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We characterize the solution of a broad class of convex optimization problems that 
address the reconstruction of a function from a finite number of linear measurements. 
The underlying hypothesis is that the solution is decomposable as a finite sum of 
components, where each component belongs to its own prescribed Banach space; 
moreover, the problem is regularized by penalizing some composite norm of the 
solution. We establish general conditions for existence and derive the generic 
parametric representation of the solution components. These representations fall 
into three categories depending on the underlying regularization norm: (i) a linear 
expansion in terms of predefined “kernels” when the component space is a 
reproducing kernel Hilbert space (RKHS), (ii) a non-linear (duality) mapping of a 
linear combination of measurement functionals when the component Banach space 
is strictly convex, and, (iii) an adaptive expansion in terms of a small number of 
atoms within a larger dictionary when the component Banach space is not strictly 
convex. Our approach generalizes and unifies a number of multi-kernel (RKHS) 
and sparse-dictionary learning techniques for compressed sensing available in the 
literature. It also yields the natural extension of the classical spline-fitting techniques 
in (semi-)RKHS to the abstract Banach-space setting.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

1.1. From RKHS to Banach spaces

Reproducing kernel Hilbert spaces (RKHS) play a central role in the classical formulations of machine 
learning, statistical estimation, and the resolution of linear inverse problems [1,2]. They go hand in hand with 
quadratic (or Tikhonov) regularization and Gaussian processes [3,4]. The popularity of RKHS in machine 
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learning stems from the fact that the minimization of Hilbertian norms results in parametric solutions 
that are linear combinations of kernels (basis functions) centered on the data points [1,5–7], a remarkable 
property that is supported by the celebrated representer theorem [8].

However, recent works that revolve around the concept of sparsity have demonstrated the advantages 
of considering Banach spaces instead of Hilbert spaces. In particular, compressed sensing relies on the 
minimization of �1-norms. Under suitable conditions, this enables the exact recovery of a signal from a limited 
number of linear measurements [9–14]. Researchers have established representer theorems that explain the 
sparsifying effect of the �1-norm [15] and of its variants, including its continuous-domain counterpart: the M-
norm (a.k.a. the total-variation norm of a measure) [16–19]. Likewise, we proved in [20] that non-uniform 
splines of a type that is matched to the regularization operator are universal solutions of linear inverse 
problems with generalized total-variation regularization. The main difference with the RKHS (or Tikhonov) 
framework is that the underlying basis functions—or kernels—are selected in an adaptive fashion and are 
not necessarily placed on the data points [21]. More recently, we have shown that the effect of such minimum-
norm regularization could be characterized in full generality, as described in Theorem 1 below [22,23]. The 
latter is an “abstract” representer theorem that applies to any Banach space X ′ (e.g., �∞(Z) =

(
�1(Z)

)′ or 
M(Rd) =

(
C0(Rd)

)′) identifiable as the dual of some primary Banach space X .

1.2. From sums of RKHS to sums of Banach spaces

It is a known fundamental property that a convex combination (resp., a tensor product) of reproduc-
ing kernels retains the desirable reproducing-kernel property (a.k.a. positive-definiteness) [24]. This has 
prompted researchers to extend the single-kernel Hilbertian methods of machine learning to a whole range 
of composite problems that involve direct products or (internal) direct sums of RKHS. (It turns out that 
direct sums and direct products are topologically equivalent, which is the reason why direct-product spaces 
are sometimes referred to as external direct sums [25].) Examples of practical developments that involve 
direct product/sums of RKHS are: kernel methods for vector-valued data [26,27], multi-kernel learning 
[28,29], multiscale approximation [30], and semi-parametric models of the form f̃ = f + p0, where f ∈ H
(RKHS) and the second component p0 ∈ span{pn}N0

n=1 is finite-dimensional [1]. Likewise, the native spaces 
of variational splines have an inherent direct-sum structure because the underlying regularization functional 
is a Hilbertian semi-norm [31–34].

While the Banach counterparts of these methods are still lacking for the most part, there is recent 
evidence that the use of over-complete dictionaries—in particular, unions of bases—is highly advantageous 
for the resolution of compressed-sensing problems with sparsity constraints [35–41]. In the case where the 
dictionary is a single basis, there is a direct relation between this type of signal recovery and the kind of 
�1-regularization problem mentioned in Section 1.1 [14]. By taking inspiration from the large body of work 
already available for RKHS, the next promising step is therefore to investigate this type of reconstruction 
problem from the unifying perspective of an optimization in a sum of Banach spaces.

1.3. Mathematical context

The aim of this paper is to characterize the solution of a broad class of unconstrained-optimization 
problems that address the recovery of some unknown function f from a finite number of (possibly noisy) 
samples or, more generally, from a set of M linear measurements zm = 〈νm, f〉, m = 1, . . . , M . Beyond 
the fact that we leave the classical framework of RKHS, the specificity of our investigation is that the 
optimization is performed over some Banach space X ′ that has a direct-sum structure and/or is equipped 
with a composite-norm.

To set the stage, we recall the primary results of [22] and [23] and introduce our abstract optimization 
framework in the form of a single unified theorem.
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Theorem 1 (General Banach representer theorem). Let us consider the following setting:

• A dual pair (X , X ′) of Banach spaces.
• The analysis subspace Nν = span{νm}Mm=1 ⊂ X with the νm being linearly independent.
• The linear measurement operator ν : X ′ → RM : f �→

(
〈ν1, f〉, . . . , 〈νM , f〉

)
.

• The proper, lower-semicontinuous, and convex loss functional E : RM ×RM → R+ ∪ {+∞}.
• Some arbitrary strictly increasing and convex function ψ : R+ → R+.

Then, for any fixed y ∈ RM , the solution set of the generic optimization problem

S = arg min
f∈X ′

(
E
(
y,ν(f)

)
+ ψ (‖f‖X ′)

)
(1)

is nonempty, convex, and weak∗-compact.
When E is strictly convex, or if it imposes the equality constraint y = ν(f), then any solution f0 ∈ S ⊂ X ′

is an (X ′, X )-conjugate of a common ν0 ∈ Nν ⊂ X , so that S ⊆ J(ν0) (see Definition 1). Depending on the 
type of Banach space, this then results in the following description of the solution(s):

• If X ′ is a Hilbert space and ψ is strictly convex, then the solution is unique and admits the linear 
representation with parameter a ∈ RM given as

f0 =
M∑

m=1
amϕm, (2)

with ϕm = JX {νm} ∈ X ′, where JX is the Riesz map X → X ′.
• If X ′ is a strictly convex Banach space and ψ is strictly convex, then the solution is unique and admits 

the parametric representation

f0 = JX

{
M∑

m=1
amνm

}
, (3)

where JX is the (nonlinear) duality operator X → X ′ (see Definition 1).
• Otherwise, when X ′ is not strictly convex, the solution set is the weak*-closure of the convex hull of its 

extremal points (see Definition 3) which can all be expressed as

f0 =
K0∑
k=1

ckek (4)

for some K0 ≤ M , c1, . . . , cK0 ∈ R, where e1, . . . , eK0 ∈ X ′ are some extremal points of the unit ball 
BX ′ = {x ∈ X : ‖x‖X ′ ≤ 1}.

The definitions and mathematical background for the interpretation of Theorem 1 are provided in Sec-
tion 2. The first part of Theorem 1 up to (3) is a retranscription of [42, Theorem 1]. The representation (4)
for the case where the solution is non-unique is then deducible from Theorem 3.1 of [23]. Since the latter 
theorem is more general than what is required here, we are providing an alternative proof of the result in 
Appendix A. It is important to note that the linear expansion in (4) is adaptive, meaning that the actual 
choice of K0 and of the basis functions ek ∈ X ′ is data-dependent. This is the main difference with the two 
other cases for which Theorem 1 provides an explicit description of the M -dimensional solution manifold.
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1.4. Contributions

While the abstract characterization in Theorem 1 is remarkably general, it is practical only for the cases 
in which the duality operator JX : X → X ′ or the extremal points of the unit ball in X ′ are known explicitly, 
for instance when X ′ is a RKHS [24,43,8] or when the underlying norm is a variant of the �1-norm that 
promotes sparsity [15,23,19]. In this paper, we are extending the applicability of Theorem 1 by starting 
from basic building blocks (elementary Banach constituents) and by showing how these can be combined 
via the use of linear transforms and of direct sums to specify more complex regularization norms that can 
accommodate mixture models.

In Section 3, we present a refinement of Theorem 1 for the cases where X ′ admits the decomposition 
X ′ = X ′

1 × · · · × X ′
N (direct product of Banach spaces) or X ′ = X ′

1 ⊕ · · · ⊕ X ′
N (direct sum of Banach 

spaces). The main result there is Theorem 2, which explicitly tells us how the underlying direct-product 
duality mappings and extremal points can be determined from the knowledge of the same entities for the 
simpler constituent spaces X ′

n. In Section 4, we focus our attention on the direct-sum scenario and illustrate 
the relevance of our framework to the practice of signal processing and data science. In particular, we 
present an alternative variational formulation for sparse-dictionary learning and a new representer theorem 
for mixed-norm regularization problems (Theorem 2).

In Section 5, we extend Theorem 1 by replacing the original regularizing norm by a semi-norm that has 
a finite-dimensional null space Np = span{p1, . . . , pN0} ⊂ X ′. The main result expressed by Theorem 3
is that this adds a null-space component p0 to the generic solution(s) of Theorem 1, which is the desired 
outcome. At the same time, it reduces the intrinsic dimension of the complementary component s0 = f0−p0

from M to (M −N0). The mathematical analysis amounts to making sure that the solution exists and to 
then properly split the problem in order to decouple the determination of the two solution components. 
The significance of our new Theorem 3 is to show that the traditional techniques of spline approximation 
[31,32,43,33], which involve semi-reproducing-kernel Hilbert spaces [34], are extendable to Banach spaces in 
general. Likewise, the non-strictly convex scenario in Theorem 3 is consistent with a number of recent results 
that have appeared in the literature for sparsity-promoting functionals [20,23,19], although the overlap is 
only partial due to the generality of our present formulation.

2. Mathematical foundations

A Banach space is a complete normed vector space. It is denoted by (X , ‖ · ‖X ) where X stands for the 
vector space and ‖ · ‖X specifies the underlying norm or, simply, by X (for short). A Banach space X has 
a unique topological dual X ′ which is itself a Banach space equipped with the dual norm ‖ · ‖X ′ (see (7)
below). Formally, an element f of the dual space X ′ is a continuous linear functional f : X → R. Likewise, 
since X is embedded in the bidual space X ′′ = (X ′)′, an element ν ∈ X , which is therefore also included in 
X ′′, can be viewed as a continuous linear functional ν : X ′ → R. The bilateral character of this association 
is described by the duality product

X × X ′ → R : (ν, f) �→ 〈ν, f〉X×X ′ = 〈f, ν〉X ′×X ∈ R, (5)

which is a map that is linear and continuous in both arguments. To avoid notational overload, we shall 
henceforth drop the subscript in the specification of the duality product under the understanding that the 
first argument is a linear functional that acts on the second argument; for instance, ν : f �→ 〈ν, f〉, where 
f ∈ X ′ usually also has a concrete identification as a vector or a function. Mathematically, the continuity of 
the duality product or, equivalently, the continuity of ν (or of f) viewed as a linear functional—is expressed 
by the generic duality bound
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∣∣〈ν, f〉∣∣ ≤ ‖ν‖X ‖f‖X ′ , (6)

which holds for any (ν, f) ∈ X ×X ′—for more details, refer to [25,44]. The upper bound in (6) is consistent 
with the definition of the dual norm

‖f‖X ′
�= sup

ν∈X\{0}

〈f, ν〉
‖ν‖X

. (7)

In fact, the latter identification suggests that the bound in (6) is tight—a property that is embodied in the 
fundamental notion of duality mapping [45].

Definition 1 (Duality mapping). Let (X , X ′) be a dual pair of Banach spaces. Then, the elements ν∗ ∈ X ′

and ν ∈ X form a (X ′, X )-conjugate pair if they satisfy:

1. Norm preservation: ‖ν∗‖X ′ = ‖ν‖X .
2. Sharp duality bound: 〈ν, ν∗〉 = ‖ν‖X ‖ν∗‖X ′ .

For any given ν ∈ X , the set of admissible conjugates defines the duality mapping

J(ν) = {ν∗ ∈ X ′ : ‖ν∗‖X ′ = ‖ν‖X and 〈ν, ν∗〉 = ‖ν‖X ‖ν∗‖X ′}, (8)

which is a nonempty subset of X ′. Whenever the duality mapping is single-valued (for instance, when X ′ is 
strictly convex), one also defines the duality operator JX : X → X ′, which is such that ν∗ = JX {ν}.

Definition 2. A Banach space X (or its associated norm ‖ ·‖X ) is said to be strictly convex if, for all f1, f2 ∈ X
such that ‖f1‖X = ‖f2‖X = 1 and f1 �= f2, one has that ‖λf1 + (1 − λ)f2‖X < 1 for any λ ∈ (0, 1).

The dual mapping is a powerful mathematical tool that facilitates the investigation of optimization 
problems in Banach spaces. A primary reference on the topic, which includes the characterization of JX for 
the classical Lp spaces, is [46].

Note that the duality operator JX is bijective when X is reflexive and strictly convex [46,47], in which case 
J−1
X = JX ′ : X ′ → X ′′ = X . It can therefore be viewed as the natural generalization of the celebrated Riesz 

map [48,49], which describes the linear isometric mapping of a Hilbert space into its dual. The important 
difference, however, is that the operator JX is generally nonlinear. In fact, it is linear if and only if X is a 
Hilbert space, in which case it coincides with the Riesz map X → X ′ [46,22]. This explains the distinction 
between the first and second scenarios in Theorem 1: The simplification in (2) occurs because we are able 
to move the operator inside the sum of (3).

The final statement in Theorem 1, which applies to the cases where the solution is non-unique, involves 
the notion of extremal points.

Definition 3 (Extremal points). Let C be a convex set of a Banach space X . The extremal points of C are 
the points f ∈ C such that, if there exist f1, f2 ∈ C and t ∈ (0, 1) such that f = tf1 + (1 − t)f2, then it 
necessarily holds that f = f1 = f2. The set of these extremal points is denoted by Ext(C).

While the characterization given by (4) is always valid, it is practical only when the Banach space X ′

has a unit ball BX ′ with comparatively much fewer extremal points than boundary points. The prototypical 
case is �1(Z), whose extremal points Ext(B�1(Z)) = {±δ[· −m]}m∈Z (the signed Kronecker impulses shifted 
by m) are indexable, while its boundary points {u[·] ∈ �1(Z) : ‖u‖�1 = 1} are uncountable. The extremal 
points of BX ′ can then be interpreted as the elements of a constrained dictionary. This means that f0 in (4)
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will be constructed by adaptively selecting a few elements ek (with K0 � M when the solution is strongly 
regularized) in a dictionary of preferred elementary solutions. This is a very popular approach in compressed 
sensing [9,10,12,50].

Our final tool is a transformation mechanism that generates application-specific Banach spaces from 
some primary ones whose basic properties (e.g., the duality mapping and extremal points of the unit ball) 
are known.

Proposition 1 (Isometric isomorphism). Let X be a primary Banach space and T : X → T(X ) a linear 
operator that is injective on X . Then, we have the following properties:

1. The space Y = T(X ) = {y = Tx : x ∈ X}, equipped with the norm ‖y‖Y = ‖T−1{y}‖X , is a Banach 
space that is isometrically isomorphic to X . In other words, the operators T : X → Y and T−1 : Y → X
are isometries.

2. The continuous dual of Y = T(X ) is Y ′ = T−1∗(X ′), equipped with the norm ‖y∗‖Y′ = ‖T∗{y∗}‖X ′ .
3. The elements y∗ ∈ Y ′ and y ∈ Y = T(X ) form a conjugate pair if and only if x∗ = T∗{y∗} ∈ X ′ and 

x = T−1{y} ∈ X are themselves (X ′, X )-Banach conjugates.
4. The element u ∈ Y is an extremal point of the unit ball in Y = T(X ) if and only if u = T{e}, where 

e ∈ X is an extremal point of the unit ball in X .
5. If X is a Hilbert space, then the spaces Y = T

(
X
)

and Y ′ = T−1∗(X ′) are Hilbert spaces as well. The 
corresponding Riesz map is JY = T−1∗JXT−1 : Y → Y ′, where JX : X → X ′ = JX (X ) is the Riesz map 
of the primary space.

Proof. The hypothesis that T is injective on X implies the existence of a linear map T−1 (inverse operator) 
such that T−1T{x} = x for all x ∈ X . Since T is linear and one-to-one, the functional y �→ ‖T−1y‖X is a 
bona fide norm on Y. Moreover, from the definition of the Y-norm, we have that

‖T{xm} − T{xn}‖Y = ‖T{xm − xn}‖Y = ‖T−1T{xm − xn}‖X = ‖xm − xn‖X , (9)

for any xm, xn ∈ X . Together with the bijectivity of T, we deduce that T is an isomorphism between X and 
Y. Hence, Y inherits the topological structure of X . This proves that Y is indeed a Banach space.

The other properties are immediate consequences of the underlying isometry and the definition of the 
adjoint, which translate into

〈x∗
1, x2〉X ′×X = 〈x∗

1,T−1T{x2}〉X ′×X = 〈T−1∗{x∗
1},T{x2}〉Y′×Y = 〈y∗1 , y2〉Y′×Y

for any (x∗
1, x2) ∈ X ′ ×X .

In particular, if X is a Hilbert space with inner product (·, ·)X , then x∗ = JX {x} ∈ X ′ so that 
〈x∗, x〉X ′×X = ‖x‖2

X = (x, x)X . It follows that Y = T
(
X
)

is a Hilbert space equipped with the inner product 
(y1, y2)Y = (T−1y1, T−1y2)X . Correspondingly, the dual space Y ′ = T−1∗(X ′) is the Hilbert space equipped 
with the inner product (y∗1 , y∗2)Y′ = (T∗y∗1 , T∗y∗2)X ′ . Moreover, we have that (y1, y2)Y = 〈JY{y1}, y2〉Y′×Y =
(JY{y1}, JY{y2})Y′ , the underlying duality operator (Riesz map) being JY = T−1∗JXT−1 : Y → Y ′. �
3. Composite norms and direct-sum spaces

In order to offer flexibility in the specification of direct-product or direct-sum topologies, we introduce 
the finite-dimensional space Z = (RN , ‖ · ‖Z). The underlying norm is said to be monotone if

‖(a1, . . . , aN )‖Z ≤ ‖(b1, . . . , bN )‖Z
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whenever 0 ≤ |an| ≤ |bn| for each n = 1, . . . , N , and, absolute if ‖z‖Z = ‖(zn)‖Z = ‖(|zn|)‖Z for any 
z ∈ RN . It is also known that a norm is monotone if and only if it is absolute [51, Theorem 2]. For instance, 
the latter property is obviously satisfied for ‖ · ‖Z = ‖ · ‖p with p ≥ 1, as well as for any weighted version 
thereof. Moreover, the dual of an absolute norm is again absolute [51, Theorem 1]. Given a series X1, . . . , XN

of Banach spaces, we then write (X1×· · ·×XN )Z for the direct-product space equipped with the composite 
norm

‖(x1, . . . , xN )‖ = ‖(‖x1‖X1 , . . . , ‖xN‖XN
)‖Z . (10)

The construction is straightforward as the direct-product space automatically inherits the Banach property 
of its components.

Likewise, one can construct (internal) direct-sum spaces via the summation of complemented Banach 
constituents.

Definition 4. A series X1, . . . , XN of Banach subspaces of X is said to be complemented if X = X1+· · ·+XN =
{x = x1 + · · · + xN : xn ∈ Xn, n = 1, . . . , N} (as a set) and Xn1 ∩

∑
n �=n1

Xn = {0} when n1 = 1, . . . , N .

In that scenario, any x ∈ X has a unique representation as x = x1 + · · ·+xN with xn = ProjXn
{x} ∈ Xn, 

where ProjXn
: X → Xn is the corresponding projection operator. We then designate X = (X1 ⊕· · ·⊕XN )Z

as the (internal) direct-sum space equipped with the norm

‖x‖X = ‖(‖ProjX1
{x}‖X1 , . . . , ‖ProjXN

{x}‖XN
)‖Z . (11)

We observe that (11) is compatible with (10) because ProjXn1
: X → Xn1 is such that

ProjXn1
{xn} =

{
xn1 , for n = n1

0, otherwise

for any xn ∈ Xn. This identification, together with the unicity of the sum decomposition, implies that 
(X1 ⊕ · · · ⊕ XN )Z is a Banach space that is isometrically isomorphic to (X1 × · · · × XN )Z .

Lemma 1. Let (X ′
1, X1), . . . , (X ′

N , XN ) be a series of dual pairs of Banach spaces and ‖ · ‖Z a norm on RN

that is absolute. Then, we have the following properties:

1. The continuous dual of X = (X1 × · · · × XN )Z is the direct-product space X ′ = (X ′
1 × · · · × X ′

N )Z′ .
2. The elements y = (y1, . . . , yN ) ∈ X ′ and x = (x1, . . . , xN ) ∈ X form a conjugate pair if and only if 

yn = αnx
∗
n, where x∗

n ∈ X ′
n is a Banach conjugate of xn ∈ Xn and αn ∈ R+ is given by

αn =
{

z∗
n

‖xn‖Xn
> 0, xn �= 0

0, otherwise
(12)

with z∗ = (z∗n) ∈ Z ′ a Banach conjugate of z = (‖x1‖X1 , . . . , ‖xN‖XN
) ∈ Z.

3. The element e = (e1, . . . , eN ) ∈ X is an extremal point of the unit ball in X if and only if 
(‖e1‖X1 , . . . , ‖eN‖XN

) is an extremal point of the unit ball in Z, and for each 1 ≤ n ≤ N with en �= 0, 
en

‖en‖Xn
is an extremal point of the unit ball of Xn.

4. If the Xn are complemented Banach subspaces of the (sum) space Xsum, then the continuous dual of 
Xsum = (X1⊕· · ·⊕XN )Z is the direct-sum Banach space X ′

sum = (X ′
1⊕· · ·⊕X ′

N )Z′ , which is isometrically 
isomorphic to the direct-product space X ′ in Item 1. Consequently, the properties in Item 2 and 3 also 
apply, with the convention that xn = ProjX {x} and yn = ProjX ′ {y} for n = 1, . . . , N .
n n
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Proof. An element y = (y1, . . . , yN ) of X ′ is identified with the linear functional

x = (x1, . . . , xN ) �→ 〈y, x〉X ′×X =
N∑

n=1
〈yn, xn〉X ′

n×Xn
. (13)

The first property is a basic result in the theory of Banach spaces [25, Theorem 1.10.13] when the outer 
norm is Euclidean with Z = Z ′ = (RN , ‖ · ‖2). The present setting is more general so that we need to prove 
that the dual norm of y = (y1, . . . , yN ) ∈ X ′ is precisely

‖y‖X ′ = sup
‖x‖X=1

〈y, x〉 =
∥∥(‖y1‖X ′

1
, . . . , ‖yN‖X ′

N
)
∥∥
Z′ . (14)

Since the spaces (X ′
n, Xn) form dual pairs, we have the generic duality inequalities

〈yn, xn〉X ′
n×Xn

≤
∣∣〈yn, xn〉X ′

n×Xn

∣∣ ≤ ‖yn‖X ′
n
‖xn‖Xn

(15)

with equality if and only if yn = αnx
∗
n for some αn ∈ R+. This implies that, for any (y, x) ∈ X ′ × X , we 

have that

〈y, x〉X ′×X =
N∑

n=1
〈yn, xn〉X ′

n×Xn
≤

N∑
n=1

∣∣〈yn, xn〉X ′
n×Xn

∣∣ ≤ N∑
n=1

‖yn‖X ′
n
‖xn‖Xn

(16)

Likewise, by setting y = (‖y1‖X ′
1
, . . . , ‖yN‖X ′

N
) ∈ Z ′ and z = (‖x1‖X1 , . . . , ‖xN‖XN

) ∈ Z, we write the 
complementary duality inequality

N∑
n=1

‖yn‖X ′
n
‖xn‖Xn

= 〈y, z〉Z′×Z ≤ |〈y, z〉Z′×Z | ≤ ‖y‖Z′‖z‖Z . (17)

By observing that ‖z‖Z = ‖x‖X and combining these inequalities, we get that

〈y, x〉X ′×X ≤
N∑

n=1
‖yn‖X ′

n
‖xn‖Xn

≤ ‖y‖Z′‖x‖Z = ‖y‖Z′‖x‖X , (18)

which shows that ‖y‖X ′ is upper-bounded by ‖y‖Z′ =
∥∥(‖y1‖X ′

1
, . . . , ‖yN‖X ′

N
)
∥∥
Z′ . To prove that we actually 

have ‖y‖X ′ = ‖y‖Z′ , for any ε > 0, we need to find xε ∈ X with ‖xε‖X = 1 such that

〈y, xε〉X ′×X ≥ ‖y‖Z′ − ε.

By definition of the dual norm ‖ · ‖Z′ , we have that

‖y‖Z′ = sup
α∈RN

‖α‖Z≤1

yTα. (19)

Since RN is a finite-dimensional vector-space, the unit ball BZ = {α ∈ RN : ‖α‖Z ≤ 1} is compact. Hence, 
there exists a vector α = (α1, . . . , αN ) ∈ BZ that attains the supremum in (19). In other words,

‖y‖Z′ = yTα =
N∑

‖yn‖X ′
n
αn.
n=1
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Similarly, for any ε > 0, the definition of the dual norm implies the existence of unit-norm elements xn ∈ Xn

for n = 1, . . . , N such that

〈yn, xn〉X ′
n×Xn

≥ ‖yn‖X ′
n
− 2ε

N(α2
n + 1) . (20)

We then set xε = (α1x1, . . . , αNxN ) ∈ X and observe that

‖xε‖X = ‖(‖α1x1‖X1 , . . . , ‖αNxN‖XN
)‖Z = ‖(|α1|, . . . , |αN |)‖Z = 1.

Based on (20) and the inequality α
α2+1 ≤ 1

2 for all α ∈ R, we then deduce that

〈y, xε〉X ′×X =
N∑

n=1
〈yn, αnxn〉X ′

n×Xn
≥

N∑
n=1

αn

(
‖yn‖X ′

n
− 2ε

N(α2
n + 1)

)

=
N∑

n=1
αn‖yn‖X ′

n
− 2ε

N

N∑
n=1

αn

α2
n + 1 = ‖y‖Z′ − 2ε

N

N∑
N=1

αn

α2
n + 1 ≥ ‖y‖Z′ − ε,

which, in light of the inequality ‖y‖X ′ ≤ ‖y‖Z′ , allows us to conclude that ‖y‖X ′ = ‖y‖Z′ .
To prove the second property, we observe that y ∈ X ′ and x ∈ X form a conjugate pair if and only if 

an equality occurs in both (16) and (17). Inequalities (15) and (16) are saturated if and only if yn = αnx
∗
n, 

αn ∈ R+, and (x∗
n, xn) form a (X ′

n, Xn)-conjugate pair. The saturation of (17) with ‖y‖X ′ = ‖y‖Z′ =
‖z‖Z = ‖x‖X is then equivalent to y = z∗ = (z∗1 , . . . , z∗N ). Under the assumption that xn �= 0, this yields 
αn = z∗

n

‖x∗
n‖X′

n

, which is the announced result since ‖x∗
n‖X ′

n
= ‖xn‖Xn

.
The third property is due to Dowling and Saejung [52] under the assumption that the ‖ · ‖Z -norm 

is absolute and monotone in the positive orthant; in other words, when the condition 0 ≤ an ≤ bn for 
n = 1, . . . , N implies that ‖a‖Z ≤ ‖b‖Z . By invoking Bauer’s theorem [51], we are able to drop the 
(redundant) assumption of monotonicity since it is implied by the absoluteness property.

The last statement is a direct consequence of the isometric isomorphism between Xsum = (X1⊕. . . , ⊕XN )Z
and X = (X1 × . . . , ×XN )Z . �

In particular, if ‖ · ‖Z = ‖ · ‖2 is the usual Euclidean norm, then z∗ in Property 2 is unique and coincides 
with z, which implies that the Banach conjugate of x = (x1, . . . , xN ) ∈ X is simply x∗ = (x∗

1, . . . , x
∗
N ) ∈ X ′.

The combination of these preparatory results and Theorem 1 allows us to deduce the following.

Theorem 2 (Representer theorem for direct-product spaces). If the space X ′ in Theorem 1 has a direct-product 
decomposition as X ′ = (X ′

1×· · ·×X ′
N )Z′ with predual X = (X1×· · ·×XN )Z , where (X ′

1, X1), . . . , (X ′
N , XN ) are 

dual pairs of Banach spaces and both E and ψ are strictly convex, then the solutions f0 = (f0,1, . . . , f0,N ) ∈
S ⊂ X ′ of the optimization problem (1) are (X ′, X )-Banach conjugates of a common

ν0 = (ν0,1, . . . , ν0,N ) =
M∑

m=1
amνm,

where νm = (νm,1, . . . , νm,N ) ∈ X with νm,n ∈ Xn and a suitable set of coefficients a ∈ RM .
Moreover, depending of the properties of the underlying Banach constituents, the solution components 

f0,n ∈ X ′
n have the following characterization with predefined scaling constants

αn =
{

yn

y∗
n
> 0, yn �= 0

0, otherwise,
(21)
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where y = (‖f0,1‖X ′
1
, . . . , ‖f0,N‖X ′

N
) and y∗ = JZ′{y}:

• If X ′
n is a Hilbert space and Z ′ is strictly convex, then f0,n is unique and admits the linear representation

f0,n = αn

M∑
m=1

amϕm,n (22)

with ϕm,n = JXn
{νm,n} ∈ X ′

n, where JXn
is the Riesz map Xn → X ′

n.
• If X ′

n is a strictly convex Banach space and Z ′ is strictly convex, then the solution component is unique 
and admits the parametric representation

f0,n = αnJXn

{
M∑

m=1
amνm,n

}
(23)

where JXn
is the (nonlinear) duality operator Xn → X ′

n.
• If X ′

n is a non-strictly convex Banach space, then the subcomponent solution set S|X ′
n

is the weak*-closure 
of the convex hull of its extremal points, which can all be expressed as

f0,n =
K0∑
k=1

ck,nek,n, (24)

where e1,n, . . . , eK0,n ∈ X ′
n are some extremal points of the unit ball in X ′

n and c1,n, . . . , cK0,n ∈ R

some appropriate weights; the (minimal) number of atoms K0 ≤ M is common to all the components 
associated with non-reflexive Banach spaces.

In the particular case where ‖ · ‖Z′ = ‖ · ‖1, (24) can be replaced by

f0,n =
Kn∑
k=1

ck,nek,n (25)

with 
∑N

n=1 Kn ≤ M . In addition, (23) (resp. (22)) remains valid for the components for which the space X ′
n

is strictly convex (resp., Hilbertian), with the caveat that the solution is no longer guaranteed to be unique; 
this, then, contributes a degenerate version of (25) with Kn = 1, c1,n = ‖f0,n‖X ′

n
, and e1,n = f0,n/‖f0,n‖X ′

n
.

Proof. The existence of solutions f0 ∈ X ′ and the property that S ⊆ JX (ν0) for some ν0 =
∑M

m=1 amνm ∈
Nν is ensured by Theorem 1. We then proceed in three steps.

(i) Constant value of ψ(‖f0‖X ′) for all f0 ∈ S.
The key here is the strict convexity of f �→ E(y, ν(f)) together with the convexity of f �→ ψ(‖f‖X ′). By 
applying a standard argument (by contradiction) that uses the convexity of S, we show that there exist two 
constants C1 and C2 such that E(y, ν(f0)) = C1 and ψ(‖f0‖X ′) = C2 for all f0 ∈ S (see, for instance, the 
last part of the proof in [21, Appendix B]). By invoking the strict convexity of E, this then implies that all 
solutions share the same measurement vector z0 = ν(f0). Likewise, when ψ is strictly convex, we readily 
deduce that ‖f0‖X ′ takes a constant value.

(ii) Uniqueness of ‖f0,n‖X ′
n

in the strictly-convex case.
To show that ‖f0,n‖X ′

n
= yn holds for all f0 ∈ S, we suppose that there exists another solution f̃0 ∈ S

such that ‖f̃0‖X ′ = ‖f0‖X ′ and ‖f̃0,n‖X ′
n

= ỹn with ỹ �= y. Since S is convex, λf̃0 + (1 − λ)f0 with any 
λ ∈ (0, 1) must also be a solution with associated norm ‖λf̃0 + (1 − λ)f0‖X ′ ≤ ‖λỹ + (1 − λ)y‖Z′ , by the 
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triangle inequality. However, the norm equality ‖f̃0‖X ′ = ‖ỹ‖Z′ = ‖y‖Z′ and the strict-convexity of ‖ · ‖Z′

(see Definition 2) implies that ‖λỹ + (1 − λ)y‖Z′ < ‖y‖Z′ = ‖f0‖X ′ , which results in a contradiction.

(iii) Generic form of the solution component f0,n.
We assume that yn = ‖f0,n‖X ′ �= 0; otherwise, we simply have that f0,n = 0. From Property 2 in Lemma 1, 
we know that f0 = (f0,1, . . . , f0,N ) and ν0 = (ν0,1, . . . , ν0,N ) form a conjugate pair if and only if there exists 
f∗
0,n ∈ JX ′

n
(f0,n) such that ν0,n = (y∗n/yn)f∗

0,n, where y∗ = (y∗1 , . . . , y∗N ) = JX ′{y}.
When X ′

n is strictly convex, the duality mapping is single-valued. The representations in (22) and (24)
then directly follow from the primary expansion ν0,n =

∑M
m=1 amνm,n and the homogeneity property of the 

duality mapping expressed as JX{αν} = αJX {ν} for any ν ∈ X and α ∈ R+ (see [46]).
Since S is convex and weak∗-compact, we can invoke the Krein-Milman theorem, which states that S

is the closure of the convex hull of its extremal points. The same holds true for the convex set S|X ′
n

(the 
restriction of S on X ′

n) with Ext(S|X ′
n
) ⊆ Ext(S)|X ′

n
. By recalling that all points f0 ∈ Ext(S) can be 

represented as f0 = (f0,1, . . . , f0,N ) =
∑K0

k=1 ckek, where ek = (ek,1, . . . , ek,N ) ∈ Ext(BX ′) and K0 ≤ M (by 
Theorem 1), we obtain that

f0,n =
K0∑
k=1

ck‖ek,n‖X ′
n
ẽk,n, (26)

where ẽk,n = ek,n/‖ek,n‖X ′
n

are extremal points of the unit ball in X ′
n (by Lemma 1, Property 3). The 

announced statement with ck,n = ‖ek,n‖X ′
n
ck then follows from the property that (26) is valid for all 

f0,n ∈ Ext(S)|X ′
n
⊇ Ext(S|X ′

n
). In fact, Property 3 in Lemma 1 tells us that the subset of points f0,n ∈

Ext(S|X ′
n
) are those for which ek = y/‖y‖Z′ are extremal points of the unit ball in Z ′. In particular, when 

‖ · ‖Z′ = ‖ · ‖1 (outer �1-norm), the ek all have the binary form (0, 0, . . . , ±1, 0, . . . ) with a single active 
coefficient at n = nk, which then yields (25). �

The outcome of Theorem 2 is that the generic form of the solution in Theorem 1 is essentially transferred 
to the direct-product components, with the distribution of the relative energy being controlled by the outer 
norm ‖ · ‖Z′ . The effect of the �1-norm is significant in that respect because it acts as a threshold that 
selectively blocks certain solution components and lets others through.

We wish to highlight the fact that the arguments for the proof of Theorem 2 (as well as Theorem 1) 
involves neither a calculus of variations nor a recourse to the sophisticated machinery of Fréchet derivatives 
and subgradients. It only requires the Hahn-Banach theorem and the characterization of the configurations 
that saturate the underlying duality inequalities.

4. Convex optimization in sums of Banach spaces

The techniques that we describe next are relevant to inverse problems for which the solution f0 can 
be decomposed into a sum of components that have distinct smoothness and/or sparsity properties. The 
solution then lives in a sum of Banach spaces. Beside the reconstruction of f0 from the noisy measurement 
y = ν(f) + ε, we are now faced with the additional challenge of disambiguating the individual components 
of the solution.

Let X ′
1, . . . , X ′

N be a series of Banach spaces whose elements are indexed over the same domain. We then 
define the sum space

X ′
1 + · · · + X ′

N = {f = f1 + f2 + · · · + fN : fn ∈ X ′
n, n = 1, . . . , N}.

Given a linear measurement operator ν = (ν1, . . . , νM ) : X ′
1 + · · ·+X ′

N → RM with νn ∈ ∩N
n=1Xn and a set 

of measurements y ∈ RM , we are then interested in the study of the solvability of the convex optimization 
problem
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S = arg min
(fn)Nn=1:fn∈X ′

n

(
E
(
y,ν(

N∑
n=1

fn)
)

+ ψ
(∥∥(‖f1‖X ′

1
, . . . , ‖fN‖X ′

N
)
∥∥
Z′

))
(27)

where the functions E and ψ are the same as in Theorem 1, while ‖ · ‖Z′ is a suitable norm that controls the 
coupling of the components. The idea here is to segregate the components fn by favoring some “regularized” 
solutions f0 = (f0,n)Nn=1 such that the ‖f0,n‖X ′

n
are small in an appropriate sense. Problem (27) is generally 

well defined. Its solution can be obtained as a special case of Theorem 2. To see this, it suffices to invoke 
the linearity of νm, which yields

νm

( N∑
n=1

fn

)
=

N∑
n=1

〈νm, fn〉Xn×X ′
n

= 〈ν̃m, f〉X×X ′

with f = (f1, . . . , fN ) ∈ X ′ = (X ′
1 × · · · × X ′

N )Z′ , and ν̃m = (νm, . . . , νm) ∈ X = (X1 × · · · × XN )Z . The 
multicomponent optimization problem (27) is therefore equivalent to (1) with X ′ being a direct-product 
space and the specific choice of a “replicated” measurement operator ν̃ = (ν, . . . , ν). Consequently, we get 
the general form of the solution by simple substitution of νm,n by νm in Theorem 2. We shall now illustrate 
the power of the approach by considering special cases that are motivated by applications.

4.1. Multicomponent learning in RKHS/RKBS

In the classical supervised learning (or regression) setting [53], one is given a series of data points 
(xm, ym) ∈ Rd ×R, m = 1, . . . , M . The goal is to determine a function f : Rd → R such that f(xm) ≈ ym
for all m without overfitting the data, which is the reason why one generally imposes some regularization 
on the solution.

We make the link with our framework by considering the “sampling” functionals ν = (δ(· −x1), . . . , δ(· −
xM )) with δ(· − xm) : f �→ f(xm) (Dirac impulse shifted by xm), which is such that ν(f) =
(f(x1), . . . , f(xM )). To enable the sequential handling of data, one quantifies the goodness of fit with 
some additive loss functional of the form 

∑M
m=1 E

(
ym, f(xm)

)
with E : R × R → R+ ∪ {+∞}, the sim-

plest case being the least-squares criterion with E(ym, f(xm)) = |ym − f(xm)|2. The traditional form of 
regularization is the squared Hilbertian norm ψ(‖f‖X ′) = ‖f‖2

H with ψ(·) = | · |2 (strictly convex) in the 
reproducing-kernel Hilbert space X ′ = H.

Definition 5 (See [24]). A Hilbert space H of functions on Rd is called a reproducing kernel Hilbert space 
(RKHS) if its dual H′ is such that δ(· − x) ∈ H′ for any x ∈ Rd. Then, the unique representer rH(·, x) =
JH′{δ(· − x)} = δ∗(· − x) ∈ H when indexed by x is called the reproducing kernel of the Hilbert space.

The “reproducing” qualifier refers to the basic property that

(rH(·,x), f)H = (δ∗(· − x), f)H = 〈δ(· − x), f〉H′×H = f(x)

for all f ∈ H and any x ∈ Rd. We now use Theorem 2 to obtain a multi-kernel extension of Schölkopf’s 
celebrated representer theorem for learning in RKHS [8]. The classical theorem corresponds to the scenario 
of a single RKHS with N = 1, for which the underlying kernel is simply r(·, y) = rH(·, y) = δ∗(· − y).

Corollary 1 (Multi-kernel expansion in RKHS). Let us consider the following setting:

• A series of reproducing-kernel Hilbert spaces H1, . . . , HN whose members are functions on Rd. The 
reproducing kernel of Hn is rHn

: Rd ×Rd → R.
• A strictly convex loss functional E : R ×R → R+.
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• A strictly increasing and convex function ψ : R+ → R+.
• An absolute norm ‖ · ‖Z on RN .

Then, for any given series of points (xm, ym) ∈ Rd+1, m = 1, . . . , M , the multi-component data-fitting 
problem

S = arg min
f=f1+···+fN :fn∈Hn

(
M∑

m=1
E
(
ym, f(xm)

)
+ ψ

(∥∥(‖f1‖H1 , . . . , ‖fN‖HN
)
∥∥
Z′

))
(28)

always admits a global solution of the form

f0(x) =
M∑

m=1
amr(x,xm) (29)

with (a1, . . . , aM ) ∈ RM , where the underlying multi-kernel is given by

r(x,y) =
N∑

n=1
αnrHn

(x,y), (30)

with suitable weights (α1, · · · , αN ) ∈ RN
≥0. Moreover, the solution is unique if ψ(·) and ‖ · ‖Z′ are both 

strictly convex.

Proof. Problem (28) is a special case of (27) with X ′
n = Hn = H′′

n and νm = δ(· − xm) ∈ Xn = H′
n, due to 

the RKHS property. We then apply (22) in Theorem 2 with νm,n = δ(· − xm), which gives the parametric 
form of the solution components with ϕm,n = rHn

(·, xm) = JH′
n
{δ(· − xm)} where rHn

is the reproducing 
kernel of Hn. The summation constraint f0 = f0,1 + · · ·+f0,N and the property that the coefficients a ∈ RM

are shared by all components then gives (29). �
The interesting aspect in Corollary 1 is that the underlying kernel given by (30) is tunable, which offers 

flexibility and is in the line with certain forms of multiple-kernel learning [28].
The simplest choice of regularization functional in (28) is the weighted sum 

∑N
n=1 λn‖fn‖2

Hn
, where the 

λn > 0 are appropriate regularization parameters. This corresponds to ψ(·) = | · |2 in (28) with the outer 
weighted Euclidean norm

‖y‖Z′ = ‖y‖2,λ =
(
λ1y

2
1 + · · · + λNy2

N

) 1
2 ,

whose dual is ‖ · ‖2,μ with μ = (1/λ1, . . . , 1/λN ). Correspondingly, the (Z-Z ′) conjugate of y ∈ Z ′ is

y∗ = (λ1y1, . . . , λNyN ) ∈ Z

which, with the help of (21) in Theorem 2, then yields αn = yn/y
∗
n = 1/λn and offers direct control over 

(30).
By selecting the outer norm ‖ · ‖Z′ to be non-Euclidean, one can also make the kernel-shaping effect in 

(30) data-dependent, with the effect becoming more pronounced as we relax the “strictness” of the convex-
ity requirement. The prototypical case of a regularization functional that falls into the latter category is 
λ 
∑N

n=1 ‖fn‖Hn
(mixed �1-norm) with parameter λ > 0, which favors sparse kernel configurations. Micchelli 

and Pontil [29] have shown that the corresponding minimization problem is equivalent to a special instance 
of kernel learning where the “optimal” kernel r(·, x) is selected within the multi-kernel dictionary
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K =
{

N∑
n=1

αnrHn
(·,x) : αn ≥ 0, α1 + · · · + αN = 1

}
,

which is consistent with the last statement in Theorem 2.
The approach is generalizable to reflexive Banach spaces with the caveat that the resulting representer 

model is no longer linear.

Definition 6 (See [54,55]). A strictly convex and reflexive Banach space B of functions on Rd is called a 
reproducing-kernel Banach space (RKBS) if δ(· − x) ∈ B′ for any x ∈ Rd. Then, the unique representer 
rB(·, x) = JB′{δ(· − x)} = δ∗(· − x) ∈ B when indexed by x is called the reproducing kernel of the Banach 
space.

We can then consider the direct Banach counterpart of the multicomponent problem in Corollary 1 with 
fn ∈ Bn = X ′

n, δ(· − xm) ∈ B′
n = X ′′

n = Xn and derive the general parametric form of the solution as

f0 = f1 + · · · + fN with fn = αnJB′
n

{
M∑

m=1
amδ(· − xm)

}
(31)

with (am) ∈ RM and (αn) ∈ RN
≥0. The result provided by (31) is new to the best of our knowledge. It is 

the multi-component extension of [55, Theorem 2], which is itself a reformulation and slight generalization 
of [54, Theorem 19].

4.2. Sparse signal representation in dictionaries

While the use of classical Hilbertian smoothness (e.g., Sobolev) norms lends itself to a closed-form 
resolution of (27), the underlying multicomponent model takes its full power when the regularization norms 
are not strictly convex and promote sparsity. This statement is supported by a large body of work in 
compressed sensing (CS). To show how this fits the present formulation, we now consider the prototypical 
CS problem: the recovery of a vector x ∈ RN from its linear measurements Hx = y ∈ RM , where H is 
the system matrix with M much smaller than N . Given a series of invertible matrices Li ∈ RN×N , we 
then specify the component Banach spaces X ′

i = (RN , ‖ · ‖X ′
i
) with ‖x‖X ′

i
= ‖Lix‖1. There, the use of the 

�1-norm is intended to promote sparsity in the transformed domain associated with Li.
In order to be able to apply Theorem 2, we need to identify the predual spaces Xi as well as the extremal 

points of the unit ball in X ′
i . To that end, we invoke Proposition 1 with the primary pair of dual spaces 

X = (RN , ‖ · ‖∞), X ′ = (RN , ‖ · ‖1) and with Ti : x �→ LT
i x. This then results in the identification of the 

predual Banach space Xi = Ti(X ) = (RN , ‖ · ‖Xi
) with ‖x‖Xi

= ‖L−T
i x‖∞ and its dual X ′

i = (RN , ‖ · ‖X ′
i
)

with

‖y‖X ′
i

= sup
‖x‖Xi

=1
yTx = sup

‖L−T
i x‖∞=1

yTx = sup
‖v‖∞=1

yTLT
i v = ‖Liy‖1, (32)

which is consistent with the definition ‖x‖X ′
i

= ‖Lix‖1 = ‖ci‖1.
It is well known that the extremal points of the unit ball in (RN , ‖ · ‖1) are ±en where en is the nth 

element of the canonical basis with [en]m = δm−n. We then apply the isometric isomorphism Y ′
i = T−1∗

i (X ′)
with T−1∗

i : e �→ L−1
i e (see Properties 2 and 4 in Proposition 1) to deduce that Ext(BX ′

i
) = {±un,i}Nn=1, 

where BX ′
i

is the unit ball of the Banach space (RN , ‖ · ‖X ′
i
) and

un,i = L−1
i en. (33)
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In fact, the latter defines a (sub)-dictionary whose elements are the row vectors of L−1
i .

We now have the tools to characterize the solution(s) of the multi-component �1 optimization problem

S = arg min
x=x1+···+xI∈RN

(
‖y − Hx‖2

2 + λ

I∑
i=1

‖Lixi‖1

)
, (34)

which is a special case of (27) with νm : x �→ hT
nx, ψ = Id, and ‖ ·‖Z′ = ‖ ·‖1 where hT

n is the nth row vector 
of H. First, we confirm that the problem is well posed by observing that h ∈ Xi for any measurement vector 
h ∈ RN . In other words, (34) always admits a solution, albeit not necessarily a unique one. To obtain the 
parametric form of the extremal solution components (x0,1, . . . , x0,M ), we apply the last part of Theorem 2, 
which yields

x0,i =
Ki∑
k=1

ck,iunk,i

with 
∑I

i Ki ≤ M and 
∑I

i=1 ‖Lix0,i‖1 =
∑I

i=1 ‖ci‖1. This may also be rewritten as

x0 =
I∑

i=1
x0,i =

K0∑
k=1

ckunk,ik (35)

with K0 ≤ M and some appropriate weights (ck) ∈ RK0 and 
∑I

i=1 ‖xi,0‖X ′
i

= ‖c‖1. In effect, (35) tells us 
that the solution is constructed by picking K0 atoms (with K0 ≤ M) in an enlarged dictionary

U = [u1,1 · · · uN,1 u1,2 · · ·u2,N · · · · · · uI,N ] ∈ RN×(I×N),

which is formed from the unions of the un,i in (33) with i = 1, . . . , I, n = 1, . . . , N . The result in (35) also 
motivates us to reformulate Problem (34) in a more familiar “synthesis” form

S = arg min
c∈RN×I

(
‖y − HUc‖2

2 + λ‖c‖1
)
, (36)

where c ∈ RN×I is an augmented parameter vector. The latter is the standard LASSO formulation for 
the recovery of a signal subject to the constraint that it has a sparse representation in some predefined 
dictionary U. The new elements here are the link with the “analysis” form (34) and the guarantee of the 
existence of a “sparse” solution with K0 ≤ M , irrespective of whether the conditions for uniqueness (e.g., 
restricted isometry) of CS are met or not.

4.3. Signal recovery problems involving mixed norms

While the examples of Section 4.1 and 4.2 are fairly classical, we can use our high-level results to derive 
some new representer theorems, such as the following example which involves a combination of smoothness 
(RKHS) and sparsity-promoting regularizations.

As prerequisite, we need to specify dual pairs of Banach spaces that are matched to specific norms and 
regularization operators Li. To that end, we assume that the linear operator T = L∗ is injective on some 
primary space X and recall the relevant results from Proposition 1:

1. The operator L∗ is invertible on its range L∗(X )
.

2. The dual pair of Banach spaces B = L∗(X )
and B′ = L−1(X ′) is isometrically isomorphic to (X , X ′).
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3. The operator L isometrically maps B′ = L−1(X ′) to X ′.
4. If X = L2(Rd), then H = L∗(L2(Rd)

)
and H′ = L−1(L2(Rd)

)
are both Hilbert spaces, while the 

underlying Riesz map is JH = L−1L−1∗ : H → H′.

When we choose X = L2(Rd), the space X is its own dual and is usually associated with Tikhonov reg-
ularization. The other fundamental scenario is (X , X ′) =

(
C0(Rd), M(Rd)

)
. There, C0(Rd) is the space 

of continuous functions that decay at infinity, while its dual M(Rd) =
(
C0(Rd)

)′ is the space of bounded 
Radon measures on Rd [44]. The regularization norm ‖ · ‖M, also known as “total variation” in the sense of 
measure theory, is often used in applications since it promotes sparsity [56,57,17].

Corollary 2 (Representer theorem for mixed-norm regularization). Let us consider the following setting:

• An operator L∗
1 that is injective on C0(Rd) and the corresponding dual pair of Banach spaces B1 =

L∗
1
(
C0(Rd)

)
and B′

1 = L−1
1

(
M(Rd)

)
.

• An operator L∗
2 that is injective on L2(Rd) and the corresponding dual pair of Hilbert spaces H2 =

L∗
2
(
L2(Rd)

)
and H′

2 = L−1
2

(
L2(Rd)

)
.

• The linear measurement operator ν = (ν1, . . . , νM ) : B′
1 + H′

2 → RM with ν1, . . . , νM ∈ B1 ∩H2.
• A strictly convex loss functional E : RM ×RM → R+.
• Two adjustable weights λ1, λ2 ∈ R+.

Then, for any given y ∈ RM , the two-component regularized inverse problem

S = arg min
f=f1+f2:(f1,f2)∈B′

1×H′
2

(
E
(
y,ν(f)

)
+ λ1‖L1f1‖2

M + λ2‖L2f2‖2
L2

)
(37)

has a nonempty (and weak∗-compact) solution set S. Any solution can be written as f0 = f0,1 + f0,2 with 
f0,1 ∈ S|B1 and a unique

f0,2 =
M∑

m=1
ãmϕm, (38)

with ϕm = L−1
2 L−1∗

2 {νm} and (ãm) ∈ RM , that is common to all solutions. Moreover, the extremal points 
of S|B1 can all be expressed as

f0,1 =
K1∑
k=1

ckh1(·, τ k) (39)

with K1 ≤ M , (ck) ∈ RK1 and h1(·, τ k) = L−1
1 {δ(· − τ k)}, where τ 1, . . . , τK1 ∈ Rd are adaptive centers.

Proof. Problem (37) is a special case of (27) with N = 2, X ′
1 = B′

1, X ′
2 = H′

2, ψ(·) = | · |2 (strictly 
convex), and ‖(x1, x2)‖Z′ =

√
λ1x2

1 + λ2x2
2. The hypotheses are such that the conditions for the validity 

of Theorem 2 are met. The parametric form of the second (unique) solution component is then given by 
(22) with ãm = α2am, νm,n = νm and JH2 = L−1

2 L−1∗
2 . To characterize the extremal points of the first 

component, we use (24). To identify the relevant atoms, we recall that the extremal points of the unit ball 
in M(Rd) are given by {±δ(· − τ )}τ∈Rd [22]. We then make use of the fourth property in Proposition 1
to obtain the form of an extremal point of the unit ball in B′

1: ek = ±L−1
1 {δ(· − τ k)} with shift parameter 

τ k ∈ Rd. �
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As slight variant of (37), we may consider an outer �1 norm with ψ(t) = t, which yields a regularization of 
the form λ1‖L1f1‖M + λ2‖L2f2‖L2 . The resulting solution takes the same functional form, with the caveat 
that there may no longer exist a single Hilbert-space component f0,2 that would be common to all solutions.

5. Minimization of semi-norms

We now consider the scenario of a native Banach space X ′ that has a direct-sum decomposition as 
X ′ = U ′⊕Np, where U ′ is the dual of some primary Banach space (U , ‖ · ‖U) and where the complementary 
space Np is spanned by the finite-dimensional basis p = (p1, . . . , pN0). Since Np = span{pn}N0

n=1 is of 
dimension N0 and hence also reflexive, the same holds true for its continuous dual N ′

p. Moreover, due to 
the direct-sum property, there exists a unique biorthonormal set of generators p∗1, . . . , p∗N0

∈ X such that 
N ′

p = span{p∗n}N0
n=1 = Np∗ and

〈p∗m, pn〉 = δm,n

〈p∗n, s〉 = 0

for any s ∈ U ′ and m, n ∈ {1, . . . , N0}. This allows us to specify the canonical projector ProjNp
: X ′ → Np

as

ProjNp
{f} =

N0∑
n=1

〈p∗n, f〉pn (40)

for any f ∈ X ′. This identification also yields the complementary projector ProjU ′ : X ′ → U ′ as ProjU ′ =
(Id − ProjNp

). Likewise, by interchanging the role of the synthesis and analysis functionals in (40), we 
identify the canonical projector ProjNp∗ : X → Np∗ as

ProjNp∗{ν} =
N0∑
n=1

〈pn, ν〉p∗n

for any ν ∈ X . We now have the means to specify and bound the norm of any f ∈ X ′ as

‖f‖X ′ = (‖f‖U ′ , ‖ProjNp
{f}‖Np

)Z′ ≤ ‖f‖U ′ + ‖ProjNp
{f}‖Np

where the functional f �→ ‖f‖U ′
�= ‖ProjU ′f‖U ′ is a semi-norm (resp., a norm) over X ′ (resp., U ′). Because 

the pn are linearly independent, we also note that the standard description of U ′ as the complement of Np

in X ′, given by

U ′ = {s ∈ X ′ : ProjNp
{s} =

N0∑
n=1

〈p∗n, s〉pn = 0},

is equivalent to

U ′ = {s ∈ X ′ : p∗(s) = 0}

where p∗(f) = (〈p∗1, f〉, . . . , 〈p∗N0
, f〉) is a vector-valued functional X ′ → RN0 . Likewise, we have that

U = {u ∈ X : p(u) = 0},

which, once again, capitalizes on the biorthonormality of (p∗, p).
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The consideration of such a direct-sum decomposition of a Banach space X ′ is relevant to inverse problems 
because it suggests that one can substitute the original regularization term ‖f‖X ′ by the semi-norm ‖f‖U ′

when one wants to favor solutions with a strong contribution in Np, the null space of the semi-norm. 
This is a standard technique in spline theory, albeit within the classical context of RKHS spaces with 
‖f‖U ′ = ‖Lf‖L2 , where L is a suitable differential operator (e.g., a higher-order derivative or fractional 
Laplacian) with a null space Np that consists of polynomials of degree n [31–33]. We now show how this 
technique can be extended in full generality to Banach spaces. The basic requirement for this extension is 
that the inverse problem be well-posed over Np. This is made explicit in (54), which is equivalent to the 
fourth condition in Theorem 3.

Theorem 3 (General representer theorem for Banach semi-norms). Let us consider the following setting:

• A dual pair of Banach spaces (X = U ⊕ Np∗ , X ′ = U ′ ⊕ Np), where Np = N ′
p∗ is the vector space 

spanned by the finite-dimensional basis p = (p1, . . . , pN0).
• The analysis subspace Nν = span{νm}Mm=1 ⊂ X , with the νm being linearly independent and M > N0.
• The linear measurement operator ν : X ′ → RM : f �→

(
〈ν1, f〉, . . . , 〈νM , f〉

)
.

• The vectors v1, . . . , vN0 ∈ RM with [vn]m = 〈νm, pn〉 are linearly independent; they admit a comple-
mentary set {u1, . . . , uM−N0} in RM such that RM = span{vn}N0

n=1 ⊕ span{um}M−N0
m=1 .

• A proper, lower-semicontinuous, coercive, and convex loss functional E : RM ×RM → R+ ∪ {+∞}.
• Some arbitrary strictly increasing and convex function ψ : R+ → R+.

Then, for any fixed y ∈ RM , the solution set of the generic optimization problem

S = arg min
f∈X ′

(
E
(
y,ν(f)

)
+ ψ (‖f‖U ′)

)
(41)

is nonempty, convex, and weak∗-compact.
If E is strictly convex, or if it imposes the equality constraint y = ν(f), then any solution f0 ∈ S ⊂ X ′

has a unique decomposition as f0 = p0 + s0 with p0 ∈ Np and s0 ∈ U ′ the (U ′, U)-conjugate of a common 
ν̃0 ∈ U whose generic form is

ν̃0 =
M−N0∑
m=1

amν̃m ∈ Nν ∩ U (42)

with suitable coefficients a = (am) ∈ RM−N0 and reduced basis functions ν̃m = ũT
mν ∈ U , where ũm ∈ RM is 

the unique (biorthogonal) vector such that ũT
mvn = 0 and ũT

mum′ = δm,m′ for any m, m′ ∈ {1, . . . , M −N0}
and n ∈ {1, . . . , N0}.

Depending on the Banach characteristics of U ′, this then results in the following explicit description of 
the solution(s):

• If U ′ is a Hilbert space and ψ is strictly convex, then the solution f0 is unique and admits the linear 
representation

f0 =
M−N0∑
m=1

amϕm +
N0∑
n=1

bnpn, (43)

with coefficients (a, b) ∈ RM and basis functions pn ∈ Np, ϕm = JU{ν̃m} ∈ U ′, where JU is the Riesz 
map U → U ′.
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• If U ′ is a strictly convex Banach space and ψ is strictly increasing, then the solution is unique and 
admits the parametric representation

f0 = JU

{
M−N0∑
m=1

amν̃m

}
+

N0∑
n=1

bnpn (44)

where JU is the (nonlinear) duality operator U → U ′.
• Otherwise, when U ′ is not strictly convex, the solution set is the weak*-closure of the convex hull of its 

extremal points, which can all be expressed as

f0 =
K0∑
k=1

ckek +
N0∑
n=1

bnpn (45)

for some K0 ≤ (M −N0), c1, . . . , cK0 ∈ R, where e1, . . . , eK0 ∈ U ′ are some extremal points of the unit 
ball BU ′ = {s ∈ U : ‖s‖U ′ ≤ 1}. The vector b = (bn) ∈ RN0 that characterizes the null-space component 
of f0 is unique and common to all solutions whenever E is strictly convex and Np∗ ⊂ Nν .

Before proceeding with the proof of Theorem 3, we detail the way in which the reduced basis 
ν̃ = (ν̃1, . . . , ̃νM−N0) in (42) is constructed. To that end, we first define the cross-correlation matrix 
V = [v1 · · · vN0 ] = ν(p) ∈ RM×N0 with [V]m,n = 〈νm, pn〉.

Proposition 2 (Direct-sum decomposition of the measurement space). Let ν = (ν1, . . . , νM ) ∈ XM with 
X = U ⊕ Np∗ and p = (p1, . . . , pN0) ∈ (X ′)N0 be two vectors of linear functionals such that the matrix 
V = ν(p) ∈ RM×N0 is of rank N0. Then, one can always find three matrices U ∈ RM×(M−N0), Ṽ ∈ RM×N0 , 
and Ũ ∈ RM×(M−N0) such that [

ŨT

ṼT

] [
U V

]
= IM . (46)

Based on these matrices, ν ∈ XM has a unique and reversible decomposition as

ν = Uν̃ + Vp̃∗, (47)

where

ν̃ = (ν̃1, . . . , ν̃M−N0) = ŨTν ∈ UM−N0 (48)

p̃∗ = (p̃∗1, . . . , p̃∗N0
) = ṼTν ∈ XN0 . (49)

In effect, this yields a decomposition of the measurement space Nν = span{νm}Mm=1 as Nν = Np̃∗ ⊕Nν̃ with 
Nν̃ = span{ν̃m}M−N0

m=1 ⊂ U . In particular, if Np∗ ⊂ Nν , then there is a unique matrix Ṽ ∈ RM×N0 of rank 
N0 such that ṼTν = p∗ and such that the decomposition still applies with Nν = Np∗ ⊕Nν̃ .

Proof. Since the vectors v1, . . . , vN0 ∈ RM are linearly independent, they can always be completed by 
adding some vectors vN0+1 = u1, . . . , vM = uM−N0 to form a basis of RM . The linear independence of the 
resulting family (basis property) is equivalent to the existence of a unique dual basis ṽ1, . . . , ̃vM ∈ RM such 
that

〈ṽm,vn〉 = ṽT
mvn = δm,n (50)
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for m, n ∈ {1, . . . , M} (biorthonormality property). This means that any vector y ∈ RM has a unique (and 
reversible) decomposition as y =

∑M
m=1〈ṽm, y〉vm. By collecting the expansion coefficients in the two vectors 

b̃ = (〈ṽ1, y〉, . . . , 〈ṽN0 , y〉) and ỹ = (〈ṽN0+1, y〉, . . . , 〈ṽM , y〉) and identifying the matrices Ṽ = [ṽ1 · · · ṽN0 ], 
U = [vN0+1 · · · vM ], and Ũ = [ṽN0+1 · · · ṽM ], we then observe that the decomposability of y ∈ RM is 
equivalent to

y =
[
U V

] [ ỹ

b̃

]
(51)

with

ỹ = ŨTy ∈ RM−N0 , b̃ = ṼTy ∈ RN0 . (52)

Likewise, the enabling biorthonormality property (50) is equivalent to the invertibility condition (46).
By substituting y ∈ RM , ỹ ∈ RM−N0 , and b̃ ∈ RN0 by ν(f), ̃ν(f), and p̃∗(f), respectively, we then 

rephrase (51) and (52) in term of functionals, which yields the reversible decomposition described by (47), 
(48), and (49). To prove that Nν̃ ⊂ U = {u ∈ X : p(u) = 0}, we invoke the invertibility condition (46), which 
yields p(ν̃) =

(
ν̃(p)

)T = (ŨTV)T = 0T . Since, for any a ∈ RM , we have that aTUν̃ ∈ span{ν̃n}M−N0
n=1 and 

aTVp̃∗ ∈ span{p̃∗n}N0
n=1 with the linear expansion of aTν ∈ Nν in the corresponding basis being reversible, 

we can interpret (47) as the direct-sum decomposition Nν = Nν̃ ⊕Np̃∗ .
The inclusion Np∗ ⊂ Nν , together with the linear independence of the νm, is equivalent to the existence of 

a unique transformation matrix ṼT of rank N0 such that p∗ = ṼTν. While this sets the matrix Ṽ ∈ RM×N0 , 
one is still left with sufficiently many degrees of freedom to select the complementary matrices U and Ũ
such that (46) holds. �

We note that, irrespective of whether we fix Ṽ (second part of Proposition 2) or not, there are generally 
infinitely many admissible choices for U in (46) and, hence, for the construction of the reduced basis ν̃ defined 
by (48). This does not contradict the unicity of (42). Indeed, different choices of extension correspond to 
different biorthogonal bases ν̃ = (ν̃1, . . . , ̃νM−N0) of the same subspace.

5.1. Proof of Theorem 3

Proof. (i) Existence: The classical conditions that ensure the existence of a minimizer of the functional 
F (f) = E

(
y, ν(f)

)
+ ψ (‖f‖U ′) are that F (f) should be proper, convex, (weak∗-)lower-semi-continuous, 

and coercive over X ′. These higher-level properties also imply that the solution set S is convex, and weak∗-
compact.

The first three conditions follow from the listed assumptions and the general properties of a (semi-
)norm—see argumentation in the proof of Theorem 1 in [42]. To establish coercivity, we recall that the 
hypothesis νm ∈ X implies the continuity of νm : X ′ → R due to the continuous embedding of X in its 
bidual X ′′ = (X ′)′. Consequently, there exists some constant A > 0 such that

‖ν(f)‖2 ≤ A‖f‖X ′ (53)

for all f ∈ X ′. Likewise, the linear independence of the vn and the property that all finite-dimensional 
norms are equivalent implies the existence of B > 0 such that, for any p ∈ Np,

B‖p‖Np ≤ ‖ν(p)‖2. (54)
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By using the direct-sum decomposition f = s + p with (s, p) ∈ U ′ × Np, ‖f‖X ′ ≤ ‖s‖U ′ + ‖p‖Np , and 
‖s‖U ′ = ‖f‖U ′ , we readily deduce that

‖ν(f)‖2 ≥ ‖ν(p)‖2 − ‖ν(s)‖2 ≥ B‖p‖Np −A‖s‖U ′ ≥ B‖f‖X ′ − (A + B)‖f‖U ′ , (55)

where we have made use of the triangle inequality and the two previous bounds. Let us now consider 
some sequence (fm) in X ′ with fm = (sm, qm) ∈ U ′ × Np such that ‖fm‖X ′ ≥ ‖fn‖X ′ for m ≥ n and 
limm→∞ ‖fm‖X ′ = ∞. Then, there are two possible asymptotic behaviors for the norm of sm = ProjU ′fm:

1. The quantity ‖sm‖X ′ = ‖fm‖U ′ → ∞ as m → ∞, in which case J(fm) → ∞ due to the unboundedness 
of ψ : R+ → R+ at infinity.

2. There exists a constant C such that ‖fm‖U ′ ≤ C for all m. By invoking (55), we get that ‖ν(fm)‖2 → ∞
as m → ∞, which, in turn, gives F (fm) → ∞, due to the coercivity of E(·, y).

In summary, F (f) → ∞ as ‖f‖X ′ → ∞, which is the required coercivity property.

(ii) Representation of a solution: The underlying direct-sum property implies that any f0 ∈ S ⊂ X ′ has a 
unique decomposition as f0 = s0 + p0 with (s0, p0) ∈ U ′ ×Np. To derive the parametric form of a solution, 
we momentarily assume that p0 (and, hence, ν(p0) ∈ RM ) and y0 = ν(f0) ∈ RM are known. By making use 
of the decomposition of the measurement space in Proposition 2, we observe that the penalized component 
s0 ∈ U ′ solves the equivalent constrained-optimization problem

s0 ∈ Sp0,y0 = arg min
s∈U ′

‖s‖U ′ s.t. y0 − ν(p0) = ν(s) = Uν̃(s) + Vp̃∗(s), (56)

where ν̃ = ŨTν ∈ UM−N0 and p̃∗ = ṼTν ∈ XN0 . We now show that the effective number of linear 
constraints in (56) is actually (M −N0) and not M , as may be thought on first inspection. To that end, we 
multiply the linear constraint by ŨT ∈ R(M−N0)×M on both sides and use the properties that ŨTU = IM−N0

and ŨTV = 0 (see (46) in Proposition 2). This yields

s0 ∈ Sp0,y0 = arg min
s∈U ′

‖s‖U ′ s.t. ν̃(s) = ỹ0, (57)

where ỹ0 = ŨT
(
y0−ν(p0)

)
= ŨTy0 ∈ RM−N0 . This latter simplification occurs because ŨTν(p) = ν̃(p) =

0 for all p ∈ Np by construction. The theoretical significance of the cancellation of ŨTν(p0) is that the above 
manipulation does not depend on p0, so that Sp0,y0 = Sy0 . In effect, this means that the characterization 
of the optimal s0 in (57) holds for all solutions that share the same measurements y0. This is true, in 
particular, when E is strictly convex, by a standard argument in convex analysis. The description of s0 ∈ U ′

as the (U ′, U)-conjugate of a common ν̃0 ∈ Nν̃ , as well as (43), (44), and (45), then follow from Theorem 1.
For the special scenario Np∗ ⊂ Nν , we select Ṽ such that p∗ = ṼTν (see the second part of Proposition 2) 

and are then able to obtain the expansion of coefficients of p0 = ProjNp
{f0} directly from the measurements 

as b = p∗(f0) = ṼTy0, which establishes this part of the solution as well for all f0 ∈ S. �
When the (semi)-norm ‖ · ‖U ′ is strictly convex, Theorem 3 states that the unique solution f0 lives 

in a finite-dimensional manifold that is parameterized by b ∈ RN0 (for the null-space component p0) 
and a ∈ RM−N0 (for the preimage ν̃0 of the penalized component s0 = (ν̃0)∗). While the two primary 
expansions are linear, the high-level ingredient of the representation is the duality mapping, which introduces 
a nonlinearity in the non-Hilbert scenario. At any rate, the main point is that the intrinsic dimensionality of 
the solution space is still M , as in the case of Theorem 1, except that the repartition is now very different, 
with the contribution of the null-space component p0 ∈ Np being maximized since it is no longer penalized.
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An important outcome of Theorem 3 is that it becomes possible to characterize the full solution set S
via the specification of a single pair (p0, ̃ν0) ∈ Np × U . For the challenging cases where there are multiple 
solutions (third scenario), this requires the additional assumption that Np∗ ⊂ Nν , which has the desirable 
effect of decoupling the determination p0 from that of ν̃0. It turns out that this decoupling is applicable 
to most practical problems that involve a semi-norm regularization. The key is that it is generally possible 
to adapt the semi-norm topology to the problem at hand by selecting a biorthonormal system (p∗, p) with 
p∗1, . . . , p

∗
N0

∈ span{νm}Mm=1 ⊂ X (see, for instance, [20,58]).

5.2. Connection with prior works

The result for Hilbert spaces in Theorem 3 is well known, although it is rarely described in this form 
where the parameterization is tight. The result for Banach spaces is new, to the best of our knowledge. 
The result for the non-strictly convex case overlaps that of two recent papers by Bredies-Carioni [19] and 
Boyer et al. [23], in which these authors independently establish the existence of solutions of the form (45)
in similar scenarios. The novel element here is the statement about the form of all extremal points as well 
as the identification of the configurations where p0 is unique. Finally, we are not aware of any prior work 
(except [42]) where these various scenarios have been unified.

For the particular scenario where T = L−1 is an isomorphism from M(Rd) (the space of Radon measures 
on Rd) to U ′ = T

(
M(Rd)

)
and X ′ = U ′ ⊕ Np with ‖f‖U ′ = ‖Lf‖M, we recover the results of [20] (when 

the operator L is spline-admissible) and [18, Theorem 1] by observing that the generic form of the extremal 
points of the unit regularization ball are ek = T{δ(· −xk)} with xk ∈ Rd. The key there is that the extremal 
points of the unit ball in M(Rd) are the signed shifted Dirac measures {±δ(· − x)}x∈R, which are then 
isometrically mapped into U ′ in accordance with Proposition 1. To make this more concrete, we recall that 
an operator L : X ′ → M(Rd) is called spline-admissible if

1. it is linear shift-invariant;
2. it has a finite-dimensional null space NL = {f ∈ X ′ : Lf = 0} = span{pn}N0

n=1;
3. it admits a Green’s function ρL : Rd → R (of slow growth) such that ρL = L−1{δ}.

In that scenario, we find1 that the extremal points of (41) with ‖f‖U ′ = ‖Lf‖M can be represented as

f0 : Rd → R : x �→
N0∑
n=1

b̃npn(x) +
K0∑
k=1

akρL(x− xk) (58)

with K0 ≤ (M − N0), which is the generic form of a non-uniform L-spline with knots at the xk ∈ Rd

[59,60][61, Chapter 6]. For instance, for L = D (the derivative operator with d = 1), N0 = 1 with p1 = 1
(the constant function), while ρD(x) is the unit step (Heaviside function). It follows that f0 given by (58)
is piecewise-constant with jumps at the xk ∈ R.

The setting of Theorem 3 can also be extended to the multicomponent scenarios investigated in Section 4. 
In essence, one can replace regularization norms by semi-norms, which then adds some corresponding null-
space component(s) to the generic form of the solution. Hybrid splines, which can be seen as the continuous-
domain counterpart of the multi-dictionary approach of Section 4.2, provide a powerful example of such 
composite modeling [62]. Another useful option is the spline variant of Corollary 2, which adds a smooth 
component (with a corresponding L2 regularization) to the solution specified by (58). However, the fitting of 

1 There is one subtle point in the derivation (see [20]) because the correct inverse operator T = (Id − ProjNp
)L−1 = L−1

p∗

must incorporate a projection onto U ′. This projection depends upon the topology. This yields extremal points of the form 
ek = (ρL(· − xk) − qk) with qk = ProjNp

{ρL(· − xk)} ∈ Np, which translates into b̃n in (58) being different from bn in (45).
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such augmented models to data is trickier: when the intersection of the null spaces is nontrivial, it requires 
the specification of additional boundary conditions to ensure that the decomposition is unique [62,63].
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Appendix A. Proof of the last statement in Theorem 1

We already mentioned that this characterization can be derived from Theorem 3.1 of Boyer et al. [23]
by viewing an extreme point of the solution set as the degenerate case of a face with dimension j = 0. The 
proof presented in [23] relies on an earlier theorem by Klee [64], which is itself based on a foundational 
result by Dubins on the extreme points of the intersection of a convex set and a series of hyperplanes [65]. 
Here, we have chosen the latter as our starting point in order to simplify the argumentation.

Theorem 4 (Main result of [65]). Consider a topological vector space V over the field of real numbers, a 
closed and bounded convex set C ⊂ V and M hyperplanes H1, . . . , HM ⊂ V . Then, any extreme point of 
C ∩

(⋂M
m=1 Hm

)
can be written as a convex combination of at most M + 1 extreme points of C.

For the Banach space X ′, we denote the unit ball of size β as BX ′,β = {f ∈ X ′ : ‖f‖X ′ ≤ β}. It then 
directly follows from Theorem 4 that any extreme point of

S = BX ′,β ∩ {f ∈ X ′ : ν(f) = y}

can be written as a convex combination of at most M +1 extreme points of BX ′,β . In what follows, we show 
that, if

β = min
f∈X ′

‖f‖X ′ s.t. ν(f) = y,

then any extreme points f0 of S has the expansion

f0 =
K∑

k=1

ckfk, K ≤ M, (59)

where fk ∈ Ext(BX ′,β), and ck > 0 with 
∑K

k=1 ck = 1. The connection with (4) is that (59) is obviously also 
expressible in terms of the basis vectors ek = fk/β which, due to the homogeneity property of the norm, 
are extremal points of the unit ball in X ′.

Assume by contradiction that K = M + 1 and that the set {f1, . . . , fM+1} is linearly independent. The 
set of vectors {ν(f1), . . . , ν(fM+1)} ⊆ RM is clearly linearly dependent. Hence, there exists (αm)M+1

m=1 �= 0
such that

ν(
M+1∑
m=1

αmfm) =
M+1∑
m=1

αmν(fm) = 0. (60)

Denote A =
∑M+1

m=1 αm and consider the function fε = f0 + ε 
∑M+1

m=1 αmfm for ε ∈ R. On one hand, for all 
values of ε with |ε| < εmax = minm cm

maxm |αm| , the function

fε
1 + εA

=
M+1∑ cm + εαm

1 + εA
fm
m=1
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is in the convex hull of {f1, . . . , fM+1}. Consequently, ‖fε‖X ′ ≤ |1 + ε|β. On the other hand, due to (60), 
we have

ν(fε) = ν(f0) + ε
M+1∑
m=1

αmym = y.

Hence, due to the optimality of f0, we deduce that

|1 + εA|β ≥ ‖fε‖X ′ ≥ ‖f0‖X ′ = β, ∀ε ∈ (−εmax, εmax).

This yields that |1 + εA| ≥ 1 for all ε ∈ (−εmax, εmax), which implies that A = 0. Consequently, fε ∈ S for 
all ε ∈ (−εmax, εmax). Now, since f0 is an extreme point of S, we deduce from f0 = f−ε+fε

2 that f0 = fε for 
all ε ∈ (−εmax, εmax), and hence, 

∑M+1
m=1 αmfm = 0. This is in contradiction with the linear independence 

of {f1, . . . , fM+1}.
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