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Variational formulation of inverse problem

m Linear forward model y =Hs+n
noise
AN
| n
Integral operator
S Problem: recover s from noisy measurements y

m Reconstruction as an optimization problem

S = arg min [ly — Hs|ly + A[Ls|lp . p=1,2

TV V
data consistency  regularization




Linear inverse problems (20th century theory)
m Dealing with ill-posed problems: Tikhonov regularization
R(s) = ||Ls||3: regularization (or smoothness) functional

L: regularization operator (i.e., Gradient)

minR(s) subjectto ||y — Hsl|3 < o2

S

m Equivalent variational problem Andrey N. Tikhonov (1906-1993)

s* = argmin ||y — Hs||3 + \|Ls||3
—_—— N —

data consistency  regularization
, e A T V-19T+ —
Formal linear solution: s=(H " H+ AL'L)" H 'y =R,y

Interpretation: “filtered” backprojection

Learning as a (linear) inverse problem
but an infinite-dimensional one ...

Given the data points (Z.,,ym) € RYTL find f : RY — R such that
fxm) = ymform=1,.... M

m Introduce smoothness or regularization constraint (Poggio-Girosi 1990)

R(f)=|Ifl3 = ILfI7, = / |IL.f(z)|?da: regularization functional
RN

M
minscy R(f) subjectto Z ym — f(@m)|* < o2

m=1

m Regularized least-squares fit (theory of RKHS)
M > (Wahba 1990; Schélkopf 2001)

frins = arg min (Z Y — f (@) + AllFII5,

m=1

= kernel estimator



OUTLINE

= Introduction v/

Image reconstruction as an inverse problem
Learning as an inverse problem

= Continuous-domain theory of sparsity

Splines and operators
gTV regularization: representer theorem for CS

= From compressed sensing to deep neural networks
Unrolling forward/backward iterations: FBPConv

= Deep neural networks vs. deep splines
Continuous piecewise linear (CPWL) functions / splines
New representer theorem for deep neural networks

S NF

Swiss NATIONAL SCIENCE FOUNDATION

Part I: Continuous-domain theory of sparsity

L splines gTV optimality of splines for inverse problems
(Fisher-dJerome 1975) (U.-Fageot-Ward, SIAM Review 2017)



Splines are analog, but intrinsically sparse

L{-}: differential operator (translation-invariant)
d: Dirac distribution
Definition

The function s(x),xz € R? (possibly of slow growth) is a nonuniform L-spline
with knots {ka}keg

&  Ls=> ad(-—=x) =w : spline’sinnovation
kesS

Spline theory: (Schultz-Varga, 1967)

Spline synthesis: example

_d
- dx

pp(z) = D71{}(z) = 1, (x): Heaviside function

L=D Null space: Np =span{p1}, pi(z)=1

T ws(z) = Za;ﬁ(az — Tk)
k

1 1) z

R

A s(x) =bipi(x) + Z aply(x — )
k

ai

y 1

V&




Spline synthesis: generalization

L: spline admissible operator (LSI)
pL(z) = L=1{6}(x): Green’s function of L

Finite-dimensional null space: N1, = span{p, }.°,

Spline’s innovation: ws(x) = Z arpd(x — x)
k

Requires specification of boundary conditions

\ 4

Tg

Proper continuous counterpart of ¢;(Z%)

S(R9): Schwartz’s space of smooth and rapidly decaying test functions on R¢

S’(R%): Schwartz’s space of tempered distributions

m Space of real-valued Radon measures on R¢

M(R?) = (Co(RY)" = {w e S'RY) : [[w|p = sup

(w, ) < 0},
PESRD): ||| oo =1

where w : p = (w, @) = [pq @(r)w(r)dr

m Equivalent definition of “total variation” norm

[l = sup (w, )
PECOR): Pl e =1

m Basic inclusions

s 0(- — ) € M(R?) with ||5(- — o) || = 1 for any z € RY
= | fllae = fllz, @a forall f € Li(RY) = Li(RY) € M(RY)
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Representer theorem for gTV regularization
(P1) min (Z [Ym = (B, f) \2+A|!Lf\|M)

fEML(Rd)

» L: spline-admissible operator with null space N7, = span{pn}f:’gl

u gTV semi-norm: ||[L{s}||rm = SuPllwlloo§1<L{5}"P>

= Measurement functionals h,, : My, (R%) — R  (weak+-continuous)

Convex loss function: F : RM x RM R v M — RM
P1’ in (F AlL with = ((h1, ), ... (har,
(P1) argfeﬁir(lw)( (y,v(f)) + AMILf ) v(f) = ((h, £, (hae, )

Representer theorem for gTV-regularization
The extreme points of (P1’) are non-uniform L-spline of the form

Kknots NO
fspline(w) - Z ak:,OL(:B - wk) + Z bnpn(m)

with pr, such that L{pr,} = 6, Kinots < M — No, and ||L fspline ||t = [|2]l¢, -

(U.-Fageot-Ward, SIAM Review 2017)
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Example: 1D inverse problem with TV(2 regularization

Sspline = Arg i (Z [Ym = (s 5) + ATVE) (s ))

se M2 (R)

m Total 2nd-variation: TV (s) = SUD ||| <1(D?s, ©) = [[D?s|m

d2

L=D%=
da?

ppz(z) = (x)4: ReLU Npz = span{1, x}

m Generic form of the solution N

K
Sspline($) =01 + bz + Z ak;(ﬂf - Tk:)+

/ k=1

no penalt
p y T

with K < M and free parameters b1, b and (ag, Tg )1,
12



Other spline-admissible operators

m L=D" (pure derivatives)

= polynomial splines of degree (n — 1) (Schoenberg 1946)

mL=D"+a, D" ' +.--4+agl (ordinary differential operator)

= exponential splines (Dahmen-Micchelli 1987)
= Fractional derivatives: L=D7 < (jw)?
= fractional splines (U.-Blu 2000)
: L 2 F oy
m Fractional Laplacian: (—A)2 +— |w||

= polyharmonic splines (Duchon 1977)

m Elliptical differential operators; e.g, L = (—A + al)”
= Sobolev splines (Ward-U. 2014)
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Recovery with sparsity constraints: discretization

m Constrained optimization formulation

Auxiliary innovation variable: u = Ls
(1 2 .
Ssparse = arg Ilil _||y - HS“Q + /\Hu”l subjectto u = Ls
seRN \ 2

m Augmented Lagrangian method

Quadratic penalty term: £ ||Lss — u]|3

Lagrange multipler vector: o

1 1%
Lals,u )=y~ Hs|5 + A |[u]u] + o (Ls —u) + 5 ILs - E
n

(Ramani-Fessler, IEEE TMI2011)
14



Discretization: compatible with CS paradigm

1
Ssparse — al'g slélﬁ% <§||y — HS”% + )\||11||1) subjectto u = Ls

ADMM algorithm

1 7
Lals,u )=y~ Hs|l5 + A |[u]u] + o (Ls —u) + o ILs —ul3
n

Linear step

FOF k — 0, . e 7K Sk—l—l — (HTH —’-,LLLTL)il (ZO +zk+1)

with  z8T = L7 (pu® — o)

& j aftl — o 4+ IM(LSIH—l _ uk:)

Proximal step = pointwise non-linearity

uft! = prox  (Ls**! + %akﬂ; %)

Example: ISMRM reconstruction challenge

L regularization (Laplacian) ¢1 / TV regularization

Joint work with Klaas Pruessmann (Guerquin-Kern IEEE TMI2011) 16
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Structure of iterative reconstruction algorithm

1
Ssparse = arg sIélﬂi{I}l{ <§||y — Hs||2 + )\||u||1) subjectto u = Ls

ADMM

1 2 H
La(s,u,0) = 5 [ly — Hs|; + A |[uln] + o (Ls — u) + 5 ILs - ul|2

Linear step

FOf k — 0, P ’K Sk+1 _ (HTH —’-,LLLTL)il (ZO +Zk+1>

with  z5T = L7 (pu® — o)

& j ot = a4 u(Lst —u)

Pointwise nonlinearity

uft! = prox  (Ls**! + iakﬂ; %)




Identification of convolution operators
Normal matrix: A = H'H  (symmetric)

Generic linear solver: s = (A + \L’L)'H”y =R, -y

m Recognizing structured matrices

= L: convolution matrix = L7L: symmetric convolution matrix

= L, A: convolution matrices = (A + ALTL) : symmetric convolution matrix

= Applicable to [ jeconvolution microscopy (Wiener filter)

- parallel rays computer tomography (FBP)
- MRI, including non-uniform sampling of k-space

m Fast FFT-based implementation

m Justification for use of convolution neural nets (CNN)

(see Theorem 1, Jin et al., IEEE TIP 2017)
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Connection with deep neural networks
(Gregor-LeCun 2010)

Unrolled lterative Shrinkage Thresholding Algorithm (ISTA)

LISTA : learning-based ISTA

-—Hy —Hy —Hy
v v v
I RCR 7 S Nt 7 SRS e
ISTA with sparsifying transformation (a)
~
a LL WHy oF 1T WHY
v v
X, > | w »l - wHHW| (> A4 > L - wHHW (P A4 > | W > X,
.
FBPConvNet structures\ (b) f
4 \ /
b, \ b, J by | by l
— s X N
X W LA W S A e | W T{JDHL > W X,
\

20



Recent appearance of Deep ConvNets
(Jin et al. 2016; Adler-Oktem 2017; Chen et al. 2017; ...)

m CT reconstruction based on Deep ConvNets

= Input: Sparse view FBP reconstruction

= Training: Set of 500 high-quality full-view CT reconstructions

= Architecture: U-Net with skip connection

CT data

Ground truth

Reconstructed from
from 1000 views

@ MAYO CLINIC

(Jin et al., IEEE TIP 2017)

Skip connection

64 64 64 < # of channels

U-net

spatial dimension :512x512

64" 128128

+|»
256 x 256

12864 64 1 1
256 128

—>|—>‘—> >®~>
*
'128)

I->|$

128" 256 256
i
128x 128

256 256 | > 3x3conv.+BN

512
N N +RelU
¥ 2x2max pooling

Y

256" 512 512 1024 512 512 ;ﬁg;:::;?:;‘:ion
64x64[ .*-*‘- —*-»- J * 3x3up-conv2.
512+ 1024 | 1oz4j +BN + ReLU
32x 32\ - E— - 1x1conv.
Dose reduction by 7: 143 views
FBP TV
SNR 24.06 SNR 29.64
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CT data

Ground truth

Dose reduction by 7: 143 views

FBP TV FBPConvNet
SNR 24.06 SNR 29.64 SNR 35.38

Reconstructed from
from 1000 views

@ MAYO CLINIC

CT data

Ground truth

(Jin et al, IEEE Trans. Im Proc., 2017) <IEEE
2019 Best Paper Award

Dose reduction by 20: 50 views

FBP TV FBPConvNet
SNR 13.43 SNR 24.89 SNR 28.53

Reconstructed from
from 1000 views

@ MAYO CLINIC

(Jin-McCann-Froustey-Unser, IEEE Trans. Im Proc., 2017)
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Deep neural networks and splines
Re(x;b) = (z — b)+

m Preferred choice of activation function: ReLU /

m RelLU works nicely with dropout / ¢1-regularization
y pout7£1-reg (Glorot ICAIS 2011)

m Networks with hidden ReLU are easier to train

m State-of-the-art performance (LeCun-Bengio-Hinton Nature 2015)

m Deep nets as Continuous PieceWise-Linear maps

m RelLU = CPWL (Montufar NIPS 2014)

m CPWL = Deep RelLU network (Strang SIAM News 2018)

m Deep RelU nets = hierarchical splines

m RelU is a piecewise-linear spline (Poggio-Rosasco 2015)
26



Feedforward deep neural network

Layers: ¢/ =1,...,L

layers

Deep structure descriptor: (Ng, N1,---, Np)

Neuron or node index: (n,¢), n=1,---, Ny

» Activation function: ¢ : R -+ R (ReLU) O

O
Linear step: RVe-1 — RV o
fg X fg(fv) = ng +b£

(n—1,0)
neuron (mg)
= Nonlinear step: RV¢ — RVe

op:x— oy(x) = (0(331), e 70(xNg))

Zng =0 (WE Ze-1+ bn)

nodes

Learned
fdeep(w) =(opofpoop 10---0030fy,0010f;)(x)

27

Continuous-PieceWise Linear (CPWL) functions

m 1D: Non-uniform spline de degree 1 L Tht1
Partition: R = UkK:() P with P, = [Tk,Tk+1), To=—00<T7 < <Tg <Tg41 = +00.
The function fspiine : R — R is a piecewise-linear spline with knots 71, . .., 7k if

= (i) © fspline is continuous R — R
[ (ZZ) cforx € Pk : fspline(x) = fk(w) é apx + bk with (ak, bk) € Rz, k= O, . ,K

K
o feptine(z) = bo + b1z + > ax(z — 1)y with by, by € R, (ax) € RX.
k=1

28
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CPWL functions in high dimensions

m Multidimensional generalization

Partition of domain into a finite number of non-overlapping convex polytopes; i.e.,

RN = i, Py with (P, N Py,) = 0 for all ky # ks

The function fcpwr, : RY — R is continuous piecewise-linear with partition P, . .., Px
= (i) : fcpww is continuous RY — R

. (ii):forwePk:fchL(a:):fk(ac)éafwjtbkwithakERN,bkER,kzl,...,K

The vector-valued function fcpwr, = (fi1, ..., far) : RY — RM is a CPWL
if each component function f,,, : RV — R is CPWL.

29

Algebra of CPWL functions

e any linear combination of (vector-valued) CPWL functions RV — RV’
is CPWL, and,

e the composition f, o f; of any two CPWL functions with compatible
domain and range—i.e., f> : RV — RN and f; : RMo — RM—js
CPWL RMNo — RNz,

Sketch of proof. The continuity property is preserved through composition.
The composition of two affine transforms is an affine transform, including the
scenari where the domain is partitioned.

e The max (resp. min) pooling of two (or more) CPWL functions is CPWL.

30



Implication for deep RelLU neural networks

2espline_

2

facep(x) = (oo froop_10---0030 fyooi0 f)(x) gﬁﬁb’iﬂ

m Each scalar neuron activation, o,, ¢(z) = ReLU(z), is CPWL.

m Each layer function oy o f,(x) = (Wex + by), is CPWL
m The whole feedforward network fgeep : RV — RN is CPWL

m This holds true as well for deep architectures that involve Max pooling
for dimension reduction

m The CPWL also remains valid for more complicated neuronal responses
as long as they are CPWL,; that is, linear splines.

CPWL functions: further properties

m The CPWL model has universal approximation properties
(as one increases the number of regions)

m Any CPWL function RY — R can be implement via a deep ReLU net-
work with no more than log, (N + 1) + 1 layers

(Arora ICLR 2018)

31
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Refinement: free-form activation functions

Layers: ¢/ =1,...,L

layers

= Deep structure descriptor: (No, N1,--- , Np)
= Neuron or node index: (n,¢), n=1,---, Ny

= Free-form activation functions: 0,  : R — R

Linear step: RVe-1 — RV
fz L= fﬁ(w) = ngl? +b£

neuron

(n, )
= Nonlinear step: RV¢ — RVe

or:x— op(x) = (Unj($1),-~-,UAQj($AM))

Znt = 00 (WE pZe—1+ bne)

nodes

fdeep( x) = ULOfLOUL jo---0030 fyo0oi0f)(x)

Joint Iearning / training ?

33

Constraining activation functions

m Regularization functional
= Should not penalize simple solutions (e.g., identity or linear scaling)
= Should impose diffentiability (for DNN to be trainable via backpropagation)

= Should favor simplest CPWL solutions; i.e., with “sparse 2nd derivatives”

m Second total-variationof 0 : R — R

A

m Native space for (M(R), D?)

BVA(R) = {f:R—R: ||D2f||p < o0}

equipped with the norm || f[|gye = D f|lx + [£(0)] + (1) = f(0)]

34



Representer theorem for deep neural networks

Theorem (TV?)-optimality of deep spline networks) (U. arXiv:1802.09210, Feb 2018)

= neural network f : R0 — RNz with deep structure (Ny, Ny, ..., Np)
:]3’—>f(:l?)= (ULOELOUL,10-~OEQOO'1 O£1)(CC)

= normalized linear transformations £, : RV¢-1 — RN¢, ¢ s U, with weights
€ RNexNe—1 gych that [Ju,, | = 1

Uy =[uie - upy, "
LON£ ) RMe — RN with O10y s O'VigEBV()(R)

= free-form activations oy = (o1 ¢, . .

Given a series data points (x,,,y,,) m = 1,..., M, we then define the training problem

L Ny
(ZE ym’ mm ) Z U[ ‘l‘)\ZZTV( On ¢ ) (1)
l=

arg
=1 n=1

(Uy),(on fGBV(z)(]R
= E: RNt x RNt — R*: arbitrary convex error function
s Ry : RNexNee1 5 R+: convex cost

If solution of (1) exists, then it is achieved by a deep spline network with activations of the form

K¢

O'n,f(x) = bl,n,[ + b2.,n.£:r + Z ak:,n,ﬂ(x - Tk,n,é)Jra
k=1

with adaptive parameters K, < M — 2, 710, Tk, ,ne € R, @and by, 0,020, 01 5.0,

ces K, gl c R.
35

Outcome of representer theorem

Each neuron (fixed index (n, £)) is characterized by
e its number 0 < K, ;, of knots (ideally, much smaller than M);
e the location {7, = 7% », g}k of these knots (ReLU biases);

e the expansion coefficients b, ; = (b1.n.¢,b2.n.0) € R?,

Qp o = (al,n,fa <o 7aK,n,K) € RK-

These parameters (including the number of knots) are data-dependent and

adjusted automatically during training.

m Link with /; minimization techniques

Kn,@
TV ol = lannel =
k=1

36



Optimality results

Lemma 1 (TV(Q)-optimaIity of piecewise-linear interpolants)
Consider a series of scalar data points (z,,, ym),m = 1,..., M with M > 2 and
x1 # xo. Then, the extremal points of the interpolation problem

arg  min ||[D*f[lm st f(@m) =Ym, m=1,..., M
FEBV™ (R)

are nonuniform splines of degree 1 with no more than (M — 2) adaptive knots.

(U., JMLR 2019; Appendix C)
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Comparison of linear interpolators

38



Spline interpolants: RKHS vs sparse

Lemma 1 (TV(Q)-optimaIity of piecewise-linear interpolants)
Consider a series of scalar data points (z,,, ym),m = 1,..., M with M > 2 and
x1 # x2. Then, the extremal points of the interpolation problem

arg  min ||[D*f[lm st f(@m) =Ym, m=1,..., M
FEBV)(R)

are nonuniform splines of degree 1 with no more than (M — 2) adaptive knots.

Proposition 2 (Sobolev optimality of piecewise-linear interpolation)
Let HY(R) = {f : R = R : |Df||7, +|f(0)]* < co}. Given a series of distinct data
points (., ym), m = 1, ..., M, the interpolation problem

i D 2dz st =Y, m=1,..., M
we min [ Df@Pd st f(@n) = o m

has a unique piecewise-linear solution that can be written as

so(x) = by + Z A (T — Tpn) -

m=1

Deep spline networks: Discussion

m Global optimality achieved with spline activations

m Justification of popular schemes / Backward compatibility

m Standard ReLU networks (K, , =1, b,, = 0)
No need to normalize:

(W 0T = 2Zn0)+ = (An, o) ;@ — 2p0) 4 = ane(U) @ — Ty 0) 4

m Linear regression: A = oo = K,, p =0

m State-of-the-art Parametric ReLU networks (Knye=1)
1 ReLU + linear term (per neuron) (He et al. CVPR 2015)
m Adaptive-piecewise linear (APL) networks (Kne=50r7, by, =0)

(Agostinelli et al. 2015)

39

40



Deep spline networks (Cont’d)

m Key features

= Direct control of complexity (number of knots): adjustment of A

= Ability to suppress unnecessary layers

m Generalizations

= Broad family of cost functionals
= Cases where a subset of network components is fixed

= Generalized forms of regularization: "L/J(Tv(z)(dme))

m Challenges = In need for more powerful training algorithms

= Adaptive knots: more difficult optimization problem

= Optimal allocation of knots
£1-minimization with knot deletion mechanism (even for single layer)

s Finding the tradeoff: more complex activations vs. deeper architectures

41
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Sketch of proof
L N,
(Ue),(on, 4er<2>(R (Z E(yum: f(@m) ‘WZRe Uy) +)\ZZTV(2) Tne )

l=1n=1
Optimal solution f = oy, 0 ZL 0G[_10---0 22 06F10 21 with optimized weights Ijg
and neuronal activations o, ;.
Apply “optimal” network f to each data point x,,:

e Initialization (input): y,,, ¢ = Tm.

e For/=1,...,L

zm,f — (Zl,m,fa ey zNg,m,f) - ij gm,[—l
Qm,e = (gl,m,ﬁa s 7@1\74,77%5) e RM
with gn,m,é = 5,,L7g(zn7m7g) n = 1, .. ,Ng. = f(:cm) = @va

This fixes two terms of minimal criterion: Zn]\le E(Yys Ypn, 1) and Zle Ry(Uy).

f achieves global optimum

& Op¢=arg min ||D2fHM st f(Znmie) =Unme, m=1,..., M
FEBVR)(R)
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