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Abstract. The problem of finding a recursive structure for the evaluation of features through a ~running' window is 
investigated. A general closed form expression is found for features satisfying a direct or indirect recursion condition. It is 
shown that most of the commonly used features (mean value, energy, autocorrelation function, DFT, Z-transform, entropy, 
etc.) satisfy these analytic expressions. The recursive, step by step, feature evaluation method is compared with the 
conventional method where features are evaluated for positions of the observation window with a 50% overlap. These two 
methods are equivalent in computation time for features satisfying the direct recursion condition. However, there might be 
some loss of information when using the last approach. The use of indirect recursion is advantageous for small window 
sizes. The results are then generalised to bidimensional signal processing. 

Zusammenfassung. Es wird untersucht, wie man Parameter eines gleitenden Fensters rekursiv schfitzen kann. Es wird ein 
allgemeiner Ausdruck fiir den Fall angegeben, das die Sch~itzfunktion einer direkten oder indirekten Rekursionsbedingung 
geniigt. Dfesen Rekursionsbedingungen genfigen z.B. Mittelwert, Energie, die Autokorrelationsfunktion, die diskrete 
Fouriertransformation, die z-Transformation, die Entropie u.a.m. Die rekursiv gesch~itzten Parameter werden mit den 
iiblichen Sch~itzwerten verglichen, wenn die Fenster je zu 50% iiberlappen. Geniigt ein Parameter der direkten Rekursions- 
bedingung, sind beide Berechnungsmethoden beziiglich Rechenzeit ~iquivalent. Allerdings kann bei der letztgenannten 
Methode unter Umst[inden ein Teil der Information verloren gehen. Die indirekte Rekursion hat besonders bei kleinen 
Fenstern Vorteile. Die Ergebnisse werden auf den zweidimensionalen Fall verallgemeinert. 

R~sume. Le probl6me de la d6finition d'une structure r6cursive pour l'6valuation de param6tres au travers d'une fen&re 
glissante, est 6tudi6. Une formulation analytique g6n6rale est propos6e pour des mesures satisfaisant des conditions de 
recursion directe et indirecte. I1 est ~ remarquer que la plupart des grandeurs couramment utilis6es (moyenne, energie, 
fonction d'autocorr61ation, TFD, transform6e en Z, entropie, etc.) satisfont ces conditions. La m6thode d'estimation r6cursive 
Ipas a pas ) est compar6e avec I'approche conventionnelle or) les grandeurs sont 6valu6es pour des positions de fen&re avec 
un recouvrement de moiti6. Ces deux approches sont ~quivalentes en temps calcul pour des mesures satisfaisant la condition 
de r6cursion directe. Cependant, il est montr6 qu'une perte d'information peut r6sulter de l'emploi de l'approche convention- 
nelle. L'utilisation de la r6cursion indirecte est particuli6rement avantageuse pour des fen~tres de taille r6duite. Les r6sultats 
sont ensuite g6n6ralis6s pour le traitement de signaux ~ deux indices. 

Keywords. Recursion, sliding window, feature evaluation, short-time signal analysis. 

1. Introduction 

In various signal processing or pattern recogni- 
tion problems, the assumption that some proper- 
ties of a signal change relatively slowly in time (or 
in space), can be made. For example in speech 
processing [16], it is well known that the short 
time spectral components have very little variation 
when compared with the original signals activity. 

Thus, they provide a very useful signal representa- 
tion. In the image processing domain, a picture 
can be seen as an arrangement of different 
homogeneous textured fields. This observation 
makes us aware that there exist some local picture 
properties (textural features) that vary very slowly 
in the space domain, within a region of given 
texture. This assumption leads to a variety of 'short 
time' or 'short space' processing methods in which 
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small segments from a signal are isolated and 
processed as if they were short signal parts with 
fixed properties. These short segments (sometimes 
called 'analysis frames') correspond to the 
observation of the signal through a fixed size 
window. For a given position of the observation 
window, a set of features (usually space- or 
time-invariant) can be extracted. Features are 
understood as distinguishing primitives or 
attributes of a signal field. Such an approach will 
produce a ' t ime-dependent '  (or space dependent) 
sequence of a local property vector which can 
serve as a representation of the original signal. 
This type of representation can be very useful for 
signal segmentation, classification and under- 
standing. For example, information patterns may 

be automatically extracted by grouping local 
property vectors into clusters. 

This paper deals with the computational aspect 
of feature evaluation over a running window. 
Recursive algorithms, where the underlying idea 
is the 'updating' of some numeric quantities, have 
been proposed in various fields (e.g. time series 
analysis [3, 4], automatic and control [14], signal 
processing, pattern recognition and others) for the 
evaluation of some specific features or parameters. 
The recursive implementation of the moving 
average filter (evaluation of the local mean) is well 
known in signal processing [13]. The recursive 
structure of the running DFT has been investi- 
gated in [1, 2, 6, 7, 10]. The goal of this paper is 
to propose a generalisation and an extension of 
these results. A general form for features satisfying 
a direct or indirect recursion condition is pro- 
posed. The problem of sampling the features at a 
lower rate than the original signal rate is investi- 
gated. It is shown that the recursive step by step 
evaluation of feature satisfying the direct recursion 
condition is equivalent, in computation time, to 
the conventional method where features are com- 
puted at the minimum sampling rate (windows 
with a 50% overlap). Nevertheless, it is very 
important to be aware of the fact that some infor- 
mation can be lost when using this last approach. 
It is also shown that the indirect recursive compu- 
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tation of features derived from local probability 
functions is much faster than the conventional 
approach for small window sizes. This result could 
be of interest, for example, in some texture analy- 
sis problem when using features extracted from 
local co-occurrence matrices. 

2. Local property vector 

A segment of a signal is isolated and global 
features are estimated on it, as if this segment was 
a part of an ideal signal with fixed properties 
satisfying the Stationarity and Ergodicity condi- 
tions. For every possible segment of fixed size, a 
local property vector is defined. 

Let Xk be a discrete signal. We observe xk 
through a sliding window of length N and whose 
position is fixed in respect to the index k. For 
further developments we will choose the window 
starting at k (anti-causal convention) as shown in 
Fig. 1. It is very easy to adapt the subsequent 

F 

Fig. 1. Analysis of a signal through a running window of 
size N. 

results for other positions relative to k (window 
centered on k, window finishing at k, etc.). For 
every position of the window, a set of q features 
is computed. A feature is a function of all possible 
samples which are available in the window: 

~ i ( k ) = F i ( X k  . . . . .  Xk+N 1), i = 1  . . . . .  q. (1) 

The local property vector is given by 

/ 
e (k )  = .,,~.iLik)/ (2) 

Let us define the two following values which cor- 
respond respectively to the first and last samples 
of the signal segment seen through the window at 
step k. 
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+ 
X k  ~--Xk+N 1, 

Xk =Xk. (3) 

When moving the running window of one step, 
+ 

one removes the value x{ 1 and adds Xk to the 
observed samples. It is therefore reasonable to 
think that every component  of the local property 

vector could satisfy the recursive equation: 

f , ( k )=  U ( f , ( k  - -1) ,Xk 1, X k )  (4) 

where U ( . )  is an updating function depending 
only on the previous value of the feature f , (k  - 1) 

and on the values x ~ 1 and x ~. In the more general 
case, U ( . )  can be a function of Xk 1 and x~ and 
some of their relative neighbours or depend on 

some auxiliary recursive variables. This last case 
is referred to as indirect recursion. In the next 
sections, specific forms of (1) will be derived start- 
ing from recursion condition (4) with some 
particular updating functions. 

3. Direct recursion 

3. I. First order direct recursion 

Theorem 1. A feature f ( k  ), being a function of  the 

samples xk . . . . .  xk ~N 1, satisfies the first order 

recursion condition 

f ( k ) = w f ( k - 1 ) + w + F ( x ~ ) + w  F ( x k  1) (5) 

where w, w , w ~ are complex values and  F ( .  ) an 

arbitrary function, i f  and  only i f  

f ( k ) = c  ~. w-IF(xk+t) and  
l~o = - cw (6) 

where c is a constant. 

Proof. Starting with f ( k ) ,  we apply N times the 
recursion equation (5), giving 

This result can be written in the following form 
by an appropriate change of variable 

N 1 

f ( k ) _ w N f ( k _ N ) = w ~ w  N 1 ~ w tF(xk+t) 
l q) 

N 1 

+ W  W N 1 ~ W - t F ( X k ~  l N ) .  

/ : 0 

f ( k )  is a function of Xk . . . . .  Xk.N 1 and f ( k - N )  
a function of Xk N , . . . , X k  1. Therefore,  we can 
map 

= 1 l 

i f (  N , 'F( k - N ) = - w  NW_WN 1 Z W Xk+~-N). 
I = 0 

Comparing those two expressions, 
obtain 

N 1 -1  
W + W  ~ - - W  W = C  = c s t .  

finally we 

The derivation into the other direction has been 
omitted. 

The general form of eq. (6) allows us to construct 
a large number of features satisfying the direct 
recursion condition. Table 1 gives a list of some 
of the most commonly used features having this 
property. Most of recursive equations shown in 
Table 1 have been used in some particular applica- 
tions. For example, the well known moving 

average filter (local mean) can be implemented 
using the recursive equation given for the mean. 
The recursive structure of the Discrete Fourier 
Transformation (DFT) has been investigated by 
many authors [1, 2, 6, 7, 10]. The recursive evalu- 
ation of features is well adapted for real time 
applications. When all the values are required it 
is much more economical than the conventional 
approach. 

N 1 

f ( k ) = w N f ( k _ N ) +  ~ i w w+F(xk~N i) 
i = 0  

N 1 

+ y~ w ' w  F ( x  k 1 i). 
i = 0  

3.2. Second order direct recursion 

The generalisation of the above results for 
second and higher order features is straight- 
forward. 
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Table 1 

Examples of features satisfying the first order direct recursion condition 

Features General  equation Recursive equation 

N1 general f ( k ) =  w 1F(xk+ l) 
I = 0 

1 N-1 
mean m ( k ) = ~ -  Y xk+l 

/=0 
1 N 1 

qth order momen t  too(k) = ~ Y~ x ~ ~l 
I =0 

N l 
D F T  c o e f f i c i e n t  n X ( k ;  n)  = ~. Xk + l e i2~nl/N 

l =o 
N 1 

1 
z transform (value z = zo) X ( k ;  zo) = Y Xk+tzo 

l = 0 

f ( k ) = w [ f ( k - 1 ) - F ( x k  , ) ]+w  N + I F ( x k ÷  N I) 

1 
m ( k ) = m ( k - 1 ) + ~ ( x k + N  1-xk  1) 

1 
m q ( k ) = m q ( k - 1 ) + ~ l X ~ + N  l - X ~  x) 

14_ ilN 1)2wn/N X(k ;n )=e i2~" /N[X(k  1 ;n )  xk lJ e Xk~N 

~+ .(N -11 X ( k ; z o ) = z o [ X ( k - 1 ; z o ) - x k  ,] Zo Xk+N 1 

Let us consider the following notation: 

I 
X l k  = X k ,  

(7) 
L X 2 k  = X k +  d. 

Theorem 2. A feature f (k  ), being a function of the 
samples xk . . . . .  Xk+N 1, satisfies the second order 
recursion condition 

f (k )  = w f ( k  - 1)+w+F(xlk,+ X2k )+ 

+ w-F(Xlk-1, X2k-1) (8) 

where w, w +, w_ are complex values and F( .  ) an 
arbitrary function, if and only if 

N 1 

f ( k ) = c  Y. w-tF(Xlk+l, X2k+t) 
I=O 

- N + I  
and { ; : - c w  , (9) 

--C W. 

The proof of this theorem is nearly the same 
than for Theorem 1. Examples of commonly used 
features satisfying this condition are shown in 
Table 2. The features marked by a ,a, are mainly 

used in bidimensional texture analysis [9]. They 
are usually computed from a co-occurrence 
matrice [8]. 

Table 2 

Examples of features satisfying the 2nd order direct recursion condition 

Feature General  equation Recursive equation 

N 1 
general f ( k ) =  Y 1 w F(xk+t, Xk+l+d) 

I=0 
I N 1 

correlation / ~ x ( k ; d ) = ~ 7  Y Xk+IXk+t+d 
I=0 

1 N 1  
contrast a d ( k ; d ) = ~  I~o IXkel--Xk+l+d] 

diff. average 1 N 1 
p o w e r  a a72(k ; d)  = ~ lE O (X k 4-I -- Xk +t+d) 2 

local 1 N 1 1 
homogeneitya h ( k ; d ) = ~  t~o l +(xk,_l_Xk+t÷d)2 

f(k )=to[f(k -N+I --1)--F(xk 1, Xk l + d ) ] + O )  F ( X k + N  I, Xk+-N l+d)  

1 
I ~ x ( k ; d ) = I ~ x ( k - 1 ; d ) + ~ [ X k + N  1Xk+N l+d--Xk lXk l+d]  

- 1 
ff(k; d ) = d ( k - 1 ;  d )+-~[ lx~ .N x -- Xk+N_I4-dl--IX k 1--  Xk_l+dl]  

1 2 
f f 2 ( k ; d ) = f f 2 ( k - 1 ; d ) + ~ { ( x k + s  1--Xk4-N l + d ) - - ( X k  l - -Xk  l+d)  2} 

h ( k ; d ) = h ( k - l , d ) +  + 2 --Xk l+d)2 1 (Xk+N I--Xk+N l+d) l+(Xk 1 

" Feature mainly used in bidimensional texture analysis. 

Signal Processing 
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3.3. Spectral  considerat ions 

Let us consider the problem of sampling the 
features satisfying the direct recursion condition 

as 
at a lower rate than the original signal. This is 

equivalent to calculating features at some par- 

ticular positions of the observation window. 
Let us define y as being the result of a non-linear 

transformation F( • ) applied to the signal x '  

Yk =F(Xk). (10) 

The first order direct recursion condition can be 
rewritten as the following difference equation 

when setting the constant equal to one: 

f ( k ) = w f ( k - 1 ) + w  N-lyk+N 1--wyk- l ,  (11) 

Thus, y and f are both time- (or space-) dependent  
sequences which are respectively the input and 
the output of a linear system. The Z- t ransform of 

the impulse response of this system is given as 

- N  N w z - 1  
H ( z ) = F ( z ) / Y ( z ) -  1 1 • (12) 

w z - 1  

Using propert ies of the Z- t ransform,  a power of 

the complex variable z can be interpreted in terms 

of e lementary delays. Therefore,  this equation 
suggests the implementat ion of the feature 

evaluating filter reported in Fig. 2. This structure 

Fig. 2. I m p l e m e n t a t i o n  of  the  r ecu r s ive  f e a t u r e  e v a l u a t i o n  

filter. 

is well suited for real time computation.  The 
frequency response is obtained by setting z = e i2"~f 

N W e i2"~fN - 1 

H ( f )  - , (13) 
W e j2~f  - -  1 

233  

This expression will be discussed for particular 

values of w" 
Case  1: w = 1. In this case (13) can be rewritten 

H ( f )  = e i~(N lv s in (N~f ) .  (14) 
sin(~rf) 

The absolute value of the frequency response 

of this filter is shown in Fig. 3. This filter is a 

-0.5 

~10 

0.0 0.5 

Fig. 3. F r e q u e n c y  r e s p o n s e  of the  d i r ec t  f e a t u r e  e v a l u a t i o n  

filter fo r  N = 10. 

lowpass filter. Though, it will be possible to sample 

f ( k )  at a lower rate applying Shannon's  Sampling 

Theorem [12]. If one assumes that most part  of 

the energy of f ( k )  is contained in the first lobe of 

the sinc function, it is possible to sample f ( k )  at 

a rate of ½N. This is equivalent to say that one will 

compute f ( k )  only for window positions with a 
50% overlap. The above assumption is not always 

true and one has to be very careful in order to 

avoid aliasing. The loss of information can be quite 

important.  Let us consider the problem of the 
estimation of the local mean for a white noise. 
The aliasing average power is respectively 10% 

and 23% for the ½N and N sampling rates. Thus, 
the error will be very important  when reconstruct- 

ing the missing samples. 
Case 2: w = e i>'n/N. For this special choice for 

w, the output of the linear filter will be a coefficient 

of the running DFT. The Z- t ransform and 
frequency response of this filter are respectively 

N 
Z - - 1  

H ( z ) =  e i>,n/Nz _ 1, (15) 

H ( f )  - e i~'lN-1 ~' r n/Nl sin w N  ( f  - n / N )  
sin rr( f  - n / N )  " (16) 

\ol. 5, No. 3, Ma} 19~3 
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Such a filter can be decomposed as a comb filter, 
whose transfer function is (z N -  1), followed by a 
complex oscillator. The module of frequency 
response is given in Fig. 4. The complex oscillators 

-D. 5 
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filter), (see Fig. 6). It is possible to approximate 
the averaging filter by a first order lowpass filter 
with a slight ability to 'forget its past'. The output 
of such a system is 

f(k)=wf(k-1)+w+yk+N_l withlwl<l. (17) 

0 0 0.5 

Fig. 4. Frequency response of the running DFT filter (n = 2) 
for N = 10. 

pole is cancelled by a comb filters zero. The result- 
ing filter is a bandpass filter. Such a structure is 
commonly referred to as 'frequency sampling 
filter' (FSF). The parallel connection of M FSF, 
whose associated oscillators frequencies are 
evenly distributed all around the unit circle, allows 
us, by appropriated weighting, to construct an 
arbitrary M points FIR filter [5]. Thus, a FIR filter 
can be realised by the weighted summation of the 
outputs of a bank of bandpass recursive filters 
(running DFT coefficients). This is illustrated by 
Fig. 5. As for the previous case, it is possible to 
sample f ( k )  at the rate of 1N. Nevertheless, the 
reconstruction will be more difficult (interpola- 
tion + modulation). 

';' " " I 

Fig. 5. Recursive implementation of an arbitrary N points 
FIR filter using running DFT filters. 

A feature satisfying the direct recursion con- 
dition, can be seen as the output of a system 
composed of a non-linear transformation F ( . )  
followed by a filter (usually lowpass averaging 
Signal Processing 

Fig. 6. Block diagram of a general feature evaluation filter. 

3.4. Comparison between the conventional and 
recursive algorithms 

It is interesting to compare the conventional 
and recursive approaches on the basis of their 
computation time. Let us define the following 
average times: 

tf: time for the evaluation of the function F ( .  ), 
ta: time for an addition, 

tin: time for a multiplication. 
The calculation of one feature for a fixed position 
of a window of length N, requires an average 
time of 

Tw=N(t f+ta+atm)  

{10 f ° r w # l ,  
with a = for w = 1, (18) 

using the conventional approach (eq. (6)), and 

Tw = 2tf+ 2ta +C~2tm (19) 

using the recursive evaluation (eq. (5)). These 
results for different window sizes are reported in 
Fig. 7. In the recursive approach, the computation 
time is not dependent  on the size of the window. 
When the evaluation of a feature is needed at 
every step, the recursive approach is much quicker 
than the conventional one. 

Nevertheless, in the above section, it has been 
shown that most of the information is preserved 
when evaluating feature for position of the 
observation window with 50% overlap. Therefore,  
we shall compare the computation time of the 
conventional method with a 50% overlap and the 
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[k-"] 

i I t 1 ' /  ntion ~!~ 

J 
[ [?1;] lrr;~',/e rq~tPl<,] 

f : crq~: ~,,~r ]c~,: [ ) ( ? s J ! i o I "  

Fig. 7. C o m p u t a t i o n  t ime  as a funct ion  of the w indow size for 

bo th  me thods  used  for the eva lua t ion  of f ea tu res  sa t is fying the 

di rect  recurs ion  condi t ion  (/a = 2 ~s, t m - - 3  ~ts, tf = 6 txs). 

recursive step by step evaluation for a signal with 
M samples. Thus, the analysis time of M samples, 
with a window of size N, is 

Tt = 2 M  (tf + ta + Ottm) (20) 

when using the conventional algorithm, and 

Tt = 2M(tf+ta +atm) (21) 

for the recursive approach. 
It is interesting to note that the two approaches 

are exactly equivalent if one considers the compu- 
tational aspect. But it is important to keep in mind 
that for the conventional method, with one half 
overlapping, there is some loss of information, 

while in the recursive approach all the information 
is preserved. 

4. Indirect recursion 

When a feature can be evaluated from an 
auxiliary recursive variable, it is said to have an 
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indirect recursion property. There is a great 
variety of indirect recursive variables. For example 
the variance can be computed from the average 
power and from the mean, which both have the 
direct recursion property. In this section, we will 
restrict ourselves to choosing a particular auxiliar 
variable: the estimate of a probability density 
function for the observed signal segment. 

4.1. Updating the probability density function 

An estimate of the PDF for a signal segment is 
the normalised count of the signal's levels. Let us 
define pk(i), being the ith entry of the estimated 
PDF at recursion step k where i represents a 
particular discrete level of the signal. This quantity 

is given by 

pk(i)= #{I = k . . . . .  k + N -  l Ix ,  =i;  i c  G } / N  

(22) 

where N is the size of the window, G is the set of 
all the possible discrete levels of the signal and # 

denotes the number of elements of a specified set. 
As pointed out previously, the only changing 

samples when moving the window of one step, are 

X k l and xk.+ Therefore,  the PDF satisfies the 
recursion relation 

4- + 

p k ( x k ) = p k  I ( X k ) + I / N ,  

pk(Xk 1)=pk l(Xk 1 ) - 1 / N ,  (23) 
+ 

pk(i)=pk l(i) f o r i ¢ x k ,  xk 1. 

This property has been used in [11] for designing 
a fast median filtering algorithm. Updating the 
PDF at every step requires only two additions. 

4.2. Indirect recursion via P D F  

In pattern recognition, many features (see Table 
3) are computed from PDFs. It will be shown that 
most of them can be estimated recursively. 

Theorem 3. A feature f(k) ,  being a function of 
the PDF estimates at step k pk(1) . . . . .  pk(i) . . . . .  

VoL 5, No. 3. Mav  1983 
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Pk (/max), satisfies the indirect recursion condition 

f ( k ) = f ( k - 1 )  " + x~) +F(pk(xk ); 

+F(pk(Xk-a ); Xk-x) 

- F ( p k  l(X;); x~-) 

- F ( p k  l(Xk 1);Xk 1) (24) 

Table 3 

Examples of features satisfying the first order indirect recursion 
condition (via PDF) 

Type Feature Closed form 

General 5~ F{pk(i); i} 
i 

where F( .  ) is an arbitrary function, if and only if 

f ( k ) =  Z F(pk(i); i). (25) 
i~G 

Proof. As shown by eq. (23), Pk and Pk-1 are 
unchanged for all entries different from x~ and 

Xk-1. So (24) is equivalent to 

f ( k )  = f ( k  - 1) 

+ Y, (F(pk(i); i)--F(pk a(i); i)), (24a) 
i~G 

finally after regrouping the terms 

f (k)= Z F(pk(i);i). 
iEG 

local 
histogram mean ~2 Ok (i) i 
characteristics qth order 

moment ~ iqpk (i) i 

entropy - ~  i log[pk (i)] 
i 

inertia ~ p2 (i) 
i 

Similarity Euclidean 
measurements distance ~ {Pk (i) - q (i)} 2 i 
w i th  r e f e r e n c e  B a t t a c h a r r y a  ~ ~/pk(i) " q(i)  
PDF q(x ) distance 

Divergence 5~ {Pk (i) -- q(i)} 
i 

x log  I q-~-i) l 

It is easy, using eq. (25), to make the derivation 
into the other direction. This result can be gen- 

eralised to higher order PDFs. Eq. (25) is a very 

general form and allows to construct a large set 

of features. Examples  of such first and second 

order features are shown in Table 3 with their 
associated indirect recursive equations. It is inter- 

esting to see that features like the entropy can be 
computed recursively. In some problems it can be 
interesting to compare  a local PDF with a refer- 

ence PDF. This is usually done with the help of a 
distance measure [15]. It is worthwhile to note 
that the Euclidian, Battacharrya,  Divergence, 

Kullback information, etc. distance measures to 
a reference PDF satisfy the indirect recursion 
condition. 

4.3. Comparison between the conventional and 
recursive algorithms 

In order to compare these two approaches, let 
us define 

g: number  of discrete levels of the signal, 

q: order of the estimated PDF, 

N :  size of the observation window. 

When using the conventional approach (eq. (25)) 

and using the previous definition for ta, tt and tm, 
the computat ion of one feature for a fixed position 
of the window requires an average time of 

Tw=Nta+gq(ta+tf)  (26) 

where N t, is the time necessary to compute the 
histogram. For the recursive approach,  one has: 

Tw = 6ta + 4te. (27) 

These values are reported in Fig. 8(a) as functions 
of the window size. As in the direct recursion case, 

the advantage is to the recursive approach where 
the computat ion time is not dependent  on the 

window size. 
When not all the values are required, it is more 

realistic to compare  the SCM (sampled conven- 
tional method) with a 50% overlap and the RM 
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of M 

(28) 

when using the SCM, and 

T, = 2Mta + 4M(ta + tf) (29) 

for the recursive step by step evaluation• In this 
last expression, the time necessary for initialisation 
has been neglected• As it turns out when looking 
at Fig. 8(b), the two methods are not equivalent. 
For small windows ( N < 2 g  q) the RM is more 
economical and it has the advantage to preserve 
all the information. Nevertheless, the time 
required for the evaluation or the updating of the 
histogram is the same for the two methods• 

I O' 
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Fig. 8. C o m p u t a t i o n  t ime  as a funct ion  of the w indow size for 
bo th  m e t h o d s  used  for the  eva lua t ion  of f ea tu res  sa t is fying the  

ind i rec t  recurs ion  condi t ion  (ta = 2 ~s, ~'rn = 3 ~s, tf = 6 I~s, g = 
256,  q = 1, M = 1024). 

5. Bidimensional recursion 

The generalisation of the previous results to 
bidimensional signal processing appears as 
straightforward• 

5.1. B id imens ional  generalisation 

Let us consider a square window of size N x N. 
When moving the running window of one step one 
removes N values and adds N other values to the 
observed sample set, when moving the window of 
one horizontal step. The following equations can 
be found for features satisfying the direct recursion 
condition• 

(1) Horizontal: 

f ( k ,  l) = w l f ( k  - 1, l) 

+ W I +  

N - 1  

E F(x~+N 1.1+,) 
u = O  

N 1 

+ w l  K F ( x k  1,/+u). (30) 
u = O  

Vol. 5, No. 3, May 1983 



238 

(2) Vertical: 
N 1 

f(k, l) = wzf(k, l -  1) + w2+ • F(xk+u.t+N 1) 
U - 0  

N 1 

+w2 Z F(Xk+~,l 1), (31) 
u--O 

N -1 N - - I  

f ( k , l )=  ~ Y~ w;Uwz~F(xk+,.~+v). (32) 
u - O  v - O  

The general closed form for features satisfying the 

indirect recursion condition is 

f(k, l)= Y. F(pk,~(i); i) (33) 

It is straightforward to rewrite the bidimensional 
equivalents of Eqs. (23) and (24) for a move of 
one vertical or horizontal step. The consequence 
of such a generalisation is that the computation 
time by the recursive method becomes now pro- 
portional to N and is not any more independent 
of the window size. It is very important to choose 
a scanning of the picture such as the features can 
be evaluated continuously (without any jump). 
Yet, it will be shown that for features satisfying 

the direct recursion condition, it is possible to 
reduce the computation time and to make it 
independent of the window size. 

5.2. Separability property 

Let f(k, l) be a feature satisfying the two- 
dimensional direct recursion condition. The 
general expression for f(k, l) is given by eq. (32) 
which can be rewritten as 

N 1 

f ( k , l )=  ~ wz~g(k, l+v) (34) 
V--O 

with g(k, l) being an auxiliary measurement 

N - 1  

g(k, l) = Y. Wl"F(xk+,.t). (35) 
u - - 0  

g(k, l) can be evaluated by a line by line scanning. 
When considering one line, g(k,l) has one- 
dimensional nature and furthermore,  it has the 
direct recursion property. The same is true for 
f(k, l) when computing it from the array g(k, l) 
with a row by row scanning, f(k, l) is said to have 
Signal Processing 
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the separability property because it can be com- 
puted from two successive transformations along 
the lines and rows. 

5.3. Comparison between the conventional and 
recursive approaches 

A feature satisfying the direct recursion 
property is separable. Thus, computation time is 
independent of the window's size, when using the 
RM. All previous results are exactly transposable 
to this case. It is worthwhile to point out that some 
features used in texture analysis (correlation, con- 
trast, homogeneity) and which are usually com- 
puted from the co-occurrence matrices [8, 9] can 
be evaluated with this approach. The advantage 
is double, first it does not require the explicit 
evaluation of the matrices (no memory storage) 
and second the computation is much quicker. 

For features satisfying the indirect recursion 
condition (via a PDF), the situation is slightly 
different than the previous case. The computation 
time for the RM, has become proportional to N 
(side of the window). For a fixed position of the 
observation window (size: N ×N), the following 
computation times are required 

Tw = N2ta + gq(ta + te) (36) 

for the conventional evaluation, and 

Tw = 6Nta + 4Ntf (37) 

for the recursive evaluation (see Fig. 9(a)). 
The comparison of the SCM with a 50% overlap 

and the RM when applied to the analysis of a 
M × M  picture through an N × N window, gives 
the following times 

M 4  2 
Tt = 4M2ta + ~ -  gq (ta + tf) (38) 

when using the SCM, and 

Tt = M2(6Nt~ + 4NtO (39) 

for the recursive step by step evaluation. 
These results are shown in Fig. 9(b) for the 

evaluation of a second order feature (for example: 
the entropy or the energy of a co-occurrence 
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matrice). Once again the RM is more economic 

for small window sizes (N < gq/3). 

6. Conclusion 

This study has shown that recursion can be 

successfully applied to the evaluation of features 

through a running window. The recursive 

approach seems to be computationally very inter- 

esting in short-time or short-space signal analysis. 

It is well adapted for hardware implementation in 

real time applications. The recursive step by step 

evaluation method has been compared with the 

conventional approach where features are evalu- 

ated for window positions with an overlapping of 

one half. In this last approach features are evalu- 

ated at a minimum rate (Shannon's Sampling 

Theorem) and there might be some loss of infor- 

mation due to aliasing. Furthermore, it turns out 

that the indirect recursive approach is computa- 

tionally more economic for small window sizes. 

The two methods are equivalent for features 

satisfying the direct recursion condition. An other 

advantage for a system using a recursive 

implementation is that the output rate (local 

feature) is equal to the input rate. The size of the 

observation window can be easily changed with- 

out affecting the computation time. A feature can 

be seen as the result of a local transformation 

applied to the original signal. It is hoped that 

these results will find some applications in discrete 

signal analysis. For example, in texture analysis it 

might be interesting to perform a tone-to-texture 

transform. This means transforming the original 

grey level picture in a set of feature-pictures with 

interpretable texture information. These features- 

pictures can then be successfully used for 

segmentation or classification. 

b. { o r  t h e  a n a l y s i s  on N s a r o l e s  

Fig. 9. Computation time as a function of the window size for 
both methods used for the evaluation of bidimensional features 
satisfying the indirect recursion condition (ta=2 o.s, tm = 

3 ~s, tf = 6 la.S, g = 256, q = 2, M = 2562). 
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