameterization of the family of two-dimensional steerable wavelets that
are polar-separable in the Fourier domain under the constraint of self-reversibility. These wavelets are
constructed by multiorder generalized Riesz transformation of a primary isotropic bandpass pyramid.
The backbone of the transform (pyramid) is characterized by a radial frequency profile function h(ω),
while the directional wavelet components at each scale are encoded by an M × (2N + 1) shaping
matrix U, where M is the number of wavelet channels and N the order of the Riesz transform. We
provide general conditions on h(ω) and U for the underlying wavelet system to form a tight frame
of L2(R

2) (with a redundancy factor 4/3M). The proposed framework ensures that the wavelets
are steerable and provides new degrees of freedom (shaping matrix U) that can be exploited for
designing specific wavelet systems. It encompasses many known transforms as particular cases:
Simoncelli’s steerable pyramid, Marr gradient and Hessian wavelets, monogenic wavelets, and Nth-
order Riesz and circular harmonic wavelets. We take advantage of the framework to construct new
generalized spheroidal prolate wavelets, whose angular selectivity is maximized, as well as signal-
adapted detectors based on principal component analysis. We also introduce a curvelet-like steerable
wavelet system. Finally, we illustrate the advantages of some of the designs for signal denoising,
feature extraction, pattern analysis, and source separation.
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1. Introduction. Scale and directionality are essential ingredients for visual perception
and processing. This has prompted researchers in image processing and applied mathematics
to develop representation schemes and function dictionaries that are capable of extracting and
quantifying this type of information explicitly.

The fundamental operation underlying the notion of scale is dilation, which calls for a
wavelet-type dictionary in which dilated sets of basis functions that “live” at different scales
coexist. The elegant aspect here is that it is possible to specify wavelet bases of L2(R

2) that
result in an orthogonal decomposition of an image in terms of its multiresolution components
[1]. The multiscale analysis achieved by these “classical” wavelets is well suited for extracting
isotropic image features and isolated singularities, but is not quite as efficient for sparsely
encoding edges and curvilinear structures.

To capture directionality, the basis functions need to be angularly selective and the original
dilation scheme complemented with spatial rotation. This can be achieved at the expense of
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2D STEERABLE WAVELET TRANSFORMS 103

some redundancy, which rules out the use of a basis. The next best option is a tight frame rep-
resentation, which offers the same type of functionality (i.e., a self-reversible transformation).
The first successful example of multiscale, multiorientation decomposition is the steerable
pyramid constructed by Simoncelli and coworkers [2, 3]. Remarkably, this transform has the
ability to provide a signal representation that is perfectly rotation-invariant; specifically, the
wavelets can be steered adaptively—that is, rotated along some dominant local orientation
θ ∈ [−π, π]—by forming an appropriate linear combination of the M directional filters at
the same location. The steerable pyramid has been used extensively in image processing;
typical applications include image denoising [4], contour detection [5], texture analysis and
synthesis [6, 7], image extrapolation [8], image fusion [9], and solution of inverse problems
under sparsity constraints [10, 11]. The directional wavelets in Simoncelli’s design are rotated
versions of a single template in an equiangular configuration, but other options for specifying
steerable decompositions are available as well. One extreme solution is given by the circular
harmonic wavelets which have the remarkable property of being self-steerable [12], but which
have no angular selectivity at all. There is also an intimate link between steerability and the
Riesz transform, which has been exploited by several teams [13, 14], and which can result in
wavelet designs with greater shape diversity [15].

While steerability is attractive conceptually, it is not a strict requirement. Other solutions
to the problem of directional multiresolution image representation include the two-dimensional
(2D) Gabor transform [16], curvelets [17], contourlets [18], directionlets [19], and shearlets [20].
The key idea behind curvelets, for instance, is to bring (approximate) rotation and dilation
invariance by building a set of basis functions from a series of rotated and dilated versions of an
anisotropic mother wavelet. Contourlets basically reproduce the same frequency partitioning,
but are based on a tree-structured filterbank. The latter is fast and enjoys a greater flexibility,
including different subsampling rates [21]. Shearlets exploit the property that the effect of
a shear is analogous to that of a rotation; since the former operation is better suited to
a discrete grid, there is a natural link between the discrete and continuous versions of the
transform which is much harder to obtain for curvelets [22].

The purpose of this work is to present a unifying framework that ties most of these di-
rectional analysis methods together, while providing a universal parameterization of steerable
wavelet frames of L2(R

2). The key idea is to exploit a functional link between a complex
version of the Riesz transform, which dates back to the work of Larkin in optics [23], and the
polar-phase components of the circular harmonics. In what follows, we shall investigate the
following list of topics, which also summarizes the scope of the present contribution:

– The characterization of the functional properties of the complex Riesz transform and its
iterates, including the derivation of their impulse responses (section 2).

– The definition of a one-to-many multiorder generalized Riesz transform that is parameter-
ized by a shaping matrix U and the derivation of the necessary and sufficient conditions
for the mapping to be energy-preserving and self-invertible (section 3). Note that this
transform is designed specifically to map an isotropic bandpass pyramid into a bona fide
steerable wavelet system.

– The specification of generalized steerable wavelets and the investigation of their mathemat-
ical properties, including componentwise orthogonality (section 4). We shall see that the
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104 MICHAEL UNSER AND NICOLAS CHENOUARD

shaping matrix translates into a Fourier-domain characterization of wavelets as weighted
sums of circular harmonics.

– The description of some popular wavelet systems (gradient, Simoncelli, monogenic, circular
harmonic, etc.) in the proposed parameterization, as well as the specification of new steer-
able wavelet families such as the prolate spheroidal wavelets and the principal component
analysis (PCA) wavelets which are tuned to a particular class of signals (section 5).

– The demonstration of the practical usefulness of the framework for the design, implemen-
tation, and optimization of wavelet systems for specific tasks such as image denoising,
curvelet-like image analysis, source separation, and texture discrimination (section 6).

2. Mathematical preliminaries.

2.1. The 2D complex Riesz transform. We will rely heavily on a “complexified” version
of the Riesz transform that combines the usual x and y components of the 2D Riesz transform
into a single complex signal; it was introduced by Larkin in optics under the name of the
spiral phase quadrature transform [23, 24] and used in our prior work to define the monogenic
extension of a wavelet transform [25].

In this work, we adopt the definition given by Larkin, which differs from that used in our
prior paper by a factor of i =

√−1. The Fourier-domain definition of the transform is

Rf(x) F←→ (ωx + iωy)

‖ω‖ f̂(ω) = eiθf̂pol(ω, θ),(2.1)

where f̂(ω) =
∫
R2 f(x)e

−i〈ω,x〉dxdy with ω = (ωx, ωy) and f̂pol(ω, θ) = f̂(ω cos θ, ω sin θ)
are the Cartesian and polar representations of the 2D Fourier transform of f ∈ L2(R

2),
respectively. The advantage of the present definition is that the frequency response R̂(ω) =
R̂pol(ω, θ) = eiθ is a pure complex exponential of the angular frequency variable θ = ∠ω. This
highlights the fact that the transform is a convolution-type operator that acts as an all-pass
filter with a phase response that is completely encoded in the orientation.

The complex Riesz transform satisfies the following properties, which can be established
in the Fourier domain [23, 25, 26]:
– Translation invariance:

∀x0 ∈ R
2, R{f(· − x0)}(x) = R{f(·)}(x − x0).

– Scale invariance:

∀a ∈ R
+, R{f(·/a)}(x) = R{f(·)}(x/a).

– Inner-product preservation:

∀f, g ∈ L2(R
2), 〈f, g〉L2 = 〈Rf,Rg〉L2 .

– Steerability of its impulse response:

R{δ}(Rθ0x) = e−iθ0R{δ}(x),
where Rθ0 = [ cos θ0 − sin θ0

sin θ0 cos θ0
] is the matrix that implements a 2D spatial rotation by the

angle θ0.D
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The adjoint of the complex Riesz operator, which is such that 〈Rf, g〉L2 = 〈f,R∗g〉L2 , is
specified by

(2.2) R∗f(x) F←→ (ωx − iωy)

‖ω‖ f̂(ω) = e−iθf̂pol(ω, θ),

with the property that R−1 = R∗.
In this work, we will also consider the nth-order complex Riesz transform Rn, which

represents the n-fold iterate of R. It is a convolution operator that has the same invariance
properties as R. Its frequency response is a purely polar function given by

R̂n
pol(ω, θ) = einθ.

The definition is extendable to negative orders as well, owing to the fact that Rn∗ = R−n.
The composition rule for these complex Riesz operators is Rn1Rn2 = Rn1+n2 for all n1, n2 ∈ Z

with the convention that R0 = Identity.

2.2. Advanced functional properties. The inner-product preservation property implies
that the complex Riesz transform is a unitary operator in L2(R

2). More generally, it is a
continuous mapping from Lp(R

2) into itself for 1 < p <∞ [26, 27]; in other words, there exist
some constants Cp such that

∀f ∈ Lp(R
2), ‖Rf‖Lp ≤ Cp‖f‖Lp .

The equality is achieved for p = 2 and C2 = 1. The tricky aspect of the transform is that
the cases p = 1 and p = +∞ are excluded, meaning that R is not stable in the classical
BIBO sense (bounded input and bounded output). The difficulty stems from the fact that
the impulse response of R is unbounded at the origin and slowly decaying at infinity at the
rate O(‖x‖−2). Specifically, if f is a function that is continuous and locally integrable, one
can specify its complex Riesz transform via the following convolution integral:

Rf(x) = P.V.
1

2π

∫
R2

ix′ − y′
‖x′‖3 f(x− x′)dx′dy′,(2.3)

where the symbol P.V. denotes Cauchy’s principal value (the latter is required to resolve the
singular part of the integral around the origin). An equivalent statement is that ix−y

2π‖x2+y2‖3/2
is the impulse response of R (in the sense of distributions). Interestingly, we can provide the
same kind of explicit characterization for the nth-order Riesz transforms with n ∈ Z\{0} and
show that their responses are polar-separable.

Proposition 2.1. The impulse responses of the nth-order complex Riesz operators are given
by

Rn{δ}(x, y) = nin
(x+ iy)n

2π(x2 + y2)
n+2
2

= nin
einφ

2πr2
,(2.4)

where (x, y) = r(cos φ, sinφ). They are tempered distributions whose explicit action on a
function f(x, y) involves a P.V. limit as in (2.3) to give a proper meaning to the space-domain
integral.
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106 MICHAEL UNSER AND NICOLAS CHENOUARD

Proof. The proposition can be deduced from general results on singular integrals [26,
Chapter IV]. The key is to observe that (x + iy)n = P (x) is a harmonic polynomial that is
homogeneous (with respect to scaling) of degree n. We then apply Theorem 4.5 of Stein and
Weiss [26], which states that the generalized Fourier transform of P (x)/‖x‖2+n (for d = 2) is
given by

i−nπ
Γ
(
n
2

)
Γ
(
n+2
2

) P (ω)

‖ω‖n =
2π

inn

P (ω)

‖ω‖n ,

which, upon substitution, yields R̂n(ω) = einθ with ejθ =
ωx+iωy

‖ω‖ . Conversely, the form of the

principal value distribution (2.4) is consistent with Theorem 4.7 of Stein and Weiss [26] since
R̂n(ω) is homogeneous of degree 0 (because it is purely polar) and its restriction to the circle
is square-integrable such that

∫ π
−π e

inθdθ = 0.
The Riesz operator R is also related to the complex gradient or Wirtinger operator in

complex analysis ∂x = ∂
∂x + i ∂

∂y . Specifically, we have that

∂xf(x) = iR(−Δ)
1
2 f(x),(2.5)

R{f}(x) = −i(−Δ)−
1
2 ∂xf(x),(2.6)

where the first-order differential operator (−Δ)
1
2 is the square-root Laplacian whose frequency

response is ‖ω‖. Its inverse (−Δ)−
1
2 is a fractional integrator of order 1 which acts as an

isotropic smoothing kernel. More generally, by expanding the frequency-domain expression
(ωx+ iωy)

n, we can relate the nth iterate of the complex Riesz operator to the partial deriva-
tives of order n of the signal to which it is applied:

Rn{f}(x, y) = (−Δ)−
n
2

n∑
n1=0

(
n

n1

)
(−i)n1∂n1

x ∂n−n1
y f(x, y).(2.7)

The operator (−Δ)−
n
2 is a fractional integrator of order n which is best specified in the Fourier

domain:

(−Δ)−
n
2ψ(x)

F←→ ψ̂(ω)
1

‖ω‖n .(2.8)

A necessary requirement for the above definition to make sense is that the Fourier transform
of ψ have a sufficient number of zeros at the origin to compensate for the singularity of the
frequency response [28]. This is a condition that is generally met by wavelets that have
vanishing moments up to order n. The global effect of (−Δ)−

n
2 is that of a lowpass filter with

a smoothing strength that increases with n.
Since the impulse response of Rn is only decaying like O(‖x‖−2) (cf. Proposition 2.1),

the Riesz operators will tend to spoil the decay of the functions to which they are applied.
Fortunately, this behavior is tempered if the input function has a sufficient number of vanishing
moments, as is typically the case with wavelets.

Theorem 2.2. Let ψ(x) be a function whose moments up to degree m0 ≥ 0 are vanish-
ing and that is differentiable with sufficient inverse-polynomial decay; i.e., ∂n1

x ∂n2
y ψ(x) =
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O(1/|x‖−2−m0−(n1+n2)+ε) for some 0 ≤ ε < 1 and for all n1 + n2 ≤ 1. Then, we have

Rnψ(x) ≤ C

1 + ‖x‖2+m0−ε′(2.9)

for some 0 ≤ ε′ < 1.
This follows from the proofs of Theorems 3.2 and 3.4 in [29].
Thus, in order to minimize the delocalization effect of Rn, it makes good sense to consider

wavelets that decay faster than any polynomial and that have an infinite number of vanishing
moments. In that case, Rnψ(x) will be rapidly decreasing as well, which is the very best
one can hope for. On the other hand, applying Rn to a scaling function ϕ whose integral is
nonzero will necessarily yield a poorly localized output with an asymptotic decay that is no
better than 1/‖x‖2.

Interestingly, there is no limitation with wavelet regularity since Rn preserves L2-differ-
entiability (or Sobolev smoothness) as a result of its unitary character (all-pass filter). The
complex Riesz transform also has the convenient property of preserving vanishing moments.

3. Multiorder generalized Riesz transforms. Let UM,N be a (possibly complex-valued)
matrix of size M × (2N + 1) with M ≥ 1.

Definition 3.1. The multiorder generalized Riesz transform with coefficient matrix UM,N is
the scalar to M -vector signal transformation RUM,N

f(x) whose mth component is given by

[RUM,N
f(x)]m =

+N∑
n=−N

um,n Rnf(x).(3.1)

The adjoint transformation R∗
UM,N

maps an M -vector signal f(x) =
(
f1(x), . . . , fM (x)

)
back into the scalar signal domain:

R∗
UM,N

f(x) =

+N∑
n=−N

R−n

{
M∑

m=1

um,nfm

}
(x)(3.2)

=

+N∑
n=−N

M∑
m=1

um,nR−nfm(x),(3.3)

where um,n is the complex conjugate of um,n.
The matrix weighting UM,N adds a level of generalization that is crucial for our later

purpose while retaining all the desirable invariance properties of the elementary constituent
operators Rn. As we shall see, this is mostly a matter of appropriate factorization. In what
follows, we will often use U to denote a generic matrix of size M × (2N + 1) to simplify the
notation.

Property 1. The generalized multiorder Riesz transforms are translation- and scale-invar-
iant:

∀x0 ∈ R
2, RU{f(· − x0)}(x) = RU{f(·)}(x − x0),

∀a ∈ R
+, RU{f(·/a)}(x) = RU{f(·)}(x/a).D
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This simply follows from the fact that both translation and dilation invariances are pre-
served through linear combination.

Property 2 (norm preservation and self-invertibility). Let U be a complexM×(2N+1) matrix
such that the product UHU = diag(dN , . . . , d0, . . . , d−N ) is diagonal with

∑N
n=−N dn = 1.

Then, the corresponding multiorder Riesz transform is norm-preserving and self-invertible;
that is, for all f ∈ L2(R

2)

‖RUf‖LM
2 (R2) = ‖f‖L2(R2),

R∗
URUf = f.

Proof. The two key relations, which follow from Definition 3.1, are

RUf(x) = URI2N+1
f(x),

R∗
Uf(x) = R∗

I2N+1
UH f(x),

where I2N+1 is the identity matrix of size 2N + 1 and where UH is the Hermitian transpose
of U which maps a vector of CM into a vector of C2N+1. The generalized multiorder Riesz
transform RUf yields an M -vector signal whose energy is computed as

‖RUf‖2LM
2 (R2)

= 〈RI2N+1
f,UHURI2N+1

f〉L2N+1
2 (R2)

=

N∑
n=−N

dn 〈Rnf,Rnf〉L2(R2)

=

N∑
n=−N

dn‖f‖2L2(R2) = ‖f‖2L2(R2),

where we have used the property that R and all its n-fold iterates are unitary operators.
Similarly, we show that

R∗
URUf = R∗

I2N+1
UHURI2N+1

f

=

N∑
n=−N

dnRn∗Rn︸ ︷︷ ︸
Identity

f

=

N∑
n=−N

dnf = f.

The property of the generalized multiorder Riesz transform that is probably the most
interesting for image processing is the fact that its action commutes with spatial rotations.
This is to say that the spatially rotated versions of the operator are part of the same parametric
family.

Property 3 (steerability). The generalized multiorder Riesz transform is steerable in the
sense that its component impulse responses can be simultaneously rotated to any spatial ori-
entation by forming suitable linear combinations. Specifically, let Rθ0 be a 2 × 2 spatial
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rotation matrix with angle θ0. Then, RUM,N
{δ}(Rθ0x) = RUM,NSθ0

{δ}(x), where Sθ0 =

diag
(
e−iNθ0 , . . . , e−iθ0 , 1, eiθ0 , . . . , eiNθ0

)
is the corresponding diagonal steering matrix of size

2N + 1.
Proof. We recall that the frequency response of Rn is einθ, where θ is the angular frequency

variable. We then apply the rotation property of the Fourier transform, which gives

Rn{δ}(Rθ0x) = F−1
2D {ein(θ−θ0)}(x)

= e−inθ0F−1
2D {einθ}(x)

= e−inθ0Rn{δ}(x).

This shows that the elementary component operators Rn are self-steerable and yields the
desired result.

4. Characterization of steerable wavelet frames. In this section, we set the foundation
of our approach, which relies on the specification of a primal isotropic wavelet ψ and a matrix
U that determines the shape of the steerable wavelets. After a brief review of isotropic
bandlimited wavelet frames, we show how we can generate a large variety of steerable wavelet
frames by multiorder generalized Riesz transformation of such primal wavelets. Finally, we
investigate the functional properties of generic classes of steerable wavelets. The study of
specific examples is deferred to section 5.

4.1. Primal isotropic wavelet frame. The multiresolution backbone of our method is an
isotropic tight wavelet frame of L2(R

2) whose basis functions are generated by suitable dilation
and translation of a single mother wavelet ψ(x). Several such decompositions are available
in the literature within the framework of radially bandlimited wavelets [6, 14, 30, 31]. Each
brand is uniquely specified in terms of its radial frequency profile.

Proposition 4.1. Let h(ω) be a radial frequency profile such that the following hold:

Condition (1): h(ω) = 0 for all ω > π.

Condition (2):
∑

i∈Z |h(2iω)|2 = 1.

Condition (3): dnh(ω)
dωn

∣∣
ω=0

= 0 for n = 0, . . . , N.

Then, the isotropic mother wavelet ψ whose 2D Fourier transform is given by

(4.1) ψ̂(ω) = h(‖ω‖)

generates a tight wavelet frame of L2(R
2) whose basis functions

(4.2) ψi,k(x) = ψi(x− 2ik) with ψi(x) = 2−2iψ(x/2i)

are isotropic with vanishing moments up to order N .
The tight frame property implies that any finite energy function f ∈ L2(R

2) can be
expanded as

(4.3) f(x) =
∑
i∈Z

∑
k∈Z2

〈f, ψi,k〉ψi,k(x).

D
ow

nl
oa

de
d 

02
/2

5/
13

 to
 1

28
.1

78
.4

8.
12

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

110 MICHAEL UNSER AND NICOLAS CHENOUARD

Likewise, we can represent a bandlimited function using a scale-truncated wavelet expansion
(i ∈ N) with an overall redundancy of 1+ 1

4 +
1
42

+ · · · = 4/3 over the canonical representation
in terms of its sampled values. The simplest choice of radial frequency profile that fulfills the
conditions in Proposition 4.1 is h(ω) = rect

(ω−3π/4
π/2

)
(Shannon ideal-bandpass wavelet) with

rect(x) =

{
1, −1

2 < x ≤ 1
2 ,

0 otherwise,

which yields a Bessel-type wavelet [30]. Another prominent example is the filter that is
implemented in the popular version of the steerable pyramid described in [4]:

h(ω) =

{
cos

(
π
2 log2

(
2ω
π

))
, π

4 < |ω| ≤ π,
0 otherwise.

The latter has the advantage of producing a wavelet that is better localized in space; it is the
design that is adopted for the experimental part of this paper.

4.2. Construction of steerable wavelets by generalized Riesz transformation. Having
selected our primal isotropic wavelet frame, we can now apply the proposed one-to-M func-
tional mapping to convert it into a bona fide steerable wavelet transform.

Proposition 4.2. The multiorder generalized Riesz transform RUM,N
maps a pri-

mal isotropic wavelet frame of L2(R
2), {ψi,k}i∈Z,k∈Z2 , into a steerable wavelet frame

{ψ(m)
i,k }m=1,...,M,i∈Z,k∈Z2 of L2(R

2) with

(4.4) ψ
(m)
i,k =

N∑
n=−N

um,n Rnψi,k.

Moreover, the frame bounds are conserved if UM,N satisfies the condition for Property 2.
While the present multiorder extension of the Riesz transform is more general than the

Nth-order one introduced in our earlier work, it has the same kind of invariances (Properties 1,
2, and 3) so that the proof of [13, Proposition 1] is directly transposable to the present case
as well.

Let
wm,i[k] = 〈f, ψ(m)

i,k 〉
denote the corresponding (steerable) wavelet coefficients at scale i and channel m of a signal
f(x) ∈ L2(R

2). Then, Proposition 4.2 implies that f(x) is completely specified by its wavelet
coefficients {wm,i[k]} and that it can be reconstructed from its wavelet expansion:

(4.5) f(x) =
∑
i∈Z

∑
k∈Z2

M∑
m=1

wm,i[k]ψ
(m)
i,k (x),

which is the multichannel counterpart of (4.3). Hence, the wavelets {ψ(m)
i,k } form a frame

for L2(R
2) with a global redundancy of (4/3)M . Moreover, this steerable wavelet transform

admits a fast filterbank implementation, with a computational complexity that is at most M
times that of the primal decomposition.

The bottom line is that the proposed scheme yields a whole family of steerable wavelet
transforms which are parameterized by the rectangular matrix UM,N .
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4.3. Steerable wavelet properties. By using the fact that the polar representation of the
Fourier transform of Rnψ(x) is einθh(ω), we can readily show that the Fourier transform of a
generic steerable wavelet is polar-separable; i.e.,

ψGen(x) =
N∑

n=−N

unRnψ(x)
F←→ ψ̂Gen(ω) = h(ω)û(θ),(4.6)

where û(θ) =
∑N

n=−N une
inθ is 2π-periodic. Conversely, we have the guarantee that the pro-

posed representation provides a full parameterization of the wavelets whose Fourier transform
is polar-separable because the complex exponentials {einθ}n∈Z form a basis of L2([−π, π]).

The steerable wavelet ψGen(x) is real-valued if and only if its Fourier transform is Her-

mitian-symmetric (i.e., ψ̂Gen(−ω) = ψ̂Gen(ω)). Since the real term h(ω) can be factored out,
this gets translated into the angular condition û(θ + π) = û(θ). Additionally, we can impose
symmetry by considering Fourier series with even or odd harmonic terms.

4.3.1. Even-harmonic-type wavelets. These wavelets are constructed by restricting the
sum to even terms only:

ψEven(x) =

	N/2
∑
n=−	N/2


u2nR2nψ(x).

It that case û(θ + π) = û(θ). It follows that such wavelets will be real-valued symmetric if
and only if their angular Fourier coefficients are Hermitian-symmetric:

ψEven(x) = ψEven(−x) ⇔ u2n = u−2n.

Conversely, they will be real-valued antisymmetric if and only if their Fourier coefficients are
Hermitian-antisymmetric:

ψEven(x) = −ψEven(−x) ⇔ u2n = −u−2n.

4.3.2. Odd-harmonic-type wavelets. This is the complementary type of wavelets that
involves odd-harmonic terms only:

ψOdd(x) =

	(N−1)/2
∑
n=−	(N+1)/2


u2n+1R2n+1ψ(x).

In that case û(θ + π) = −û(θ). This leads to real-valued wavelet configurations that are
transposed versions of the previous ones:

ψOdd(x) = −ψOdd(−x) ⇔ u2n+1 = u−2n−1,

ψOdd(x) = ψOdd(−x) ⇔ u2n+1 = −u−2n−1.
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4.3.3. Complex-quadrature-type wavelets. The idea here is to constrain the sum to be
one-sided:

ψComp(x) =
N∑

n=0

unRnψ(x).

When the un are real-valued (or purely imaginary), this design results in complex wavelets
whose real and imaginary components are in angular quadrature. The practical interest is
that such wavelets have a natural amplitude/phase interpretation which makes them more
robust to local deviations from the main orientation. Imposing an additional even (resp., odd)
harmonic constraint defines wavelet components that are symmetric (resp., antisymmetric) in
the spatial domain.

4.3.4. Componentwise orthogonality. By using Parseval’s relation, the isotropy of the
primal wavelet ψ, and the orthogonality of the circular harmonics, we readily compute the
inner product between two generic steerable wavelets ψ(m) and ψ(m′) as

〈ψ(m), ψ(m′)〉L2(R2) =
1

(2π)2

∫ +∞

0

∫ π

−π
|h(ω)|2ûm(θ)ûm′(θ)ωdωdθ

=
1

2π

∫ +∞

0
|h(ω)|2ωdω · 1

2π

∫ π

−π
ûm(θ)ûm′(θ)dθ

= ‖ψ‖2L2(R2) ·
N∑

n=−N

um,num′,n.(4.7)

The implication is that the L2-norm of a steerable wavelet is proportional to the �2-norm of
its circular harmonic coefficients un:

‖ψGen‖L2(R2) ∝
(

N∑
n=−N

|un|2
) 1

2

.

The above formula yields the correct normalization factor for specifying wavelet-domain
thresholding functions for image denoising. In what follows, we will refer to 1/‖u‖�2 , which is
a crucial algorithmic component (cf. [15]), as the wavelet equalization factor. Equation (4.7)
also implies that even-harmonic-type wavelets are necessarily orthogonal to all odd-harmonic-
type wavelets. Along the same line of thought, the most general statement that can be made
about componentwise wavelet orthogonality is as follows.

Proposition 4.3. Let RUM,N
ψ(x) be a set of steerable wavelets obtained by multiorder gener-

alized Riesz transform of a primal isotropic wavelet ψ with M ≤ 2N+1. Then, the component
wavelets are orthogonal if and only if UM,NUH

M,N is a diagonal matrix of size M .
While the latter requirement for orthogonality is reminiscent of the condition for self-

reversibility in Property 2, it is generally not equivalent to it unless the underlying matrices
are unitary (up to a normalization factor), in which case M = 2N +1 and the diagonal terms
are all equal.

One should also keep in mind that the type of orthogonality that is covered by Proposi-
tion 4.3 is only valid across the wavelet channels (index m) at a given wavelet-domain location
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(k, i). Indeed, there is little hope in enforcing full orthogonality across translations and dila-

tions as well, simply because the wavelet frame {ψ(m)
i,k } is overcomplete by a factor of (4/3)M .

5. Specific examples of steerable wavelet transforms. We will now investigate particular
choices of matrices U leading to the specification of interesting families of wavelets that are
both steerable and self-reversible. First, we will consider known constructions and show that
these can be formulated as particular cases of the proposed framework. We will then introduce
new families of steerable wavelets with optimized correlation and/or localization properties.

5.1. Primary examples of low-order steerable wavelets.

5.1.1. Gradient or Marr-like wavelets. The first nontrivial, real-valued case for N = 1 is
obtained with

UG =

(
i
2 0 i

2

−1
2 0 1

2

)
.

The corresponding frequency-domain formulae are i ωx
‖ω‖ = i cos θ = i

2(e
iθ + e−iθ) and i

ωy

‖ω‖ =

i sin θ = 1
2(e

iθ − e−iθ). This design, which can be traced back to the early work of Freeman
and Simoncelli (see [2, 32]), yields two gradient-like wavelets (∂xψ1, ∂yψ1) = ∇ψ1, where ψ1 =

(−Δ)−
1
2ψ is a smoothed version of the primal isotropic wavelet (isotropic fractional integral

of order 1) (cf. Figure 1(a)). This particular wavelet configuration is also the one that is used
implicitly in the Marr-like pyramid, which involves a nonbandlimited primal wavelet that is
the Laplacian of a Gaussian-like smoothing kernel [33]. Observe that the two gradient wavelets
are antisymmetric, which is consistent with the fact that they are of odd-harmonic type with
Hermitian-symmetric coefficients. Moreover, UH

GUG = diag(12 , 0,
1
2) and UGU

H
G = diag(12 ,

1
2 ),

which implies that the gradient wavelet transform is not only self-reversible (tight frame), but
also equalized (and orthogonal) on a componentwise basis. Alternatively, the wavelets may
also be encoded using a single complex quadrature-type wavelet (∂xψ1) with

UG,Comp =
(
i 0 0

)
,

which is a more concise representation of the same system.

5.1.2. Monogenic wavelets. The next interesting case that yields a full set of real-valued
wavelets for N = 1 is

UMono =
1√
2

⎛⎜⎝ 0 1 0

− i
2 0 − i

2
1
2 0 −1

2

⎞⎟⎠ .

The corresponding wavelets, which are shown in Figure 1(b), actually provide the monogenic
signal extension of the primal one:

(
ψ,Rxψ,Ryψ

)
, where Rx and Ry denote the x and y com-

ponent operators of the conventional (noncomplex) Riesz transform [25, 34]. We recall that the
monogenic signal is the 2D counterpart of the one-dimensional (1D) analytic signal. It gives
access to characteristic signal parameters such as the local orientation, phase, and amplitude,
which are transposable to the wavelet domain as well. This opens the door to various forms
of nonconventional wavelet-domain processing, such as instantaneous frequency estimation,
demodulation, tensor-based orientation, and coherence analysis [25]. The monogenic wavelet
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(N=1) (b) Monogenic wavelets (N=1)

(N=2) (N=2)

Figure 1. Comparative display of first- and second-order steerable wavelets.

transform may be viewed as an augmented version of the gradient one, which offers significant
advantages with respect to global shift invariance (thanks to its additional phase parameter).
It is built from the concatenation of an odd-harmonic set (the two gradient wavelets) and an
even-harmonic set (primal wavelet). It is easy to verify that UH

MonoUMono = diag(14 ,
1
2 ,

1
4 ) and

UMonoU
H
Mono = diag(12 ,

1
4 ,

1
4), which implies that the transform is self-reversible and compo-

nentwise orthogonal, but not fully equalized. The latter needs to be taken into account when
designing some corresponding wavelet-domain denoising procedure.

5.1.3. Hessian wavelets. With N = 2, we get access to second-order spatial derivatives.
In particular, the choice

UH = URiesz,2 =

⎛⎜⎝ −1
4 0 −1

2 0 −1
4

− i
2
√
2

0 0 0 i
2
√
2

1
4 0 −1

2 0 1
4

⎞⎟⎠
leads to the specification of the Hessian wavelets (∂xxψ2,

√
2∂xyψ2, ∂yyψ2), where ψ2 = (−Δ)−1ψ

is a smoothed version of the primal isotropic wavelet (cf. Figure 1(c)). Here, we find that
UH

HUH = diag(14 , 0,
1
2 , 0,

1
4), which confirms that the transform is self-reversible (cf. Prop-

erty 2 and Proposition 4.2). On the other hand, we have that

UHU
H
H =

⎛⎝ 3
8 0 1

8
0 1

4 0
1
8 0 3

8

⎞⎠ ,

which indicates that the Hessian wavelets are not orthogonal (or equalized) in a componentwise
fashion.

5.1.4. Simoncelli’s two- and three-component wavelets. The angular components of

Simoncelli’s filters in theM -channel steerable pyramid are proportional to {(j cos(θ−θm)
)N}

with θm = π(m−1)
M , m = 1, . . . ,M , and N =M − 1. Using the connection with the directional

Hilbert transform [13], we can obtain the differential interpretation, ψ
(m)
Sim ∝ DN

θm
(−Δ)−

N
2 ψ,

where DN
θm

is theNth directional derivative along the direction θm and (−Δ)−
N
2 is the isotropic

fractional integrator of order N , which is a smoothing operator. For N = 1, we end up with
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directional derivatives along the two coordinate directions (θ1 = 0 and θ2 = π/2) so that
the 2-channel version of the steerable pyramid is in fact rigorously equivalent to the gradient
wavelet transform described above.

The case N = 2 is more instructive because it brings out the specificities of the equiangular
design, which is distinct from the other solutions considered here. The transform parameters
for Simoncelli’s 3-channel solution are given by

USim,2 =

⎛⎜⎜⎜⎝
− 1

3
√
2

0 −
√
2
3 0 − 1

3
√
2

− (−1)2/3

3
√
2

0 −
√
2
3 0

3√−1

3
√
2

3√−1

3
√
2

0 −
√
2
3 0 − (−1)2/3

3
√
2

⎞⎟⎟⎟⎠ .

The corresponding wavelets, which are shown in Figure 1(d), are rotated versions at angles
0, π/3, 2π/3 of the second-derivative wavelet ∂xxψ2 (first component of Hessian-like transform).
A direct calculation shows that UH

Sim,2USim,2 = diag(16 , 0,
2
3 , 0,

1
6), which can be taken as a

confirmation that the steerable pyramid is indeed self-reversible. The Gram matrix of the
wavelets is given by

USim,2U
H
Sim,2 =

⎛⎜⎝
1
3

1
6

1
6

1
6

1
3

1
6

1
6

1
6

1
3

⎞⎟⎠ ,

which is far from diagonal.
The important point that we want to make here is that the Simoncelli-3 and Hessian

wavelets, which are both of even-harmonic type (ridge detectors), actually span the same
steerable subspaces; yet, they are both fundamentally distinct from the point of view of shape
diversity. The present analysis would even suggest that the Hessian wavelet transform could
be an attractive substitute because of the natural link it makes with differential geometry and
its more favorable correlation properties (smaller off-diagonal terms).

5.2. Circular harmonic wavelets. The circular Harmonic wavelets, which go back to the
work of Jacovitti and Neri [12], stand out as the canonical basis of the proposed wavelet
parameterization. The associated weighting matrix is proportional to the (2N +1)× (2N +1)
identity matrix

U2N+1,N =
1√

2N + 1
I2N+1.

The corresponding wavelet transform is self-reversible and fully equalized by construction.
The circular harmonic wavelets with n ∈ Z are best characterized in the frequency domain:

ψ̂
(n)
circ(ω) = ψ̂(ω)einθ = h(ω)einθ,(5.1)

where ω and θ are the polar frequency-domain variables. Note that the above definition does
not include the normalization factor which is dependent on N .

The circular Harmonic wavelets satisfy the recursive space-domain formula ψ
(n)
circ =

Rψ(n−1)
circ = Rnψ

(0)
circ, where ψ

(0)
circ = ψ is the primary isotropic wavelet.

They can also be determined analytically by calculating their inverse Fourier transform.
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Proposition 5.1. The circular harmonic wavelets are given by

ψ
(n)
circ(r, φ) =

1

2π
Hn(r)e

inφ,(5.2)

where

Hn(r) =

∫ +∞

0
h(ω)Jn(rω)ωdω

is the nth-order Hankel transform of the radial frequency profile h(ω).
Proof. First, we note that 〈x,ω〉 = rω cos(φ − θ), where x = r(cos φ, sinφ) and ω =

ω(cos θ, sin θ). This allows us to write the polar version of the inverse 2D Fourier transform
of (5.1) as

ψ
(n)
circ(r, φ) =

1

(2π)2

∫ π

−π

∫ +∞

0
h(ω)einθejωr cos(φ−θ)ωdωdθ

=
1

(2π)2

∫ +∞

0
h(ω)ω

∫ α0+2π

α0

ein(φ+α)−iωr sinαdαdω

=
1

2π

∫ +∞

0
h(ω)ω

(
1

2π

∫ 2π

0
einα−iωr sinαdα

)
dω einφ,

where we have made the change of variables φ−θ = α+ π
2 with α0 = φ− 3π

2 . Next, we identify
the latter inner integral as the nth-order Bessel function of the first kind,

Jn(x) =
1

2π

∫ 2π

0
ei(nα−x sinα)dα.(5.3)

This allows us to rewrite ψ
(n)
circ(r, φ) as

ψ
(n)
circ(r, φ) =

einθ

2π

∫ +∞

0
h(ω)Jn(rω)ωdω︸ ︷︷ ︸

Hn(r)

,

where the remaining integral is the nth-order Hankel transform of h (cf. [35]).
The interest of this result is that the circular harmonic wavelets are polar-separable in

the space domain as well. Indeed, there is a nice duality between the polar Fourier and
space-domain formulae (5.1) and (5.2) with the radial profiles h(ω) and Hn(r) being nth-
order Hankel transforms of one another. This yields a series of complex wavelets with an
aesthetically appealing n-fold circular symmetry (cf. Figure 2(a)). We need to emphasize
that the above space-domain separability property is truly specific to the circular harmonic
wavelets. The flip side of the coin is that these wavelets completely lack angular selectively,
which happens to be a handicap for most applications.
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(a) Circular harmonic wavelets (N = 5). Top/middle/bottom line: real part, imaginary part and
absolute value, respectively.

(b) Symmetric Riesz wavelets (N = 4).

(c) Anti-symmetric Riesz wavelets (N = 5).

(d) 5-channel equiangular wavelets (N = 4).

(e) 6-channel equiangular wavelets (N = 5).

Figure 2. Examples of high-order steerable wavelets.

5.3. Equiangular designs and Simoncelli’s wavelets. We are now proposing a general-
ization of Simoncelli’s equiangular design without any restriction on the angular shaping filter
û(θ). We will consider two situations: the general M -channel complex case withM ≥ 2N +1,
and a reduced M ′-channel real-valued version with M ′ = M/2 ≥ N + 1 which encompasses
Simoncelli’s solution.

The idea is to pick a first directional wavelet ψ(1)(x) =
∑N

n=−N u1,nRnψ(x) where the
weights in the expansion can be selected arbitrarily up to a normalization factor and to specify
the others as the rotated versions of the first in an equiangular configuration. Specifically, we
have that ψ(m)(x) = ψ(1)(Rθmx), where the rotation angles θm = 2π(m−1)

M with m = 1, . . . ,M
are equally spaced around the circle.

The weighting matrix entries of the rotated wavelets are then obtained by applying the
steering property (Property 3):

um,n = u1,ne
−inθm.
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118 MICHAEL UNSER AND NICOLAS CHENOUARD

The remarkable property is that the proposed directional wavelet configuration is self-
invertible, irrespective of the actual choice of ψ(1). While this may be established in the
linear algebra framework via the factorization of some underlying discrete Fourier matrices,
we prefer to approach the problem from a signal processing perspective. Specifically, we will
show that the required frame property

∑
i∈Z

M∑
m=1

|ψ̂(m)
i (ω)|2 = 1

is automatically satisfied provided that
∑N

n=1 |u1,n|2 = 1
M .

Theorem 5.2. Let U(z) =
∑N

n=−N unz
−n, where the un are arbitrary complex coefficients,

and let M be an integer greater than or equal to 2N + 1. Then, the equiangular directional
wavelets {ψ(m)}Mm=1 whose Fourier transforms are given by ψ̂(m)(ω) = ψ̂(ω)ûm(θ) with θ =
∠ω and

(5.4) ûm(θ) =
U(ei(θ−

2π(m−1)
M

))√
M
∑N

n=−N |un|2

are such that
∑M

m=1 |ψ̂(m)(ω)|2 = |ψ̂(ω)|2.
Proof. The crucial observation is that the coefficients an of the product polynomial

U(z)U(z−1) =
2N∑

n=−2N

anz
n

correspond to the autocorrelation of the sequence un (of length 2N + 1); in particular, this
implies that the terms with index |n| > 2N are necessarily zero. Therefore, if we down-sample
the sequence an by a factor M > 2N , we are left with a single nonzero coefficient at the origin:
a0 =

∑N
n=−N |un|2. In the frequency domain, this down-sampling operation corresponds to a

periodization, leading to the identity

(5.5)
1

M

M∑
m=1

|U(ei(θ−
2π(m−1)

M
))|2 = a0,

where the right-hand side is the Fourier transform of the remaining impulse. This is equivalent
to

M∑
m=1

|ûm(θ)|2 = 1

with the circular harmonic filters being specified by (5.4).
Next we observe that there are many instances of the above design where the wavelets

appear in duplicate form, meaning that the effective number of wavelet channels can be
reduced by a factor of two.

Corollary 5.3. Let U(eiθ) =
∑N

n=−N une
−inθ be an arbitrary trigonometric polynomial of or-

der N such that |U(eiθ)| = |U(ei(θ+π))|. Then, the equiangular directional wavelets {ψ(m)}M ′
m=1D
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2D STEERABLE WAVELET TRANSFORMS 119

with M ′ ≥ N + 1 whose Fourier transforms are given by ψ̂(m)(ω) = ψ̂(ω)ûm(θ) with θ = ∠ω
and

(5.6) ûm(θ) =
U(ei(θ−

π(m−1)

M′ ))√
M ′∑N

n=−N |un|2

are such that
∑M ′

m=1 |ψ̂(m)(ω)|2 = |ψ̂(ω)|2.
Proof. This can be seen by examining (5.5) in the particular case whereM = 2M ′ is even.

The π-periodicity condition on |U(eiθ)| implies that the sum from 1 to M is twice the sum
from 1 to M ′.

Note that the condition in Corollary 5.3 is automatically satisfied when the first direc-
tional wavelet ψ(1)(x) is real-valued or purely imaginary. Corollary 5.3 slightly extends and
corrects1 an earlier result of ours [13, Theorem 2] where the admissibility condition on the
filter was incorrectly stated. It also covers Simoncelli’s classical design, which corresponds to
the particular choice U(z) = i(z+z−1

2 )N with M ′ = N + 1.

5.4. High-order Riesz wavelets and partial derivatives. We have investigated the Nth-
order Riesz wavelets extensively in our previous work [13]. To show how these fit into the
present framework, we write the Fourier transform of the Riesz wavelets of order N as

ψ̂
(m)
Riesz(ω) = ψ̂(ω)ûm(θ) with ûm(θ) =

√(
N

m

)
(−i)N (cos θ)N−m(sin θ)m,

with m = 0, . . . , N and M = N + 1. In the space domain, this translates into real-valued
(resp., purely imaginary) wavelets with an Nth-order partial-derivative-like behavior:

ψ
(m)
Riesz(x) ∝ ∂N−m

x ∂my ψN (x),

where the isotropic kernel function ψN (x) = (−Δ)−
N
2 ψ(x) is a smoothed version of the primal

wavelet ψ. This makes the link with the gradient and Hessian wavelets in section 5.1, which
are the Riesz wavelets of orders 1 and 2, respectively.

The thought-after parameterization is obtained by computing the Fourier series coefficients
of ûm(θ), which amounts to plugging in the Euler relations cos θ = eiθ+e−iθ

2 and sin θ = eiθ−e−iθ

2i
and performing the polynomial expansion. The end result is an (N +1)× (2N +1) weighting
matrix URiesz,N = UN+1,N which automatically meets the condition in Property 2 because
the Nth-order Riesz transform is self-reversible by construction [13]. While UH

Riesz,NURiesz,N is
diagonal, the converse property is not satisfied for N > 1, meaning that the higher-order Riesz
wavelets are not equalized. Another important observation is that the Riesz wavelets of odd
order are of odd-harmonic type (antisymmetric contour detectors), while the Riesz wavelets

1Addendum to Theorem 2 of [13]: The introductory statement “Let H(eiθ) =
∑N

k=−N c[k]eiθ where the

c[k]’s are arbitrary real-valued (or purely imaginary) coefficients” should be replaced with “Let H(eiθ) =∑N
k=−N c[k]eikθ) be an arbitrary trigonometric polynomial such that |H(eiθ)| = |H(ei(θ+π))|” and the corre-

sponding statement in the proof on p. 645, 2nd column, line 11 “since the coefficients are real-valued (or purely
imaginary)” deleted.

D
ow

nl
oa

de
d 

02
/2

5/
13

 to
 1

28
.1

78
.4

8.
12

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

120 MICHAEL UNSER AND NICOLAS CHENOUARD

of even order are of even-harmonic type (symmetric, ridge detectors). This is illustrated in
Figure 2(b)–(c).

As example of higher-order parameterization, we provide

URiesz,3 =

⎛⎜⎜⎜⎜⎝
i
8 0 3i

8 0 3i
8 0 i

8

−
√
3
8 0 −

√
3
8 0

√
3
8 0

√
3
8

− i
√
3

8 0 i
√
3

8 0 i
√
3

8 0 − i
√
3

8
1
8 0 −3

8 0 3
8 0 −1

8

⎞⎟⎟⎟⎟⎠ .

A direct calculation shows that UH
Riesz,3URiesz,3 = diag(18 , 0,

3
8 , 0,

3
8 , 0,

1
8), which confirms that

the transform is self-reversible. On the other hand, we have that

URiesz,3U
H
Riesz,3 =

⎛⎜⎜⎜⎝
5
16 0

√
3

16 0

0 3
16 0

√
3

16√
3

16 0 3
16 0

0
√
3

16 0 5
16

⎞⎟⎟⎟⎠ ,

which expresses the fact that the Riesz component wavelets are partially correlated.

5.5. Concatenation of even- and odd-harmonic wavelets. While the above Riesz wave-
lets provide a family with interesting differential properties, they do not span the full space
of steerable functions of order N . This becomes obvious if we recall that they are made up of
functions that are all either symmetric or antisymmetric. The same remark is applicable to
Simoncelli’s equiangular design. The situation can be fixed easily through the concatenation
of odd/even wavelet families at successive orders N − 1 and N . The advantage of such
a construct is two-fold: (1) the resulting matrix is square of size (2N + 1), meaning that
the concatenated wavelets provide a basis of the steerable functions of order N , and (2) the
correlation structure does not deteriorate because the even wavelets are necessarily orthogonal
to the odd ones. The latter property actually ensures that the concatenated transform is self-
reversible, albeit not necessarily equalized. A prototypical example is the monogenic wavelet
transform in section 5.1.2, which is obtained from the concatenation of the Riesz wavelets of
orders 0 and 1.

5.6. Prolate spheroidal wavelets. A convenient way of constructing other families of
wavelets is to consider the generic parameterization

U2N+1,N =
1√

2N + 1
U,

where U is some unitary matrix of size (2N + 1). The trivial case U = Identity yields the
circular harmonic wavelets which have no angular selectivity. Here, we propose exploring the
other extreme, which calls for the identification of the “most directional” wavelets with an
angular profile û(θ) that is maximally concentrated around some central orientation θ0. A
possible solution to this design problem is provided by Slepian’s discrete prolate spheroidal
sequences, which maximize the energy concentration of û(θ) =

∑
n une

iθ in a rectangular
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2D STEERABLE WAVELET TRANSFORMS 121

window of relative size B [36, 37]. A variation of Slepian’s formulation, which is presented
in the appendix and better suited to our problem, is to minimize the angular variance of the
profile:

σ2u =

∫ +π
−π |û(θ)|2θ2dθ∫ +π
−π |û(θ)|2dθ

.

More generally, we may replace the quadratic term w1(θ) = θ2 in the numerator by some
weighting function w(θ) ≥ 0. To account for the fact that the angular profiles corresponding
to real-valued wavelets are such that |û(θ)| = |û(θ + π)| (Hermitian symmetry of the 2D
Fourier transform), we also introduce a periodized version of the above variance measure
corresponding to the window function

w2(θ) = χ[−π,−π/2](θ) (θ + π)2 + χ[−π/2,π/2](θ) θ
2 + χ[π/2,π](θ) (θ − π)2,

where χ[θ1,θ2](θ) denotes the indicator function for the interval [θ1, θ2]. The bottom line is
that the specification of a particular window function w gives rise to an eigenvalue problem
that involves a symmetric matrix W(w) of size 2N + 1, as detailed in the appendix. The
eigenvectors ofW(w), which are generalized Slepian sequences, then specify the unitary matrix
U corresponding to an orthogonal set of wavelets with optimal angular localization.

We note that a similar method of optimization was proposed by Simoncelli and Farid
for the derivation of the harmonic components of steerable wedge-like feature detectors [38].
The main difference is that these authors restricted their attention to an equiangular design
(first eigenvector only) and did not investigate the issue of the reversibility of such a feature
extraction process.

5.7. Signal-adapted wavelets. In a recent paper [15], we introduced the steerable PCA
wavelets which were constructed by appropriate linear transformation of the Nth-order Riesz
wavelets of section 5.4. We also found that the application of an equalization step prior to
PCA would significantly boost the denoising performance of such signal-adapted transforms.
This concept is transposable to the present framework, which brings two advantages. First,
performing the training on the circular harmonic wavelets simplifies the process and avoids
the need for equalization. This phase involves the estimation and eigenvector decomposition
of the scatter matrices of the steered wavelet coefficients of some reference image(s) on a
scale-by-scale basis. Second, the fact of considering an enlarged space of steerable wavelets
(2N + 1 circular harmonic wavelets as compared to the N + 1 Riesz wavelets of our initial
formulation) gives access to a wider range of wavelet shapes that combines symmetric and
antisymmetric feature detectors.

The implementation details are directly transposable from [15, section V.A-B] after sub-
stitution of the equalized Riesz wavelets coefficients by the circular harmonic ones. The
fundamental ingredient that makes the transform rotation invariant is the steering mecha-
nism that is applied at every wavelet-domain location (i,k) prior to the evaluation of the
wavelet coefficients. This is achieved by using a structure tensor approach, which amounts to
the determination of the direction that maximizes the local energy in the first component of
the gradient wavelets in section 5.1.1. Some examples of fine-scale PCA wavelets for the Lena
image and N = 4, 5 are shown in Figure 3. Interestingly, they happen to be rather similar to
the corresponding sets of generalized Slepian wavelets shown below.
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122 MICHAEL UNSER AND NICOLAS CHENOUARD

(a) Finer-scale PCA wavelets for Lena (N = 4)

(b) Finer-scale PCA wavelets for Lena (N = 5)

(c) Even-harmonic Generalized Slepian wavelets (N = 4)

(d) Odd-harmonic Generalized Slepian wavelets (N = 5)

Figure 3. Examples of optimized steerable wavelets.

6. Experimental results. We now illustrate the ability of the proposed framework to
reproduce state-of-the-art results in wavelet-based image processing. A significant aspect is
that we are actually able to improve upon previous algorithms by optimizing the steerable
wavelets for some given task.

6.1. Equiangular design for BLS-GSM denoising. The Bayes least squares Gaussian scale
mixture (BLS-GSM) algorithm exploits Simoncelli’s pyramid for removing noise in images [4].
It provides state-of-the art performance among wavelet-based methods. The BLS-GSM relies
on local wavelet-domain statistics and uses an elaborate processing to estimate the wavelet
coefficients of the signal. While the original version uses Simoncelli’s wavelets, the algorithm
can be run on other equiangular configurations with N + 1 rotated filters equally distributed
between 0 and π (as specified in Corollary 5.3 with M ′ = N +1). To test the influence of the
angular filter, we considered three choices for the primary wavelet function:

• û1(θ) ∝ (−i)N cos(θ)N , which corresponds to an Nth-order Riesz wavelet and gener-
ates the standard Simoncelli pyramid.

• The most directional profile û1(θ) according to the prolate spheroidal design (cf. sec-
tion 5.6).

• The first component of the wavelet-domain PCA (cf. section 5.7). Since the energy of
the noise is constant across all wavelet channels, this is the filter that maximizes the
SNR after proper steering.

We have applied the BLS-GSM to several images corrupted by additive white Gaussian noise
with different standard deviation values σnoise using the three equiangular frames with odd
harmonics of degree N = 7.

The results in Table 1 indicate that the angular profile of the equiangular frame affects
denoising performance. While the difference between the different methods varies with the
noise level and the type of image, we found that the prolate spheroidal design consistently gave
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Table 1
BLS-GSM denoising performance measured as the peak signal-to-noise ratio (20 log10(255/σerror)) in dB.

The results are averaged over 50 independent noise samples (white and Gaussian) for three conditions specified
by the standard deviation σnoise.

Barbara

σnoise/PSNR 15 / 20.17 25 / 24.61 50 / 14.15

Simoncelli 31.89 29.14 25.47

Prolate 32.05 29.46 25.95

Signal-adapted 31.89 29.30 25.83

Lena

σnoise/PSNR 15 / 20.17 25 / 24.61 50 / 14.15

Simoncelli 34.02 31.83 28.82

Prolate 34.09 31.90 28.89

Signal-adapted 34.05 31.88 28.86

Texture

σnoise/PSNR 15 / 20.17 25 / 24.61 50 / 14.15

Simoncelli 28.33 25.55 22.10

Prolate 28.46 25.73 22.36

Signal-adapted 28.35 25.66 22.35

the best results. We believe that this is a consequence of its optimal angular localization, which
also minimizes the residual correlation among the channels (νProl = ‖G− diag(G)‖2/‖G‖2 =
0.163 with Gram matrix G = UUH), as opposed to the Simoncelli frame channels, which are
more correlated (νSim = 0.566). This property is favorable for the BLS-GSM algorithm which
processes the wavelet channels independently. More surprising is the finding that the prolate
solution also (slightly) outperforms the signal-adapted design (PCA). This may be explained
by the learning procedure which uses rotation-invariant coefficients through steering, while
only approximate rotation invariance is achieved by the BLS-GSM algorithm which does not
accommodate steering. Another observation is that the gap between the different methods
tends to grow with the noise energy, except for Lena, where the differences are marginal.

To test the influence of the number of channels, we run BLS-GSM denoising on the Barbara
image corrupted by a white-Gaussian noise of standard deviation 50, while varying the order
of the Riesz frame. The SNR results shown in Figure 4 are averaged over 100 trials. While the
differences with the basic algorithm (Simoncelli) are negligible at low orders where the degrees
of freedom are few (N < 3), they become significant as the number of channels increases.
The performance eventually reaches a plateau, which happens around N = 20 for the Prolate
filters. We therefore conclude that this latter design is the most advantageous computationally
because it can yield better results with fewer channels. We also note that there is no major
difference between using even and odd harmonics, which is somewhat surprising.

6.2. Curvelet-like wavelets and application to pattern separations. Directional systems
of functions such as curvelets [17], contourlets [18], and shearlets [20] are often contrasted
with conventional wavelets and presented as alternatives. In the following, we draw a parallel
between these directional transforms, which we call curvelet-like frames for historical reasons,
and equiangular generalized Riesz wavelets which can be judiciously combined to offer the
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Figure 4. BLS-GSM denoising performance for the Barbara image, measured as the peak signal-to-noise ra-
tio (20 log10(255/σerror)) in dB, as a function of the Riesz order. The results are averaged over 100 independent
white-Gaussian noise samples with standard deviation 50.

same functionality. We then demonstrate the use of our wavelets for the separation of image
patterns.

6.2.1. Construction of curvelet-like frames. Since curvelets and steerable wavelets share
the same notion of multiresolution and directional analysis, we focus here on the task of
reproducing the main features of the first ones in the proposed framework. We recall that the
continuous-domain curvelet transform of a signal f ∈ L2(R

2) is encoded in a set of coefficients
c(m, l,k) which is indexed with respect to scale (m = 1, . . . , J), orientation (θl = 2πl · 2	m/2


with l = 0, 1, . . . such that 0 ≤ θl < 2π), and location (k = (k1, k2) ∈ Z
2) [39]. Using Parseval’s

relation, the coefficients are obtained by computing the frequency-domain inner products

(6.1) c(m, l,k) =
1

(2π)2

∫
Um(Rθlω)e

−i〈x(m,l)
k ,ω〉f̂(ω)dω,

where Rθl is the rotation matrix for the angle θl, x
m,l
k = R−1

θl
(k1 · 2−m, k2 · 2−m/2) the corre-

sponding sampling location, and Um a smooth frequency window which has a polar-separable
expression. The two implementations proposed in [39] are based on a digital coronization of
the frequency plane on a Cartesian grid, which allows for some sampling rate reduction. Ulti-
mately, this results in a discrete transform with a moderate redundancy factor (� 7.2). The
link with the continuous version of the transform, however, is partly lost (e.g., rotations are re-
placed by shearing operations). By contrast, shearlets are defined via the continuous-domain
translation, dilation, and shearing of a single mother function [40]. The main motivation
behind this design is that shearing is easier to discretize than rotation, which results in a
more faithful digital implementation [22]. We propose here using the generalized Riesz trans-
form paradigm to obtain a digital version of the continuous-domain curvelet transform at the
expense of some redundancy.

Our generalized Riesz wavelets are suitable candidates for approximating curvelets since
both the frequency window Um and the Fourier transform of the wavelets are polar-separable
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2D STEERABLE WAVELET TRANSFORMS 125

Figure 5. Example of basis functions for the real curvelet transform and the proposed Riesz-wavelet coun-
terpart. Left: some real curvelet functions at different scales (in separated boxes) for 16 bands at the coarsest
scale. Then, from left to right: Riesz-wavelet functions for 16, 12, and 8 bands at the coarsest scale, respectively.

[cf. (4.6)]. Equation (6.1) also suggests taking an equiangular Riesz transform to reproduce the
equispaced rotation sequence of the frequency window Um. Finally, to replicate the parabolic
scaling of curvelets, we double the order of the generalized Riesz transform every two scales.
For the angular shape of the frequency window, we propose two different configurations:

1. Prolate spheroidal design with positive harmonics. This design is closely related to
the usual curvelet transform; it yields max-directional complex-valued wavelets whose
Fourier transforms are thin, one-sided functions.

2. Real prolate spheroidal design. This design uses both positive and negative harmon-
ics to produce real-valued basis functions, which are better suited for certain image
processing tasks.

The so-defined frames are automatically tight as a result of the construction. Some examples
of basis functions are shown in Figure 5 for the real-valued transforms. The main point is
that we are able to closely reproduce the curvelet behavior within the proposed framework
with the added benefit that our steerable wavelets have a better angular selectivity (max-
directional design). The prolate-Riesz wavelets are typically more elongated in space, which
allows us to achieve an equivalent angular discrimination with fewer channels (e.g., 16 bands
for the curvelet transform vs. 8 bands for the max-directional wavelet transform). Moreover,
reducing the number of channels does not affect rotation invariance since our Riesz wavelets
are inherently steerable, unlike curvelet-like frames. Figure 6 illustrates the Fourier-domain
partitioning achieved with complex-valued curvelets, real-valued shearlets, and the proposed
steerable wavelets. The latter configuration is more favorable for directional analyses since the
frequency responses of the curvelet-like wavelets are rotated versions of each other. Note that
the shearlets’ frequency profiles are not quite as sharp because the underlying basis functions
are compactly supported in the space domain [41].

6.2.2. Pattern separation with directional frames. A nice application of wavelets and
curvelet-like frames is sparsity-based source separation [42]. The idea is to separate signal
components with different morphologies based on the premise that these are compactly rep-
resented in terms of distinct families of basis functions (frames). The formulation assumes a
linear mixture model where the observed image f ∈ R

K is decomposed as f = n +
∑I

i=1 si,
where n is a disturbance term (noise) and each of the sources si = Fici has a “sparse” repre-
sentation (with coefficients ci ∈ R

Li) in some corresponding frame represented by the K ×Li

matrix Fi. The morphological component analysis (MCA) algorithm [42] separates the sources
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126 MICHAEL UNSER AND NICOLAS CHENOUARD

(a) Curvelets (b) Shearlets (c) Max-dir steerable wavelets

Figure 6. Fourier domain tiling achieved by the complex curvelet, compactly supported shearlets, and max-
directional wavelet transforms. The bandpass region of each band has been sequentially colored in red, blue, and
green, so as to highlight frequency coverage overlaps between bands.

by maximizing the following cost function:

(6.2) {c
1, . . . , c
I} = arg min
c1,...,cI

∥∥∥∥∥f −
I∑

i=1

Fici

∥∥∥∥∥
2

2

+ λ

I∑
i=1

‖ci‖pp,

where the right-hand-side regularization typically involves an �1-norm or the pseudo–�0-norm
of the coefficients. MCA is an iterative coarse-to-fine algorithm. Each iteration t requires the
computation of the residuals Δfj = f −∑I

i=1,i =j Fic
′
i (where the c′i are the current source

estimates) and a solution update via the evaluation of cj = argminc ||Δfj−Fjc||22+λt||c||pp for
each dictionary Fj. When the frame is tight, the latter is achieved in one step by thresholding
the projection FT

j Δfj of Δfj in the current dictionary. The relaxation parameter λt ∈ R
+ is

decreased over the iterations towards λ, and the sources are finally recovered as {si = Fic


i }Ii=1.

Combining wavelets and curvelets is a typical choice for separating isotropic objects (e.g.,
stars) from more elongated patterns (e.g., galaxies) [42]. This technique has been applied
quite successfully in astronomy and, more recently, in biological imaging [43, 44]. Here, we
propose instead using specific combinations of generalized Riesz wavelets. Figure 7 displays an
example of isotropic vs. elongated source separation obtained from a fluorescence micrograph
of neuronal cells. The first function system is provided by the primary isotropic wavelet pyra-
mid (N = 0), while the directional set is given by the curvelet-like transform with M = 16
fine-scale directional channels. The optimization was achieved by performing 100 MCA itera-
tions and applying a hard threshold to solve the inner minimization problems (p = 0); we also
imposed a positivity constraint on the reconstructed sources, which complies with the additive
intensity model of fluorescence images. We see that the sources s1 and s2 contain exclusively
isotropic and elongated features, respectively, which correspond to different biological objects
(vesicles vs. axons). Automatic image analysis and biological event quantitation (such as
particle detection) are therefore facilitated.

In this application, working with generalized Riesz wavelets can also bring design flexi-
bility and computational benefits. For instance, we can neglect between-scale dependencies
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(a) Original image (detail) (b) Source mixture: s1 + s2

(c) Estimated source: s1 (d) Estimated source: s2

Figure 7. Source separation results for a microscopy image using generalized Riesz-wavelet frames. The
original fluorescence micrograph shows a mixture of linear (axons) and spotty features (vesicles). These are
separated using MCA with a combination of isotropic (N = 0) and directional, curvelet-like (N = 15) wavelet
dictionaries.

and perform the separation one scale at the time since the function systems share the same
multiresolution structure/elementary Riesz atoms. Moreover, the curvelet-like transform can
be replaced by a less redundant nonequiangular design, such as the full prolate spheroidal or
PCA solutions. This is justifiable provided that we properly steer the transform and express
the sparsity constraint in the locally oriented wavelet system. There is also the possibility of
penalizing certain basis functions more than others. As an example, we show in Figure 8 the
separation results obtained with a full PCA frame (trained on elongated features-only images)
of lower order (even harmonics, N = 4). The quality of the separation is comparable to that
shown in Figure 7, or when using the original curvelet transform, while the computational cost
is lowered significantly. One promising future direction is to specifically adapt each dictionary
to a source with a learning technique such as the proposed PCA-based procedure.

We have also performed experiments on synthetic images in order to compare the sep-
aration performance of the proposed wavelet frames with that of curvelets and shearlets.
Using the benchmark proposed in [45, Figure 5], we found that steerable wavelets could essen-
tially replicate the performance of compactly supported shearlets and yield better results than
curvelets (data not shown). These examples using real and synthetic images are intended to
demonstrate that the proposed wavelets constitute an attractive alternative to curvelets and
shearlets for image analysis and processing. On the other hand, generalized Riesz wavelets are
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(a) Estimated source: s1 (b) Estimated source: s2

Figure 8. Source separation for the biological image in Figure 7(a) using MCA with a combination of
isotropic (N = 0) and low-order PCA wavelet frames (N = 4). Rotation invariance is achieved by steering the
coefficients according to the local orientation.

not as favorable for data compression—or asymptotically optimal for encoding cartoon-like
images—because they are more redundant, which is the price to pay for steerability.

6.3. Discriminant frame learning. We have shown above that a combination of gen-
eralized Riesz transforms can be used to separate signals with different morphologies. An
alternative approach is to design a single transform that discriminates between signal classes.
We formulate this principle as the construction of the generalization matrix Ũ that maximizes
the difference of relative energy contribution of the two signals across wavelet channels. The
relevant discriminant index is

(6.3) βU(W1,W2) =

M∑
m=1

(‖W1um‖2 − ‖W2um‖2)2
‖W1um‖2 · ‖W2uk||2 =

M∑
m=1

βum(W1,W2),

whereW1 andW2 are K×M matrices containing the wavelet coefficients of the two signals for
a real primary generalized Riesz transform withM channels at a given scale. It is shown in [46]
that for such a problem the optimal linear transform Ũ = argmaxU=[u1,...,uM ] βU(W1,W2)
satisfies

(6.4) C1ũm = γmC2ũm for m = 1, . . . ,M,

where C1 and C2 are the M ×M covariances matrices of the coefficients for the two signal
classes (C1 = W T

1 W1 and C2 = W T
2 W2 in our case), and γm ∈ R

+. A particular solution of
(6.4) is given by a matrix Ũ that jointly diagonalizes C1 and C2. Such a matrix exists for any
symmetrical matrices C1 and C2; however, it is not unique and is generally nonorthogonal.
In practice we rewrite the joint-diagonalization task as a generalized eigenvalue problem with
symmetric-definite matrices, which we solve using Cholesky factorization and Schur decom-
position [47].

We have used the proposed frame learning technique for discriminating the two textures
from the Brodatz database shown in Figure 9. As the primary Riesz frame, we have used a
steerable pyramid with five channels (even harmonics) and four scales. In a first experiment,
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Figure 9. Two sample texture images from the Brodatz dataset. We focus on learning generalized Riesz
wavelet frames that are able to discriminate them.

we learned a generalization matrix U without steering the wavelet coefficients. The resulting
basis functions for the first two scales are shown in Figure 10 along with the corresponding
partial separation indices. At the finest scale, the first texture exhibits a dominant diagonal
orientation (45 degrees), while the second is mainly composed of horizontal and vertical edges.
The most discriminant filter (βu1 = 1.83) is a ridge-like pattern with 45 degree orientation.
At the second scale, the second texture is composed mainly of ridge patterns oriented along
the two diagonals. The 45 degree ridge pattern is thus no longer discriminating. Figure 10(b)
shows that the best filter (βu3 = 10.20) is now a ridge-like function with a −45 degree
orientation. This demonstrates the ability of the method to adapt to the texture classes at
different scales. Table 2 documents the improvement in texture separation that is achieved
by this type of learning technique.

There are also applications where one would like to factor out orientation. This can be
achieved easily by steering the wavelet coefficients along the preferential local orientation
prior to feature extraction, which makes the analysis rotation-invariant. We show the re-
sulting filters in Figure 11. The main difference with Figure 10 is that the orientation of
the new discriminating wavelets is no longer correlated with that of the initial pattern. For
the first scale, the most discriminant filter (βuM=1.89) is orthogonal to the dominant local
direction (horizontal axis). This helps in separating the two textures: the second contains
many cross-like patterns with strong orthogonal components to the main direction, while the
first is composed mainly of “pure” ridges. For the second scale, the most discriminating filter
(βuM

=3.30) is once again typical of the second texture: a step-like pattern, which is hardly
found in texture 1. Finally, the results in Table 2 confirm that the optimized wavelets are bet-
ter at discriminating the two textures than the standard equiangular design. We also see that
a joint optimization is superior to a PCA-type design targeted to either one of the textures.

7. Conclusion. We have presented a general parameterization of 2D steerable wavelet
frames. The scheme is interesting both conceptually and computationally. Since the con-
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1.83 0.30 0.33 0.71 1.45
(0.20-0.10) (0.09-0.07) (0.06-0.08) (0.08-0.11) (0.08-0.14)

(a) Scale 1 basis functions

0.68 0.05 10.20 1.81 1.05
(0.08-0.05) (0.29-0.32) (0.07-0.23) (0.08-0.15) (0.06-0.10)

(b) Scale 2 basis functions

Figure 10. Discriminant filters for the two textures in Figure 9 and nonsteered wavelet coefficients (N = 4
with even harmonics). Below each image is the discriminant index βum and the wavelet-coefficient standard
deviation for the two textures (second line).

Table 2
Comparison of the ability of generalized wavelet families to discriminate the textures in Figure 9. The

figure of merit defined by (6.3) is computed for the first two scales. The experiment was repeated twice using
conventional vs. steered (rotation-invariant) feature extraction.

Coefficient steering Frame
βU(W 1,W 2)

scale 1 scale 2

Nonsteered
Simoncelli 3.07 9.90
Optimized 4.61 13.79

Steered

Simoncelli 3.43 6.77
Signal-adapted (texture 1) 5.43 8.65
Signal-adapted (texture 2) 4.19 6.52

Optimized 5.57 8.67

straints on the wavelet shaping matrix U are minimal, it facilitates the design of steerable
wavelets while opening up new possibilities. It also provides a unifying perspective and a bet-
ter global understanding of the choices and design compromise made in existing transforms,
including Simoncelli’s steerable pyramid. The fact that the wavelets are bandlimited with
simple Fourier-domain expressions also suggests a generic decomposition algorithm where one
first expands the signal in terms of circular harmonic wavelets using FFT-based filtering and
then extracts the desired wavelet coefficients by simple matrix multiplication with U. We also
note that steering is best done in the circular harmonic domain where it amounts to a sim-
ple pointwise (complex) multiplication (self-steerability property). The image reconstruction
algorithm applies the same steps in reverse order and amounts to the flow graph transpose
of the analysis, thanks to the tight frame property (self-reversibility). Our generic MATLAB
software is available publicly at http://bigwww.epfl.ch/demo/circular-wavelets.
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0.14 0.20 2.05 2.98 3.30
(0.07-0.09) (0.09-0.12) (0.05-0.10) (0.07-0.15) (0.05-0.12)

0.80 0.24 1.07 1.89 1.57
(0.16-0.10) (0.06-0.08) (0.07-0.11) (0.05-0.09) (0.05-0.08)

(a) Scale 1 basis functions

(b) Scale 2 basis functions

Figure 11. Discriminant filters for the two textures in Figure 9 and steered Riesz wavelet coefficients
(N = 4 with even harmonics). Below each image is the discriminant index βum and the wavelet-coefficient
standard deviation for the two textures (second line).

We have also shown that the framework lends itself to the design of wavelets with opti-
mized properties. In particular, we have constructed new prolate spheroidal wavelets whose
angular profile is maximally localized. Our experimental results suggest that these are par-
ticularly well suited for applications such as denoising and directional feature extraction. It is
actually remarkable that a mere change in shaping matrix U can result in a notable improve-
ment upon the state-of-the-art performance in wavelet processing. At the other extreme, we
have observed that the canonical choice U = I substantially degrades performance (data not
shown), probably due to the fact that the circular harmonics have no angular selectivity at
all. We take these as signs that the topic of wavelet design is not closed yet and that there is
still room for improvement.

Appendix. Generalized Slepian sequences. Let us consider the 2π-periodic function
û(θ) =

∑
n∈S une

inθ that is described by its Fourier coefficients un over some finite indexing
set S (e.g., S = {0, 1, . . . , N}) with Card(S) = M . We are interested in characterizing the
optimal coefficients un such that the weighted-energy criterion

Ew(u) =
1

2π

∫ +π

−π
|û(θ)|2w(θ)dθ

with w(θ) ≥ 0 is maximized (or minimized) subject to the normalization constraint
‖û(θ)‖2L2([−π,π]) =

∑
n∈S |un|2 = 1. In his classical paper on discrete prolate spheroidal se-

quences (DPSS) [36], Slepian investigates the localization problem associated with the par-
ticular weighting function w0(θ) = rect

(
θ/(2πB)

)
, where B < 1 is a relative bandwidth

parameter. With the above generalized statement of the problem, it is not difficult to extend
Slepian’s proof for an arbitrary nonnegative measurable function w(θ). The key idea is to
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rewrite the weighted energy criterion as follows:

Ew(u) =
1

2π

∫ +π

−π

∑
n∈S

une
inθ
∑
n′∈S

une
−in′θw(θ)dθ

=
∑
n∈S

∑
n′∈S

unun
1

2π

∫ +π

−π
e−i(n′−n)θw(θ)dθ

=
∑
n′∈S

∑
n∈S

unW (n′ − n)un = uHWu,(A.1)

where the kernel,

W (x) =
1

2π

∫ π

−π
e−iθxw(θ)dθ = Fθ

{
1

2π
rect

(
θ

2π

)
w(θ)

}
(x)

with x ∈ R, is proportional to the Fourier transform of the restriction of w(θ) to the main
period θ ∈ [−π, π]. The notation for the right-hand side of (A.1) is as follows: u is the M -
dimensional coefficient vector with components [u]n = un, while W is the M ×M symmetric
matrix whose entries are given by

[W]n′,n =W (n′ − n).
Since w(θ) is a nonnegative Borel measure, the kernel function W (x) is positive-definite by
Bochner’s theorem [48]. The bottom line is that (A.1) specifies a positive-definite quadratric
form (i.e., for all u ∈ C

M ,uHWu ≥ 0), irrespective of the index set S.
The numerical form of the problem is now the following: minimize Ew(u) = uHWu subject

to the condition uHu = 1. This is a classical eigenvalue problem whose solution is given by

Wu = λu,

with Ew(u) = λ. The important point for our purpose is that the corresponding eigenvectors
define an orthogonal transformation whose extreme component achieves the best localization
as characterized by λmax (or λmin, depending on the type of weighting).

The classical case, which yields the Slepian sequences, corresponds to the reproducing
kernel:

W0(x) =
sin(Bπx)

πx

F−1←→ w0(θ) = rect

(
θ

2πB

)
,

with B < 1.
In the present context of steerable wavelets, we have chosen an alternative variance-based

measure of localization which may be extracted by means of the following symmetric kernel:

W1(x) =

(
π2x2 − 2

)
sin(πx) + 2πx cos(πx)

πx3
F−1←→ w1(θ) = rect

(
θ

2π

)
θ2.

The most concentrated angular profile around θ0 = 0 (minimum variance solution) is the one
that minimizes Ew1(u), while the least concentrated one maximizes it (which is the reverse of
the classical ordering).
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We are also introducing the functions w2(θ) and w3(θ), which implement a variation
of the above quadratic weighting that is compatible with the angular periodicity condition
|û(θ)| = |û(θ+π)| of real-valued wavelets. w2(θ) is described in section 5.6 and is designed to
identify profiles that are simultaneously concentrated around zero and π. The third function is
targeted towards the identification of angular profiles that are centered around ±π/2 (instead
of zero). The corresponding kernel is

W3(x) =

(
π2x2 − 8

)
sin(πx) + 4πx+ 4πx cos(πx)

4πx3

F−1←→ w3(θ) =
(
θ − π

2

)2
rect

(
θ − π/2

π

)
+
(
θ +

π

2

)2
rect

(
θ + π/2

π

)
.

Observe that the maximization of Ew3(u) will favor profiles that are centered and maximally
concentrated around zero and π so that the classical ordering is restored.
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