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Abstract—The commonality between splines and Gaussian or
sparse stochastic processes is that they are ruled by the same
type of differential equations. Our purpose here is to demonstrate
that this has profound implications for the three primary forms
of sampling: uniform, nonuniform, and compressed sensing.

The connection with classical sampling is that there is a
one-to-one correspondence between spline interpolation and the
minimum-mean-square-error reconstruction of a Gaussian pro-
cess from its uniform or nonuniform samples. The caveat, of
course, is that the spline type has to be matched to the operator
that whitens the process.

The connection with compressed sensing is that the non-
Gaussian processes that are ruled by linear differential equations
generally admit a parsimonious representation in a wavelet-like
basis. There is also a construction based on splines that yields a
wavelet-like basis that is matched to the underlying differential
operator. It has been observed that expansions in such bases
provide excellent M -term approximations of sparse processes.
This property is backed by recent estimates of the local Besov
regularity of sparse processes.

I. INTRODUCTION

The results that are being discussed in this overview paper
apply to the three primary forms of sampling under the
assumption that the signal s is a realization of a continuous-
time (Gaussian or sparse) stochastic process that is ruled
by a stochastic differential equation with known parameters
(the operator L and the Lévy exponent f of the excitation).
For simplicity of presentation, we shall concentrate on one-
dimensional sampling, keeping in mind that most of the
results that are being discussed here have multidimensional
extensions.

1) Uniform Sampling: This is the process of converting
a function into a sequence of equally spaced samples. For
simplicity of notation, we take the samples on the Cartesian
grid (cardinal setting) [1], [2], [3]

s(x), x ∈ R −→ {s[k] = s(k)}k∈Z

2) Nonuniform Sampling: Here, the samples are taken at a
series of known locations · · · < xk−1 < xk < xk+1 < · · · [4]

s(x) −→ {sk = s(xk)}k∈Z

3) Generalized or Compressed Sampling: This is the rich-
est form of sampling. It returns a series of linear measurements

s(x) −→ {mk = 〈s, φk〉}k∈Z

where the φk are appropriate analysis functions. Mathemati-
cally, each measurement corresponds to a linear functional of
s. Classically, this extended form is called generalized sam-
pling [3], [5]. Clearly, the two first configurations are particular
cases of the third with φk = δ(· − k) and φk = δ(· − xk),
respectively.

The general problem of sampling is to obtain the most faith-
ful reconstruction s̃(x) of s(x) for all x ∈ R from its discrete
measurements. In the classical setting, this reconstruction is
linear [3], [6], [4], [7].

In the case of compressed sensing, where the φk need
to carefully chosen, a reconstruction from a reduced set of
measurements is possible under the assumption that the signal
s has a sparse representation in some privileged basis [8], [9],
[10]. The reconstruction algorithm, however, is nonlinear: It is
typically based on the minimization of a cost functional that
favors sparse solutions [11].

The purpose of this paper and of the special session on
”Sampling and Stochastic Processes” is to provide statistical
arguments that support both types of reconstruction algo-
rithms. The main conclusions, in a nutshell, are:
• A linear reconstruction (with splines that are tailored to

the spectral properties of the process) is optimal under
the Gaussian assumption.

• The non-Gaussian processes that are ruled by the same
kind of stochastic differential equations are inherently
sparse (in a matched wavelet basis), which justifies
the deployment of nonlinear reconstruction methods that
favor sparsity. However, more research is required to
obtain estimators with good statistical properties—that
is, minimum-mean-square-error (MMSE) rather than the
more conventional maximum a posteriori (MAP) whose
performance can be deceptive [12].

A. Mathematical Context

S ′(R) is Schwartz’ space of tempered distributions. All
subsequent equalities involving Dirac impulses δ(· − xk) or
the innovation w are in the weak sense of distributions. For978-1-4673-7353-1/15/$31.00 c©2015 IEEE
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instance, the statement Ls = w (in the sense of distributions)
is equivalent to

〈ϕ,Ls〉 = 〈ϕ,w〉

for all test functions ϕ ∈ S(R) (Schwartz’ space of smooth
and rapidly decreasing function).

II. BRIEF OVERVIEW OF SPLINES

The leading thread of our exposition is the intimate connec-
tion between splines and differential operators; namely, the
property that an admissible operator L specifies a particular
brand of splines [13], [14], [15, Chapter 6].

Definition 1: A operator L is called spline-admissible if
1) it is linear shift-invariant (LSI); that is, if L is linear

and L{s(· −x0)} = L{s}(· −x0) for any signal s in its
range;

2) there exists a function ρL(x) of slow growth (the Green’s
function of L) such that L{ρL} = δ where δ is the Dirac
distribution;

3) the null space of the operator

NL = {p0(x) ∈ S ′(R) : L{p0} = 0}

is either empty—NL = {0}—or finite-dimensional.
The frequency response of L is denoted by L̂(ω) with

L̂(ω) =
∫
R L{δ}(x) e−jωxdx when the impulse response is

absolutely integrable. The composition of the null space of L
is determined by the zeros of L̂(ω). Specifically, a zero of
multiplicity N at ω = ω0 corresponds to components of the
form p0(x) = ejω0x

∑N−1
n=0 bnx

n (modulated polynomials).
The generic example of an admissible operator from the

theory of linear systems is

Dn + an−1Dn−1 + · · ·+ a0I (1)

where D = d
dx and an are constant coefficients. Another

interesting case is the fractional derivative Dγ of order γ ∈ R+

which corresponds to a multiplication by (jω)γ in the fre-
quency domain. Its Green’s function is

ρDγ (x) =
xγ−1+

Γ(γ)

where x+ = max(0, x) and Γ is Euler’s gamma function.

Definition 2: The function s(x) is an L-spline with knots
(xk)k∈Z if Ls(x) =

∑
k∈Z akδ(x − xk) where (ak) is a

sequence of (possibly slowly increasing) real weights.

Hence, we can view a spline as the solution of a differential
equation driven by a sequence of weighted Dirac impulses.
By invoking the properties in Definition 1, we can solve this
equation to obtain the generic form of a spline

s(x) = p0(x) +
∑
k∈Z

akρL(x− xk) (2)

where the specification of the null-space component p0 re-
quires some additional boundary conditions.

The main use of splines is for the reconstruction of a
function from a set of nonuniform samples {s(xk) = sk}k∈Z.

Specifically, when L = K∗K is self-adjoint and sk ∈ `2(Z), it
can be shown that there is a unique solution of the form (2)
that solves the interpolation problem (see [16])

srec = arg min
s∈V
‖Ks‖L2(R) = 〈Lf, f〉 s.t. s(xk) = sk

with V = {s : ‖Ks‖L2(R) <∞} where K = L1/2. This shows
that splines are optimal in the sense that they minimize some
corresponding L2 energy functional [17], [18].

When the sampling is uniform, the spline-interpolation
problem admits an efficient filter-based solution [19], [20].
Specifically, the reconstructed signal is expressed as

srec(x) =
∑
k∈Z

c[k]βL(x− k)

where βL is the B-spline associated with the operator L. The
coefficients of the expansion are then given by c[k] = (hint ∗
s)[k] where s[k] = s(x)|x=k are the samples of the signal and
hint is the digital filter whose frequency response is

Hint(e
jω) =

1∑
k∈Z βL(k)e−jωk

.

III. STOCHASTIC MODELS OF SIGNALS

The parallel with splines is that stochastic models can also
be tied to a differential operator L: the so-called whitening
operator that decouples the process and uncovers its “inno-
vation”, which is the unpredictable part [21], [22]. This is
equivalent to specifying a stochastic process as the solution of
the stochastic differential equation (SDE)

Ls = w (3)

where w is a continuous-domain white Lévy noise—or innova-
tion [23]. The term Lévy noise refers to the broadest possible
family of generalized stochastic processes that are stationary
and independent at every point [15]. While the family includes
the white Gaussian noises of the traditional theory of stochastic
processes, it is considerably richer, the great majority of its
members being sparse [24].

An important point is that (3) only holds in the sense of
distributions since the innovation w ∈ S ′(R) is too rough to
have a classical pointwise interpretation [25]. If L is spline-
admissible, then it is generally possible to invert this equation,
which yields the formal solution

s = L−1w (4)

or, more explicitly,

s(x) =

∫
R
hL(x, y)w(y)dy (5)

where hL(·, y) = L−1{δ(· − y)} is the kernel (or generalized
impulse response) of L−1 [15]. The connection with the results
in Section II is that L{hL(·, y0)} = δ(· − y0), which shows
that hL(x, y0) with y0 fixed is an L-spline.

In the simplest scenario where NL = {0}, the inverse opera-
tor L−1 is LSI with h(x, y) = ρL(x−y), so that the stochastic
process s = ρL ∗ w is stationary. Otherwise, s = L−1w will
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generally be non-stationary, the better known example being
the Lévy processes with L = D and hD(x, y) = 1(0,x](y),
which is a piecewise-constant spline.

The innovation model (4) generates a whole variety of
signals whose correlation structure is imposed by the mixing
operator L−1 (shaping filter), while their level of sparsity
is determined by the innovation w. The latter is uniquely
characterized by its Lévy exponent

f(ω) = logE{eω〈rect,w〉} = log p̂Xrect
(ω)

where p̂Xrect
(ω) is the characteristic function of the random

variable Xrect = 〈rect, w〉 (canonical observation of the
innovation through a rectangular window). When the input
w is a white Gaussian noise (i.e., f(ω) = −|ω|2), the
model is able to generate the complete gamut of Gaussian
stochastic processes, which are the only non-sparse members
of the family. Another fundamental type of excitation is
the impulsive noise wPoisson =

∑
k akδ(· − xk), where the

impulse locations (xk) follow a Poisson distribution with
rate λ and the amplitudes (ak) are i.i.d. with pdf pA. The
corresponding output signal (generalized Poisson process) is
a random spline—the direct stochastic counterpart of (2) [26].
Other interesting instances of the model are the symmetric-α-
stable (SαS) processes with f(ω) = −|ω|α, α ∈ (0, 2) [27].

IV. SPLINES AND MMSE RECONSTRUCTION

Estimation theory tells us that the optimal reconstruction of
the stochastic process s from its nonuniform samples {s(xk)}
is given by the conditional mean

s̃(x) = E
{
s(x)|{s(xk), k ∈ Z}

}
.

Moreover, when the process is Gaussian, the optimal recon-
struction at x is known to be a linear combination of the
measurement values: s̃(x) =

∑
k∈Z ck(x)s(xk) where the

regression coefficients ck are functions of the location x. These
coefficients can be found by solving the so-called normal
equations that involve the covariance function Cs(x, y) =

E{s(x)s(y)} of the process. In the present scenario where
the signal satisfies the innovation model (3), the covariance
function is given by

Cs(x, y) = σ2
w(L−1L−1∗){δ(· − x)}(· − y)

where σ2
w = −d2f(0)

dω2 is the variance of the noise. The
crucial observation here is that Cs(x, y) actually corresponds
to the kernel hL∗L(x, y) associated with the inverse of the
self-adjoint operator (L∗L). Based on the property that the
latter is an L∗L-spline of the variable x with a single knot
at y, it can be shown that the optimal reconstruction is a
nonuniform L∗L-spline with knots at the sampling locations
xk. It follows that the optimal reconstruction is of the same
form as (2) with the underlying Green’s function ρL being
substituted by ρL∗L. This leads to conclusion that the MMSE
signal reconstruction is given by an L∗L-spline interpolant.
This statistical optimality of splines is a classical result that has
been used to justify the interpolation method known as kriging

in geostatistics, and the use of reproducing kernels (radial-
basis functions) for the interpolation of scattered data [28],
[29], [30]. It is important to mention that this spline interpolant
also yields the linear minimum-mean-square-error (LMMSE)
estimator when the underlying process is non-Gaussian (with
finite variance).

In the case where the data is uniformly sampled—and
possibly corrupted by noise—the MMSE estimator under the
assumption of stationarity amounts to a hybrid Wiener filter
which has a convenient representation in terms of B-spline
basis functions [31]. The approach can also be extended to the
class of fractional Brownian motions, which are self-similar
at the expense of some lack of stationarity [32]. Another
related—and truly remarkable—result is that the piecewise-
linear interpolator (D∗D-spline) is MMSE optimal not only
for Brownian motion [33], but also for the complete family of
(non-Gaussian) Lévy processes [34, Theorem 2].

For particular configurations of analysis functions, it is
possible as well to obtain multi-spline extensions of such
solutions for the generalized sampling problem; in particular,
for the Hermite interpolation problem where the reconstruction
is based on the samples of the function and its derivatives [35].

V. SPARSE PROCESSES AND FINITE-RATE OF INNOVATION

The nonuniform L-spline described by (2) is the perfect
example of a signal with a finite rate of innovation, which
is non-bandlimitted, but can still be recovered from uniform
samples provided that the signal is pre-filtered and sampled at
a sufficient rate [36]. Alternatively, we can view such a signal
as a realization of a generalized Poisson process which is the
solution of the SDE (3) driven by impulsive noise [26]. The
rate of innovation is then given by the Poisson parameter λ
that represents the average number of Dirac impulses per unit
length.

While such an explicit description of the solutions of (3) is
not available for non-impulsive innovations, it is still possible
to view s = L−1w as a limit of a sequence of random L-
splines with increasing rates of innovation (i.e., λ→∞) and
some corrected amplitude distribution given by

pA,λ(x) =

∫
R

e
1
λ f(ω)e−jωx

dx

2π

where f(ω) is the Lévy exponent of the innovation w. The
relevant theory is developed in [37] for the class of CARn
processes associated with the generic operator (1). In particu-
lar, we note that λ

(
e

1
λ f(ω) − 1

)
= f(ω) +O

(
f2(ω)
λ

)
, which

shows that the result is compatible with the compound-Poisson
model for which fPoisson(ω) = λ (p̂A(ω)− 1).

While this makes for an elegant link with splines, we should
keep in mind that the rate of innovation alone is not necessarily
a good predictor of the sparsity or compressibility of a signal.
A striking example is provided by the family of SαS processes
with α ∈ (0, 2] whose rate of innovation is infinite, but whose
level of sparsity varies as 1/α, as discussed next.
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Fig. 1. Haar wavelets vs. KLT=DCT: M -term approximation errors for
different brands of Lévy processes. The vertical axis represents the relative
quadratic error and the horizontal one the relative number of transform
coefficients. (a) Gaussian (Brownian motion). (b) Compound Poisson with
Gaussian jump distribution and e−λ = 0.9. (c) Alpha-stable (symmetric
Cauchy). The results are averages over 1000 realizations.

VI. COMPRESSIBILITY OF SPARSE PROCESSES

The fundamental assumption that makes compressed sens-
ing feasible is that the underlying signal admits a sparse
representation in an appropriate basis. Remarkably, it is pos-
sible again to use L-splines to construct operator-like wavelet
bases that provide a parsimonious representation of the sparse
stochastic processes described in Section III [38], [39], [40].
For the Lévy processes, it holds that L = D, which cor-
responds to the Haar wavelet: the shortest wavelet with a
derivative-like behavior. The graphs in Fig.1b-c illustrate the
property that the wavelet decomposition yields a better M -
term approximation than the DCT for the sparse varieties of
Lévy processes. This is in contrast with the results in Figure
1a where the optimality of the Karhunen-Loève basis for the
representation of a Gaussian process is confirmed. The latter
is undistinguishable from the DCT. The signal in Figure 1b
is the compound-Poisson process (random, piecewise-constant
spline). It is a finite-rate-of-innovation signal that admits
a perfect M -term wavelet approximation past some critical
threshold. In the case of the third signal, which is SαS with
α = 1, the Haar wavelet transform always performs better
than the DCT, so that it is arguably the sparsest of the lot.

By considering a variation of the model (3) where the
excitation noise w is 2π-periodic, one can explain the above
empirical observations by characterizing the Besov smooth-
ness properties of sparse stochastic processes. Specifically,
when L is an nth-order ordinary differential operator of the
form (1) and w = wα is an SαS innovation, then sα = L−1wα
can be shown to be included in the periodic Besov space
B
n−1+1/α
α,∞ ([−π, π]) with probability one [41]. By invoking

the approximation properties of Besov spaces [42], this implies
that

‖sα − sα,M‖L2
= O(M−τ0) with τ0 = n+

1

α
− 1− ε

for any ε > 0, where sα,M denotes the M -term approximation
of sα in a suitable (e.g., wavelet-like) basis.
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[34] A. Amini, P. Thévenaz, J. Ward, and M. Unser, “On the linearity of

Bayesian interpolators for non-Gaussian continuous-time AR(1) pro-
cesses,” IEEE Transactions on Information Theory, vol. 59, no. 8, pp.
5063–5074, August 2013.

[35] V. Uhlmann, J. Fageot, H. Gupta, and M. Unser, “Statistical optimality
of Hermite splines,” in Sampling Theory and Applications, 2015, p. this
issue.

[36] M. Vetterli, P. Marziliano, and T. Blu, “Sampling signals with finite rate
of innovation,” IEEE Transactions on Signal Processing, vol. 50, no. 6,
pp. 1417–1428, June 2002.

[37] J. Fageot, J.-P. Ward, and M. Unser, “Interpretation of continuous-time
autoregressive processes as random exponential splines,” in Sampling
Theory and Applications, 2015, p. this issue.

[38] I. Khalidov and M. Unser, “From differential equations to the con-
struction of new wavelet-like bases,” IEEE Transactions on Signal
Processing, vol. 54, no. 4, pp. 1256–1267, April 2006.

[39] I. Khalidov, M. Unser, and J. Ward, “Operator-like wavelet bases of
L2(Rd),” The Journal of Fourier Analysis and Applications, vol. 19,
no. 6, pp. 1294–1322, December 2013.

[40] P. Pad and M. Unser, “On the optimality of operator-like wavelets
for sparse AR(1) processes,” in Proceedings of the Thirty-Eighth IEEE
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP’13), Vancouver BC, Canada, May 26-31, 2013, pp. 5598–5602.

[41] J.-P. Ward, J. Fageot, and M. Unser, “Compressibility of symmetric-α-
stable processes,” in Sampling Theory and Applications, 2015, p. this
issue.

[42] R. A. Devore, “Nonlinear approximation,” Acta Numerica, vol. 7, pp.
51–150, 1998.

2015 International Conference on Sampling Theory and Applications (SampTA)

225


