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ABSTRACT

The field of biological imaging has evolved considerably dur-
ing the past decade as a result of recent (r)evolutions in flu-
orescence labeling and optical microscopy. Bioimage infor-
matics has been identified as a top priority to cope with the
ever-increasing amount of microscopy data.

The challenges and opportunities for researchers in image
and signal processing are manyfold. They span the areas of
mathematical imaging, with problems such as denoising, 3-
D deconvolution and super-resolution localization, as well as
image analysis for the segmentation, detection and recogni-
tion of biological structures in 3-D. The dynamic aspect of the
data requires the development of novel algorithms for track-
ing fluorescent particles and analyzing high-throughput mi-
croscopy data (labeling of cells, phenotyping, extraction of
gene expression profiles).

A crucial aspect of bioimage informatics is making im-
age analysis tools available to biologists so that they can be
applied to real data and used on a routine basis. Developers
may benefit from open-source frameworks and international
initiative such as OBIA for easying-up this process and creat-
ing collaboration networks with biologists.

Index Terms— Bioimage analysis, open-source software,
mathematical imaging, fluorescence microscopy

1. INTRODUCTION

Imaging in biology has evolved significantly during the past
two decades due to major improvements in fluorescence la-
beling and the development of new high-resolution micro-
scopes (e.g., confocal, two-photon, STED, PALM/STORM).
Fluorescence microscopy is presently having a profound im-
pact on the way research is being conducted in molecular biol-
ogy. Biomedical scientists can visualize sub-cellular compo-
nents and processes, both structurally and functionally, in two
or three dimensions, at different wavelengths (spectroscopy),
and can perform time-lapse imaging to investigate cellular dy-
namics [1]. Bioimaging devices generate a huge amount of
high-dimensional data in high-resolution format. The sheer
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amount of data is such that it generally becomes infeasible
to visually inspect them all; moreover, it is highly desirable
to automatize the extraction of objective quantitative features
[2,3].

The data analysis and processing techniques that are cur-
rently used in the field, however, are still relatively crude if
one compares them with the state-of-the art in medical imag-
ing. Yet, there is a growing consensus that bioimage analysis
software is of paramount importance for the future of bio-
logical research. To quote Gene Myers (Why bioimage in-
formatics matters, Nature Methods, July 2012, pp. 659-660),
“bioimage informatics increasingly matters because of the in-
creasing scale of the production of imagery and because of the
increasing number of systems genetics explorations aimed at
understanding the crucial physical and spatial nature of pro-
teomics signals and machinery.” The field is emerging as a
key priority and is rapidly gaining in importance for all areas
of bioimaging [4]. The community is largely relying on open-
source software [5, 6]. Almost any biologist who is acquiring
microscopic images will either be a user of Imagel/Fiji [7, 8]
or at least be aware of the existence of this tool and its alter-
natives such as CellProfiler [9] and Icy [10], among others.
These bioimage analysis tools are extremely useful to biolo-
gists and microscopists who are typically not computer spe-
cialists, nor Matlab users. The present impact of such open
source software is already quite sizable (and measurable in
terms of citations). It can be expected to increase much fur-
ther in the future as the tools become user-friendlier, the ulti-
mate goal being to make bioimaging a more quantitative sci-
ence.

The purpose of this paper is to make signal-processing
researchers aware of the main trends and challenges in the
rapidly-developing field of bioimage informatics. The first
part presents to a brief review of the specificities of biological
imaging, the basic workflow(s) in bioimage analysis, and the
primary image-processing tasks to which researchers in sig-
nal processing can contribute by designing better algorithms.
The second part is about software enabling technologies and
good practices to produce image-analysis tools that are di-
rectly usable by microscopists and biologists. While produc-
ing user-friendly software is time-consuming and does typi-
cally not constitute the first priority of someone involved in
signal-processing research, it is an aspect that cannot be ne-



glected in the interdisciplinary context of bioimaging. The
good news is that there are powerful development frameworks
(typically in JAVA) to ease the process and that the payoff in
terms of scientific impact can be substantial. Indeed, there are
thousands of users in the biological sciences in need of better
image-processing tools and who are eager to apply them right
away.

2. CHALLENGES AND OPPORTUNITIES FOR
SIGNAL PROCESSING

Imaging in biology has evolved dramatically during the past
decade due to major improvements in fluorescence labeling,
optics and imaging sensors. The aspects that are specific to
modern optical microscopy and contribute to making signal
processing research in that area particularly challenging are

(see [1]):

* the sophistication and variety of imaging techniques;
the development during the past years have been
truly phenomenal with new modalities such as STED,
STORM and PALM overcoming Abbe’s physical limit
on resolution (by a factor between 2-10) [11].

* the increasing need for quantitative image analysis;

* images that are often very noisy, and at the limit of res-
olution;

» multiplicity of dimensions: 2-D or 3-D, time (dynamic
imaging), multi-spectral.

We have organized our discussion of needs for advanced im-
age processing around three primary topics.

2.1. Computational imaging

The quality of the micrographs, both in terms of resolution
and signal-to-noise ratio, can be improved significantly by ap-
plying advanced signal-processing techniques.

Image denoising: There is a strong incentive to rely on de-
noising algorithms in order to gather images faster with less
photons [12]. The typical source of noise is counting statistics
(Poisson distribution). Note that noise reduction yields more
impressive results when it is performed jointly on a high num-
ber of dimensions (3-D, 2-D+t, or even 3-D+t).

Deconvolution of fluorescence micrographs: This is one
of the few areas of imaging where deconvolution can really
make a difference, especially in the case of 3-D fluorescence
microscopy [13]. The primary difficulty there is the huge size
of the data. While total variation regularization has been ap-
plied to the problem, it tends to create unnatural staircase arti-
facts. This calls for higher-order methods. Another challenge
is to be able to handle spatially-varying point spread functions
which result from a non-constant refractive index within the
specimen.

Quantitative phase imaging: A possible improvement
over classical phase contrast microscopy is to apply an
inverse-problem formulation to jointly recover the phase
and amplitude of the optical wave. The challenge is to be
able to do so under incoherent light illumination.

Super-resolution localization: Novel microscopy modali-
ties such as PALM and STORM rely on the localization of in-
dividual point sources (single molecules) with an accuracy far
beyond the traditional diffraction limit. The price to pay is a
much longer acquisition time. It is of interest to develop more
sophisticated estimation and/or deconvolution algorithms in
order to be able to handle denser source distributions.

2.2. Shape and morphology

Biologists are in crucial need of quantitative methods for
characterizing the shape of biological structures. The first
step of such an analysis is to segment the image, or to detect
objects of interest based on their morphology.

2-D and 3-D image segmentation: While segmentation is
one of the oldest tasks in image processing, there is no generic
algorithm that provides a universal solution. Consequently,
there are many opportunities in the field for designing meth-
ods for specific classes of biological images. For instance,
phase-contrast (or DIC) images are notoriously difficult to
segment because there are primarily edge-based (difference
of refractive index). The segmentation of fluorescence micro-
graphs is largely dependent upon the type labeling used, the
latter being under the control of the biologist. Typical sources
of disturbance are the density of organelles, scattering, photo-
bleaching, and the unavoidable presence of autofluorescence.
Here, it helps to use prior shape information. Rather than
aiming at a fully automated solution which is often illusive,
it can make sense to rely on user-input to guide/correct the
detection process. Active contours are especially helpful in
that respect [14]. It is also desirable to provide some measure
of reliability of the output so that the user can quickly focus
on the errors (hopefully few) and correct them manually. The
field is still crucially in need of good (and preferably, semi-
interactive) segmentation tools for 3-D.

Detection of specific structures: Beside the nucleus of a
cell which is typically blob-shaped, there are many charac-
teristic 3-D structures in biology such as spots, vesicles, fila-
ments, dendrites, membranes, etc. that call the design of spe-
cialized detectors. In 3-D, one also has to distinguish be-
tween different types of geometric varieties (e.g., lines vs.
surfaces). One possibility is to design detectors based on
steerable wavelets. The field of bioimage informatics is still
missing the equivalent of the SIFT detectors which are so
widely used in computer vision. The fundamental difference
in context is that biological data is intrinsically 3-D and that
invariance to projective geometry is irrelevant. On the other
hand, it is highly desirable to enforce translation, scale, and
rotation invariance.



2.3. Temporal analysis

The use of endogenous fluorescent markers such as GFP
(Green fluorescence protein) allows in vivo imaging which
enables the observation of dynamic biological processes, both
at the cellular (5-10xm) and molecular (< 1pm) levels. Mi-
croscopists face the problem of analyzing and quantitating
huge amounts of sensitive time-lapse image data.

Tracking cells and building lineage trees: The problem of
tracking cells is central to high-throughput microscopy [3].
It is essential for extracting dynamic gene expression pro-
files, characterizing temporal relationships and establishing
cell lineage [15]. One of the main difficulty is to be able
to accommodate coarse temporal sampling to minimize the
exposition of cells (photobleaching). The current conceptual
challenge is to integrate the information from as many time-
frames as possible in order to improve the robustness of the
procedure. Besides the pairing of cells from one image to
the next, one also needs to properly handle the problem of
cell division. Conceptually, it would be preferable to address
the segmentation and tracking problems jointly, which is typ-
ically not the way it is being done right now.

Tracking particles: As one moves to finer scales, one can
start visualizing molecular processes that are highly dynamic.
The computational task is then to detect and track individual
fluorescent particles that can be very mobile and also densely
packed [16]. They are often at the limit of resolution in a
very noisy background. While fast imaging is quite feasible
in 2-D, the difficulty is that the physical movement is intrin-
sically 3-D, meaning that the particles can easily move out of
focus. Retrieving the information in the third dimension calls
for innovative schemes, possibly in the spirit of “compressed
sensing”.

3. IMAGE ANALYSIS SOFTWARE

As already stated, the process of converting algorithms
into robust, user-friendly bioimage analysis software is of
paramount importance. In this section, we present a list of
good practices for software development to ensure a suc-
cessful conversion and maximize usability. We also briefly
review the history and current state of the most popular open
image-analysis platforms.

3.1. Software Design

The primary users of bioimage-analysis software are biolo-
gists with little or no programming training who are operating
their microscope and analyzing their own data. They require
user-friendly, well-supported, and flexible software to easily
fulfill their particular needs [5]. The following list of good
practices is aimed at facilitating the creation software that is
usable and helpful to a broad segment of the bioimaging com-
munity [6]:

Fig. 1. Samsung Slate PC Series 7 running the open image analysis
software Icy [10] and one of the plug-ins implementing the method
of [14]. This is the result of the efforts of the open-source community
of developers to produce an user-friendly image analysis software.

1. User-friendliness: The software should be intuitive,
easy-to-use and accessible (one-click installation).
Moreover, it should be accompanied with clear user
manuals and offer feedback mechanisms (e.g., forums,
mailing lists, bug report systems) [17]. We show in
Figure 1 an intuitive interface of an image analysis
software running on a tablet computer.

2. Developer-friendliness: A good documentation of the
structure of the code and of its modules is crucial since
it allows developers to understand what a program does
and how it works. Open-source software is a good ex-
ample of developer-friendly software.

3. Interoperability: It is important to make software that
communicates using the available open standards. In
this way, different software can easily interact without
having to define complementary components to trans-
late the data. A successful example is the Bio-Formats
project, a Java library for reading and writing life sci-
ences image file formats [18].

4. Modularity: The implicit modularity of object-oriented
design is key when maintaining a large piece of soft-
ware. The use of modular structures with common in-
terfaces allows developers to update their software with
minimum effort.

5. Validation and quality control: The software should be
tested in ways that are relevant to the user. Moreover,
for the benefit of making research reproducible, it must
be possible to replicate the exact same computations
and quantitative results that the developers advertise. A
recent trend is to define computational challenges for
some well-defined bioimage analysis tasks such as de-
convolution or particle tracking. This allows for objec-



tive performance assessment and comparison of algo-
rithms and software solutions.

3.2. Open Image Analysis Platforms

In order to properly analyze an experiment and draw conclu-
sions from the data provided by an image-analysis software,
the biologist must be aware of what the algorithm really does.
Open-source software provides the necessary transparency,
giving scientists the opportunity to fully understand the com-
putational methods behind their tools.

Among all open-source bioimage analysis tools, the one
that has had the most impact so far is ImageJ [7]. It was ini-
tiated by Wayne Rasband at the National Institutes of Health
(NIH) under the name of NIH Image. The idea was to develop
a low-cost image-processing platform for the Apple Macin-
tosh II. This piece of software was coded in Pascal, and had
add-on capabilities in the form of expansion slots in order to
enable other developers to easily extend the software for their
own applications.

In the mid-nineties, the programming language Java was
created by Sun Microsystems. Java applications are typically
compiled to bytecode that can run on any machine regard-
less of the architecture. This allowed developers to write their
software independently of the platform. Rasband ported NIH
Image to Java in the late-nineties under the name of ImageJ.
As a result, the base of NIH Image users and developers was
extended to PC and Unix.

ImageJ upgraded the expansion slots of NIH Image into
the more modular concept of plug-ins. Since its creation, Im-
agelJ has enjoyed a great popularity, and resulted in the devel-
opment of a wide variety of plug-ins for very diverse applica-
tions.

Besides the core application, another popular distribution
is Fiji. It is a user-friendlier distribution of ImageJ together
with Java, Java 3-D and the most prominent plug-ins as well
as transparent installation and updates [19].

The largest upgrade of ImageJ since NIH Image is be-
ing prepared involving several research laboratories under the
name of ImageJ2. It involves a full rewrite of the source code
using new architectures in order to overcome the limitations
of Image].

Recently, other open-source related platforms are emerg-
ing. Among them, we can find: uManager, a software pack-
age for the control of automated microscopes [20]; CellPro-
filer, a software specialized in measuring phenotypes auto-
matically within images [9]; and Icy, a full integrated easy-
to-use platform extensible with plug-ins [10]. We summarize
all these open-source projects in Table 1 [8].

3.3. Open Bio Image Alliance

The Open Bio Image Alliance! (OBIA) was constituted in
2012 with the aim of federating the development of the afore-
mentioned image-processing packages and improving their
interoperability. It is an international consortium that brings
together the major developers of bioimage analysis soft-
ware ranging from biologists, microscopists, computer scien-
tists, to researchers involved in biomedical image processing.
Given the mission of OBIA stated below, we recommend its
web site as the primary entry point for gathering information
about the open-source resources for bioimage informatics,
both at the level of the users and developers.

The primary mission of OBIA is to

* provide biologists and researchers in the life sciences
with the highest quality public-domain software re-
sources and a corresponding knowledge base to ana-
lyze and quantitate their image data in a sound and
reproducible fashion,

* to strengthen the interaction between biologists, imag-
ing scientists and developers of bio-image analysis soft-
ware and algorithms.

OBIA capitalizes on the existence of highly successful
software packages such as Imagel. [...] OBIA promotes
long-term availability and backward compatibility, federates
the harmonious community-based development of interop-
erable software, and promotes good software development
practices. OBIA will meet these challenges by implementing
mechanisms and initiating actions in order to:

* facilitate the diffusion of bioimaging software and
guide the choice of image analysis tools with special
attention to quality (curation), long-term availability
and (backward) compatibility;

* federate the harmonious community-based develop-
ment of interoperable software and promote good prac-
tices, including the careful validation of tools;

* reinforce interactions between imaging scientists/devel-
opers and create a sense of community;

* be a catalyst for new software development projects,
advanced image-analysis initiatives, and interdisci-
plinary collaborations in the computational and bio-
logical sciences.

We can only encourage our colleagues to take part in
this alliance, or, at least, to closely follow what is going
on and available in terms of development tools and soft-
ware/algorithm deployment channels and repositories.

Uhttp://www.openbioimage.org/



Initiated Status Language License
NIH Image 1987 Discontinued Pascal Public domain
ImageJ 1997 Active Java Public domain
uManager 2005 Active C++/Java  BSD, Lesser GPL
CellProfiler 2006 Active Python GNU
Fiji 2007 Active Java GNU
Imagel2 2009 beta version  Under development Java Simplified BSD
Icy 2011 Active Java GPL

Table 1. Summary of open-source image-processing platforms.

4. CONCLUSION

We hope to have convinced people involved in signal pro-
cessing of the strategic importance of bioimage informatics.
So far, the field has been mostly defined by biologists who
have become software developers by necessity. The topics are
plentiful and challenging intellectually with a pressing need
for better image processing and analysis tools.

Our advice to designers of new algorithms is to think

about user interactions issues from the very start, to take ad-
vantage of existing software frameworks such as ImageJ and
Icy, and to work in close interactions with biologists. This is
the best way to maximize the impact of one’s research output.
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