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Summary

The paper provides a short introduction to wavelets and dis-
cusses their main applications in microscopy and biological
imaging.

Wavelets as a virtual microscope

Wavelets offer a powerful way of decomposing signals or im-
ages into their elementary constituents across scale (multires-
olution decomposition). They provide a one-to-one representa-
tion in very much the same way as the Fourier transform does,
with the fundamental difference that the wavelet-basis func-
tions are jointly localized in space and frequency (Daubechies,
1988; Mallat, 1989; Unser & Aldroubi, 1996; Mallat, 2009).

There is a striking analogy between the wavelet transform
and a microscope. To keep the discussion simple, we shall focus
on the one-dimensional scenario where the input image f (x) is
a function of the space variable x ∈ R. The wavelet transform
involves a series of dyadic magnification factors a = 2i , with
i ∈ Z. It corresponds to a mathematical microscope whose
point-spread function (PSF) φ can be dilated (or contracted
when i < 0) at will by powers of two, like

φi (x) = φ(x/2i ).

There the virtual PSF is a reference functionφ (scaling function
or wavelet) to be specified in the sequel. The leading concept
behind wavelets is to observe f (x) by forming correlations
with φi (or convolutions with its space-reversed version) and
sampling the data at the appropriate rate. Specifically, the
observation at resolution level i and location index k ∈ Z is
given by

⟨ f,φi,k⟩ =
∫

R
f (x)φi (x − 2i k)dx,
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with the notational convention

φi,k (x) = φi (x − 2i k)

where the corresponding sampling step a = 2i is matched to
the size of the integration window φi (virtual PSF at resolu-
tion 2i ). The underlying principle is that the virtual PSF is
engineered to maximize the intake of information; first, within
a given resolution level i (scale of the microscope) by ensur-
ing that the shifted replicates of φi – that is, φi,k with k ∈ Z –
are orthogonal to one another, and, second, by avoiding re-
dundancies across scale (global inter-scale orthogonality). The
latter requirement translates into the virtual PSF being band-
pass (that is, a wavelet denoted by φ = ψ) rather than the
more traditional lowpass solution (denoted by φ = ϕ) that
would better fit the description of a physical microscope.

The Haar transform: from Legos to wavelets

The fundamental idea in the theory of wavelets is to construct
a series of fine-to-coarse approximations { fi }i∈Z of a function
f (x) and to exploit the structure of the multiresolution approx-

imation errors, which are orthogonal across scale. Here, we
shall illustrate the concept by taking fi (the best approxima-
tion of f at resolution i ) to be a piecewise-constant function
represented by the (Lego-like) expansion

fi (x) =
∑

k∈Z
ci [k]ϕi,k(x), (1)

where the basis functions ϕi,k are adjacent rectangular func-
tions of size 2i . Specifically,

ϕi,k (x) = ϕ

(
x − 2i k

2i

)
=

{
1, for x ∈

[
2i k, 2i (k + 1)

)

0 otherwise.
(2)

The optical analogy is that of a microscope with ideal op-
tics whose resolution is determined by the size of its CCD-
type (charge coupled device) detector (rectangular window of
size 2i ), while the spatial location is encoded by k. An exam-
ple of such a sequence of approximations is shown in Fig. 1,
where each ci [k] is given by the height of the corresponding
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Fig. 1. Multiresolution signal analysis using piecewise-constant basis functions with a dyadic scale progression. Left: multiresolution pyramid. Right:
error signals between two successive levels of the pyramid.

piecewise-constant segment of the signal. For the purpose of
demonstration, we select the initial signal as f (x) = f0(x).

The primary template ϕ = ϕ0,0 is called the scaling function.
It satisfies the following three properties, which are key to the
construction of a wavelet basis of L 2(R) (the space of finite-
energy functions) (Unser & Blu, 2003):

(1) Orthonormality: ⟨ϕ,ϕ(· − k)⟩ = δk for all k ∈ Z.
(2) Two-scale relation:

ϕ(x/2) =
∑

k∈Z
h[k]ϕ(x − k), (3)

where the sequence h is the so-called refinement mask.
(3) Partition of unity:

∑
k∈Z ϕ(x − k) = 1.

In practice, a given brand of wavelets (e.g. Haar, Daubechies,
splines) is summarized by its refinement mask h which
uniquely specifies ϕ via the solution of (3). The rectangu-
lar functions defined by (2) with i = 0 are orthogonal within
a given scale simply because they are nonoverlapping. Their
refinement mask is h = (1, 1), which translates into what we
jokingly refer to as the Lego-Duplo relation1

ϕ(x/2) = 1 × ϕ(x) + 1 × ϕ(x − 1). (4)

1 The Duplos are the large-scale counterpart of the Lego building blocks. The main

point for the analogy with wavelets is that Legos and Duplos are compatible; they

can be combined to build complex shapes. The enabling property is that a Duplo is

equivalent to two smaller Lego placed next to each other, as expressed by (4).

They also satisfy the partition of unity, as can be checked by
setting ci [k] = 1 in (1).

By considering the rescaled version of such a basis, we spec-
ify the signal subspace Vi at resolution i as

Vi =
{

fi (x) =
∑

k∈Z
ci [k]ϕi,k (x) : ci ∈ ℓ2(Z)

}

⊂ L 2(R)

which, in our example, contains all the finite-energy functions
that are piecewise constant on the intervals

[
2i k, 2i (k + 1)

)

with k ∈ Z. The two-scale relation (3) implies that the basis
functions at scale i = 1 are contained in V0 (our original sig-
nal space in Fig. 1) and, by extension, in Vi for i ≤ 0. This
translates into the general inclusion property Vi ′ ⊂ Vi for any
i ′ > i , which is fundamental to the theory.

Let us now consider the multiresolution approximation of
f0(x), as illustrated in Fig. 1. Given the sequence of fine-scale

coefficients c0[k], we construct the best piecewise-constant ap-
proximation f1(x) at scale 1 specified by its coefficients c1[k]
in (1) with i = 1. The minimum-error solution is obtained by
taking the mean of two consecutive samples. The process is
repeated iteratively until one reaches the bottom of the pyra-
mid, as shown on the left-hand side of Fig. 1. The description
of this coarsening algorithm is

ci [k] = 1
2

ci−1[2k] + 1
2

ci−1[2k + 1] =
(
ci ∗ h̃

)
[2k], (5)
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which is run recursively for i = 1, . . . , imax, where imax de-
notes the bottom level of the pyramid.

The key observation for uncovering the wavelets is that
the residuals ri (x) = fi−1(x) − fi (x) ∈ Vi−1 on the right
of Fig. 1 exhibit a characteristic sign-alternation pattern
which is due to the fact that the two consecutive samples
(ci−1[2k], ci−1[2k + 1]) are at an equal distance from their
mean value ci [k]. This suggests rewriting the residuals as

ri (x) = fi−1(x) − fi (x) =
∑

k∈Z
di [k]ψi,k (x), (6)

where the characteristic oscillating pattern is encoded in the
wavelets ψi,k = ψ

(
x−2i k

2i

)
, which are rescaled and shifted

replicates of a single template: the Haar wavelet

ψ(x) =

⎧
⎨

⎩

1, for x ∈ [0, 1/2)
−1 for x ∈ [1/2, 1)

0 otherwise.
(7)

This function is shown on the upper right of Fig. 1. The wavelet
coefficients di [k] are given by the consecutive half-differences

di [k] = 1
2

ci−1[2k] − 1
2

ci−1[2k + 1] =
(
ci ∗ g̃

)
(2k). (8)

More generally, since the wavelet template ψ1,0 at scale i = 1
belongs to V0, we can write that

ψ(x/2) =
∑

k∈Z
g[k]ϕ(x − k), (9)

which is the wavelet counterpart of the two-scale relation
(3). In the present example, we have that g[k] = (−1)k h[k],
which is a general relation that is characteristic of an or-
thogonal design. Likewise, in order to gain generality, we
have chosen to express the decomposition Eqs (5) and (8)
(fast wavelet-transform algorithm) in terms of discrete con-
volution (filtering) and down-sampling operations where the
corresponding Haar analysis filters are h̃[k] = 1

2 h[−k] and
g̃[k] = 1

2 (−1)k h[−k]. The Hilbert-space interpretation of this
approximation process is that ri ∈ Wi , where Wi is the or-
thogonal complement of Vi in Vi−1; that is, Vi−1 = Vi + Wi

with Vi ⊥ Wi , as a consequence of the orthogonal projection
theorem.

Finally, we close the loop by observing that

f0(x) = fimax (x) +
imax∑

i=1

(
fi−1(x) − fi (x)︸ ︷︷ ︸

ri (x)

)

=
∑

k∈Z
cimax [k]ϕimax,k (x) +

imax∑

i=1

∑

k∈Z
di [k]ψi,k (x), (10)

which provides an equivalent, one-to-one representation of
the signal in an orthogonal wavelet basis, as illustrated
in Fig. 2. More generally, we can push the argument to

the limit and apply the decomposition to any finite-energy
function

∀ f ∈ L 2(R), f =
∑

i∈Z

∑

k∈Z
di [k]ψi,k, (11)

where di [k] = ⟨s, ψ̃i,k⟩ and {ψ̃i,k}i,k∈Z is a suitable (bi-)ortho-
gonal wavelet basis with the property that ⟨ψ̃i,k,ψi ′,k′ ⟩ =
δk−k′,i−i ′ .

Remarkably, the whole process described above – with the
exception of the explicit right-hand side of (2), (7) and the
central expressions in (5) and (8) – is completely generic and
applicable for any other wavelet basis of L 2(R) that is speci-
fied in terms of a wavelet filter g and a scaling function ϕ (or,
equivalently, an admissible refinement filter h). The bottom
line is that the wavelet decomposition and reconstruction algo-
rithm is fully described by the four digital filters (h, g, h̃, g̃) that
form a perfect-reconstruction filterbank (Vetterli & Kovacevic,
1995). The Haar transform is associated with the shortest-
possible filters. Its only downside is that the basis functions
are discontinuous and that the scale-truncated error decays
no faster than the first power of the sampling step a = 2i (first
order of approximation).

The concept is generalizable to higher dimensions by
using tensor-product basis functions, which practically
amounts to running the 1-D wavelet-decomposition algorithm
(Eqs (5) and (8)) along every dimension of the data. Specifi-
cally in 2-D, one has to consider the separable scaling function
ϕ(x)ϕ(y) and the tensor-product wavelets ϕ(x)ψ(y), ψ(x)ϕ(y)
and ψ(x)ψ(y), which results in three complementary wavelet
channels (horizontal, vertical and diagonal) for each scale.
The process of computing the separable wavelet transform of
an image is illustrated in Fig. 3. The important point is that the
wavelet coefficients in Fig. 3(d) are in one-to-one correspon-
dence with the image in Fig. 3 a (orthonormal transform).
Also, a large proportion of these coefficients are very small
– and hence, negligible. This explains why wavelets are so
effective for image coding. Indeed, wavelets are the basis of
the JPEG 2000 compression standard (Christopoulos et al.,
2000).

Another twist is to consider a redundant wavelet represen-
tation that does not involve sub-sampling at coarser scales.
This leads to the concept of a wavelet frame which consists
of a union of wavelet bases corresponding to different shifts
of the data. While using a wavelet frame requires more stor-
age, it can have advantages for data processing because the
representation is intrinsically shift-invariant (Unser, 1995),
while a decomposition in a wavelet basis is only approxi-
matively so.

Applications in microscopy

We conclude the presentation with a brief discussion of suc-
cessful uses of wavelets in microscopy. Most of these appli-
cations exploit the property that the wavelet transform of a
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Fig. 2. Decomposition of a signal into orthogonal scale components. The error signals ri = ( fi−1 − fi ) between two successive signal approximations
are expanded using a series of properly scaled wavelets.

Fig. 3. Separable cubic-spline wavelet decomposition of an image. (a) Original 256 × 256 image. (b) First pass of (horizontal) 1-D wavelet decomposition:
the rows are split into halves. (c) Second pass of (vertical) 1-D wavelet decomposition: the columns are split into halves. (d) Full 2-D wavelet transform
obtained by iterating the splitting process on the lower-resolution version of the image. The wavelet coefficients are displayed so that the amplitudes of
small absolute value appear in mid grey, the negative values in darker grey and the positive values bright.
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typical, noise-free image is sparse in the sense that it exhibits a
few large wavelet coefficients (principally around edges or in
heavy textured areas), while the majority of coefficients (over
smooth image regions) have tiny amplitudes so that they can
be discarded without noticeable effect on the quality of the
reconstruction.! Multiscale particle detection: Computing the wavelet trans-

form is equivalent to applying a bank of matched filters that
are tuned to different scales. Generally, a wavelet that is
(quasi-)isotropic and well localized will act as a good spot
detector. The bandpass character of the wavelet is very
helpful in suppressing slowly varying background struc-
tures so that there is no need for additional preprocessing.
Moreover, it is possible to combine the output from multiple
scales to improve the robustness of the detection (Olivo-
Marin, 2002).! Denoising: The guiding principle here is to exploit the di-
chotomy between the signal that is concentrated in a few
large coefficients and the measurement noise that is spread
out evenly in the wavelet domain. Noise is suppressed by
‘killing’ the small wavelet coefficients by suitable threshold-
ing and reconstructing the signal thereafter (Weaver et al.,
1991; Donoho, 1995). A more-elaborate version for mi-
croscopy takes into account the photon-limited nature of
the noise (Poisson statistics) and applies a self-tuning strat-
egy to optimally adjust the wavelet-domain thresholding
functions for minimum-error reconstruction (Luisier et al.,
2010, 2011).! 3-D deconvolution of fluorescence micrographs: Deconvo-
lution is a delicate inversion process that can easily result
in unwanted noise amplification. The standard remedy for
keeping the noise under control is to impose some ‘regular-
ization’ constraint on the solution. In the wavelet approach,
one favours a solution with a sparse wavelet transform by
penalizing the ℓ1-norm of the wavelet coefficients (Vonesch
& Unser, 2008). The corresponding optimization problem
is solved iteratively by using a variant of the ISTA (iterative
shrinkage-thresholding algorithm) (Figueiredo & Nowak,
2003). The process can be accelerated substantially by us-
ing a multilevel strategy with iteration parameters that are
adapted to the specific structure of the problem (Vonesch
& Unser, 2009). The principle of wavelet-domain regular-
ization is applicable to other inverse problems in imaging,
including tomographic reconstruction (Daubechies et al.,
2004).! Extended depth-of-field: The aim here is to reconstruct an
in-focus image by combining the data from a focal series
of images (z-stack) with a limited depth of field (optical

sectioning). This is achieved through a careful merging of
the wavelet transforms of the individual images to produce
a single composite that is sharp everywhere (Forster et al.,
September 2004).
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