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Abstract. Suboptimal fast transforms are useful substitutes to the optimal Karhunen-Lo~ve transform (KLT). The selection 
of an efficient approximation for the KLT must be done with respect to some performance criterion that might differ from 
one application to another. A general class of criterion functions including most of the commonly used performance measures 
is introduced. They are shown to be optimized by the KLT. Various properties of the eigenvectors of the symmetric Toeplitz 
covariance matrix of a wide sense stationary process are reviewed. Several transforms such as the complex or real, odd and 
even Fourier transforms (DFT, DOFT, DREFT, DROFT), the cosine and even sine transforms (DCT, DEST) are obtained 
from the decomposition of a symmetric Toeplitz matrix in the sum of a circulant and a skew circulant matrix. These transforms 
are compared on the basis of a general performance criterion and appear to be good substitutes for the optimal KLT. Finally, 
it is shown that these transforms are asymptotically equivalent in performances to the KLT of an arbitrary wide sense 
stationary process. 

Zusammenfassung. Gewisse orthogonale Transformationen erlauben eine effiziente Approximation der optimalen Karhunen- 
Loire Transformation (KLT). Die Wahl einer sub-optimalen Transformation wird mit Hilfe eines Performanz-Kriteriums 
gemacht, dieses kann je nach Applikation verschieden sein. Deshalb wird eine allgemeine Klasse von Kriterien eingefiihrt, 
die die meisten gebriiuchlichen Kdterien umfasst. Es wird gezeigt, dass diese Familie dutch die KLT optimiziert wird. Gewisse 
Eigenschaften von Eigenvektoren einer symmetrischen Toeplitz Matrix werden gezeigt. Eine zirkulare Dekomposition der 
Kovarianz Matrix eines im weiten Sinne stationliren Prozesses wird eingefiihrt. Diese fiihrt zur Summe zweier block-zirkulanten 
Matrizen, wovon eine symmetrisch und die andere anti-symmetrisch ist. Eine Anzahl reelle und komplexe orthogonale 
Transformationen (DFT, DOFT, DREFT, DROFT, DCT, DEST) die den einen oder anderen Term (oder beide teilweise) 
dieser Dekomposition, diagonalisieren werden vorgeschlagen. Diese Transformationen werden anhand des generellen Peffor- 
manz-K_riteriums verglichen. Dank ihrer fast optimalen Performanzen erlauben sic eine effiziente Approximation der KLT. 
Letztlich wird gezeigt, dass jede Transformation asymptotiseh der KLT aequivalent ist, and dies fiir alle im weiteren Sinne 
station~iren Prozesse. 

R~sum~. Certaines transformations orthogonales rapides permettent une approximation efficace de la transformation optimale 
de Karhunen-Lo~ve (KLT). Le choix d'nne transformation sous-optimale appropri6e s'effectue g6n6ralement sur la base 
d'un crit~re de performance; celui-ci peut ~tre diff6rent d'une application it l'autre. A cet effet, nous introduisons une classe 
g6n6rale de crit~res de performances qui englobe la majorit6 des mesures de performances couramment utilis6es. II est montr6 
que eette famille de fonctions est optimis6e par la KLT. Certaines propri&6s des vecteurs propres d'une matrice sym6trique 
de Toeplitz sont pr6sent6es. Une d6composition circulaire de la matriee de eovarianc¢ d'un processus stationnair¢ au sens 
large est introduite. Celle-ci fair apparaitre la somme de deux matrices it blocs circulants sym6triques et anti-sym6triques. 
Un certain nombre de transformations orthogonales complexes ou r6elles (DFT, DOFT, DREFT, DROFT, DCT, DEST), 
permettant une diagonatisation de l'un des termes (ou 6ventuellement une diagonalisation partielle des deux termes) 
apparaissant dans cette d6composition, sont alors propos6es. Ces transformations sont compar6es sur la base du crit~re 
g6n6ral de performance. De par lear comportement tr~s proche de l'optimum, elles permettent une approximation efficace 
de ia KLT. I1 est finalement 6tabli que chacune de ces transformations est asymptotiquement 6quivalente en performances 
it la KLT de n'importe quel processus stationnaire au sens large. 

Keywords. Karhunen-Lo~ve transform, Karhunen-Lo6ve transform approximation, stationary process, Toeplitz matrix, 
eigenvalue decomposition. 
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1. Introduction 

M. Unser / On the approximation of  the KL T 

Orthogonal transforms are widely used in the area of  digital signal processing [1]. Research efforts and 
applications include domains such as image processing, speech processing, pattern recognition, communi- 
cation systems and generalized filtering. Given the second order statistical properties of  a N-dimensional 
random vector, the optimal transform for data representation or compression [1], data analysis [2] or data 
processing [3] is the well known Karhunen-Lo~ve transform (KLT) which is defined as follows. 

Consider an N component  random vector x with associated covariance matrix: 

CN = E { ( x -  E{x} ) ( x -  E{x})T}. (1) 

The rows of  the corresponding orthogonal Karhunen-Lo6ve N x N transform matrix @t~ are the eigenvec- 
tors of  the symmetric positive definite covariance matrix CN. The essential property of  this transform is 
that it produces uncorrelated transform coefficients y = ~Nx: 

where the Ai's are the eigenvalues or characteristic roots of CN. Thereby, this representation admits 
processing schemes in which each datum is manipulated independently from the others. The KLT also 
minimizes the approximation error when the number of  coefficients that are used to represent the input 
data block is less than N. 

In most of  the signal processing applications, the random vector x is considered as a realisation of  a 
wide sense stationary process which leads to a symmetric Toeplitz covariance matrix CN. Unfortunately, 
despite the simple structure of  this type of  matrices, no simple way to compute the eigenvectors seems to 
be known until now. The KLT is usually computed using standard--computat ional ly costly--numerical 
iterative eigenvector extraction methods [4]. There is no unique KLT for all random processes, and it is, 
in general, not possible to find a fast (FFT-type) algorithm to compute the transform coefficients. It is 

possible, however, to approximate closely the KLq~ of  a wide sense stationary process by suboptimal 
transforms such as the DFT [5], the DCT [6] or other sinusoidal transforms [7]. The use of  this type of  
transforms, was justified until now by the fact that they belong to a family of  transforms asymptotically 
equivalent to the KLT of a first order Markov process [7]. 

In this paper, a new approach to the approximation of KLT, that does not restrict itself to a specific 
class of  stationary processes (such as the Markov-I family), is presented. It is based on a circular 
decomposition of  a symmetric Toeplitz matrix which emphasizes two extreme cases for which the exact 
KLT can be derived analytically. Interesting solutions for the KLT in one of  these extreme cases are the 
complex discrete Fourier (DFT), the discrete real even Fourier (DREFT),  the complex discrete odd 
Fourier (DOFT) and the discrete real odd Fourier (DROFT) transforms. The well known discrete cosine 
(DCT) and even sine (DEST) are shown to be closely related to this decomposition. All these transforms 
can be used as efficient substitutes of the optimal KLT. An important result of  this work is that all these 
transforms are asymptotically equivalent in performances to the KLT of  an arbitrary wide sense 
stationary process. This means that the performance degradation, resulting from the substitution of the 
KLT by one of  these suboptimal transforms, vanishes to zero as the block size increases. 

The present article is organized as follows. Section 2 is mainly concerned with the notion of  optimality 
of  the KLT. Important properties of  the eigenvector decomposition of  persymmetric matrices (including 
the family of  symmetric Toeplitz matrices) are reviewed in Section 3. The central decomposition of  a 
symmetric Toeplitz matrix in the sum of  a circulant and a skew-circulant matrix is introduced in Section 
Signal Processing 
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4. These matrices are respectively diagonalized by the complex even and odd Fourier transforms (DFT, 
DOFT). In Section 5, it is shown how to form equivalent or closely related real orthogonal transforms 
by grouping all pairs of complex conjugate basis vectors. These real transforms are generally better 
substitutes to the KLT than the associated complex transforms. The asymptotic performance equivalence 
with the KLT is finally established in Section 6. 

2. Criterion functions for transform selection 

The Karhunen-Lorve expansion is optimal for a large variety of problems. The optimality of this 
transform has to be understood in the sense that it maximizes or minimizes a certain criterion (or cost) 
function that may depend on the particular type of application. The usefulness of the KLT is mainly due 
to the fact that it provides a canonical decorrelated representation of the data. It is the transform which 
diagonalizes the covariance matrix. 

Let us consider an N × N real or complex transform matrix UN = [u~u2. • • aN] T which is applied to 
the input data vector x. The performances in data representation associated with this particular transform 
is usually measured on the covariance matrix of the transformed coefficients given by UNCNU~, where 
U~v is the Hermitian transpose of/-IN. Most commonly used performance measures (distortion rate, basis 
restriction errors) are computed from the diagonal elements only. A relatively general class of criterion 
or performance functions is introduced as 

N 

~(UNCNU~)= Z G(uXCNu*), (3) 
i = l  

where G(. ) is a continuous, monotonously increasing (or decreasing), convex (or concave) function. It 
is shown in appendix A that under the constraint of an energy preserving transform with normalized row 
vector u,, ~ is bounded by 

N 

NG(tr(CN)/N) <~ ~( UNCNU H) <~ ~* = Y~ G(A~), (4) 
i = l  

if G(. ) is monotonously increasing convex or decreasing concave, or 

N 

NG(tr(CN)/N) >! ~(UNCNU~)/> ~* = Y~ G(A,), (5) 
i = 1  

if G(-) is monotonously decreasing convex or increasing concave. 
The h~'s are the eigenvalues of the covariance matrix CN. The optimum value ~* corresponds to the 

Karhunen-Lo~ve transform. It is important to note that if the diagonal elements of the covariance matrix 
CN are all equal (which is the case for a wide sense stationary process), the criterion function associated 
to the identity.transform (or any permutation matrix) is minimum. Therefore, any non trivial transformation 
will improve the situation. From this point of view, the original coordinate system is the worst for data 
representation. Any linear transform will decrease the cross correlation between samples and result in a 
covariance matrix closer to diagonal. 

The relative improvement of performance obtained for a given transform UN can be computed from 
the normalized coefficient 

~ ( u ~ c ~ u ~ )  = ( ~ ( u i ~ c i , , u ~ )  - ~ ( c N ) ) / ( ~ ( 4 ,  NUN ~ ~) -- ~(C~)), (6) 
Vol. 7, No. 3, December 1984 
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which will be one when the transform is equivalent to the Karhunen-Lo~ve transform and zero when no 
improvement is obtained, independent of  the fact that the KLT corresponds to a maximum or a minimum 
of  the criterion function. 

The class of  criterion function, introduced in this section, includes most of  the functions that are commonly 

used in the literature and that maybe  different from one problem to another. Some examples are given below. 

a) Energy criterion 
Let A ~  ) = diag(UNCNU~) be the diagonal matrix obtained after transformation, in setting all non-diagonal 
elements to zero. The energy criterion associated to transform U~ is defined as 

N 

G(UNCNU~v) = IA~)I 2 = Y_., (uTCNu*) 2 = I U~A~)UNI 2, (7) 
i = I  

where I" 12 is the Hilbert-Schmidt norm of  a matrix and is invariant by orthogonal similarity transform. 
In this particular case G( .  ) is a monotonously increasing convex function. The advantage of  this particular 
criterion is that its optimal value will simply be ~* = ~ ( ~ N C ~ )  = ICN} 2 and can be evaluated without 
requiting the knowledge of  the eigenvalues of  CN. The normalized coefficient ~:~ which is often used as 
stop criterion in iterative eigenvalue extraction methods [4], is given by 

~, (VlvCNU~) = IA ~)12/I CNI 2. (8) 

b) Bit rate 
The optimal bit rate achievable in coding the transformed coefficient of  a gaussian process as N 

independent sources is [5] 

N 

~2(UNCNU~) = ~ log(u~CNu*/ D); (9) 
/=1 

where D <min{ufCNu*} is the mean square error. Here G( .  ) is a monotonously increasing concave 
function. 

c) Entropy 

The trace of  a matrix is invariant under orthogonal similarity transform and corresponds, in the case 
of  a covarianee matrix, to the average squared norm of  the input random vector. The relative energy 
contribution of  the transformed coefficients can be combined in a entropy measure [8]. 

N 

~3(UNCNU~) = -- ~ Y, log(0,) with 0 ~  < O, = u~CNu*/tr(CN) <<- 1. (10) 
i=1 

The minimization of  this criterion ( G ( . )  is a monotonously decreasing convex function) by the KLT 
leads to an interesting interpretation. Among all unitary transforms, the KLT is the one which produces 
coefficients with the most spread out variance distribution. 

Another method of  comparing different transforms is to evaluate their ability in data compression. I f  
the transformed coefficients are ranked in a decreasing order of  their variances 0.2 > tr2 > tr~ > .  • • > 0 .2 

2 = UTi CNU*, then with 0., 

2 0.~ ( l l )  Jm(UNCNU~,)= Z 0., 
/ = m + l  1 

Signal Processing 
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is called the 'basis restriction error' [7]. It represents the normalized mean square error between the original 
random vector and an approximation, computed from m of its most significant transformed coefficient. 
This quantity is minimum for the KLT for any m = 1, . . . ,  N. 

3. Symmetric/skew-symmetric transform family 

A symmetric Toeplitz matrix is a special member of a more general family of matrices: doubly symmetric 
or persymmetric matrices. Interesting properties of such matrices, which are symmetric along both main 
diagonals, have been investigated in [9, 10]. A fundamental property is that orthogonal transforms 
diagonalizing such matrices (in particular symmetric Toeplitz matrices) must be members of the Sym- 
metric/Skew Symmetric (S/SS) orthogonal transform family introduced below. 

Let JN be a N x N permutation operator that reverses the rows (resp. columns) when applied to the 
left (resp. right) 

An N x N square transform matrix U~r (or any transform with identical but permuted row vectors) 
I 

U~ --= [ulu2"" "up, VlV2" " " vo] T, (13) 

where P = [ ( N +  1)/2] and Q = [N/2]  ([x] denotes the smallest integer greater or equal to x), is a member 
of the S/SS orthogonal transform family when it has P symmetric and orthogonal row vectors 

ui=JNui and uT.uj=Si . j ,  ( i , j = l , . . . , P )  (14) 

as well as Q skew-symmetric and orthogonal row vectors 

V~=--JNV~ and vT. vj = 8,j, (i,j = 1 , . . . ,  Q). (15) 

The transforms belonging to this family have the following interesting properties. 

U~ = 1N. This property is simply due to the fact Property I : the transform matrix UN is orthogonal: U~. r 
that any symmetric vector will always be orthogonal to any skew symmetric vector. 

Property 2: Let CN he a persymmetric covariance matrix such as CN = JNCNJN. The application of the 
transform UN to a random vector with covariance matrix CN will result in mutually decorrelated symmetric 
and skew-symmetric components: 

q_ I 

[ Cp , 01,0] (16) tiN" CN" U~ . . . . . .  , - - - - - ,  
I.Oo.~, CQJ 

where Op.o denotes a P × Q null matrix. 

Property 3 [10]: Let CN be a persymmetric matrix with distinct eigenvalues. Then CN has P = [ ( N +  1)/2] 
symmetric and Q = [N/2]  skew symmetric eigenvectors. The eigenvector transform matrix is therefore a 
member of  the S/SS transform family. In the case where the eigenvectors are not distinct, it is always 
possible to find a S/SS transform that diagonalizes CN. 

VOl. 7, N o .  3, Dec, e m b e r  1984 
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Other results concerning the eigenvectors of  symmetric Toeplitz matrices may be found in [ 11 ]. Properties 
2 and 3 are very important for our purpose, which is the approximation of  the Karhunen-Lorve  transform 
of  a stationary process. The choice of a S/SS transform will mostly result in a performance improvement 
when compared with other closely related transforms not sharing this property. Another important point 
is that a transform not belonging to this family can generally not (unless the eigenvalues are multiple) 
diagonalize a symmetric Toeplitz matrix. 

4. A circular decomposition for symmetric Toeplitz matrices 

In this section, a decomposition of a symmetric Toeplitz matrix is derived. This decomposition leads 
to a sum of two matrices. Two kinds of transforms, which will be introduced later on, diagonalize either 
one of these matrices fully or both partially. 

Consider a symmetric N × N Toeplitz matrix CN completely characterized by its first row elements 

Co, • . . ~ C N - I  ". 

CO el  c2 • . . C N _ I -  ] 

I C 1 C 0 C • • • CN_ 2 

CN--2 Cl Co el  [ 

J [_CN-I  Cl CO 

= Toeplitz(c0, c t , . . . ,  CN-0 (17) 

and define the corresponding symmetric Toeplitz matrix obtained in reversing the non diagonal elements 

of the first row: 

cN_~ Co C~_l " ' "  c2 

DN = = Toeplitz(Co, CN-I, • • •, C l)- (18) 

~ C2 C N -  I CO CN -- 1 

C I C N - I  CO _J 

We now define the matrices 

AN = ½(CN + D~)  = Toeplitz(ao, a l , . . . ,  aN-0 ,  (19) 

BN = ½(CN - DN) = Toeplitz(bo, b ~ , . . . ,  bN_t). (20) 

It is easily verified that 

a,=½(ci+crc_,) ,  ( i = 1  . . . . .  N - I ) ;  ao=Co, (21) 

b , = ½ ( c , - c N _ , ) ,  ( i = 1  . . . . .  N - I ) ;  bo=0. (22) 

A circular decomposition of  the matrix CN is obtained by 

CN = AN + Brc, (23) 

where Arc is a circulant matrix [9] and Brc in a form that we define as skew circulant. These matrices are 
both symmetric Toeplitz and have the following symmetry and skew symmetry properties: 

a~ = arc_i, (i = 1 , . . . ,  N -  1), (24) 

b, = -brc_ , ,  (i = 1 , . . . ,  N -  1). (25) 
Signal Processing 
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The interest of  the decomposition given by (23) is that it is possible to give an expression for the eigenvalues 
and eigenvectors of  the matrices AN and BN. 

Let us define the permutation matrices 

r00 010 Ii '°°l : / :  o,. o. : o/ o , o .  0 / 
PN | 0  1 |  a n d Q N  . . . . . .  • • • 0 1 " (26) 

L1 0 • • • 0A - 0 • • • 0J  

Circulant and skew circulant matrices can be expressed as polynomial functions of PN and QN : 

N - 1  N - I  

AN = ~, akP k and BN = ~ bkQ k.  (27) 
k = 0  k = 0  

Therefore, the eigenvectors of PN (resp. QN) are the eigenvectors of AN (resp. BN). By solving the 

characteristic equation for PN and QN, it is found that the characteristic roots are: 

PN: A , , = e x p ( ~ j 2 ~ r ( m - 1 ) / N ) ,  ( m =  I , . . . , N ) ,  (28) 

QN: Ix,=exp(:i:j~r(2n-1)/N), ( n = l , . . . , N ) ,  (29) 

with corresponding eigenvectors given by the complex discrete Fourier transform (DFT) for PN (and AN): 

1 
u,,,(k) =-y-~ exp{±j2"rr(m - 1 ) ( k -  I ) / N } ;  (k, m = 1 . . . .  , N)  (30) 

4 N  

and the complex discrete odd Fourier transform (DOFF) for QN (and BN) 

1 
v,,(k) = - - ~ e x p { + j x r ( 2 m -  1 ) ( k -  1) /N};  (k, m = 1 . . . .  , N) .  

4 N  
(31) 

From equation (27), it follows tha( the eigenvalues of AN and BN are given by 

N - I  N - I  

AN: h~ a)= E ak Ak= ~ a k e x p ( ± j 2 " r r ( i - l ) k / N ) ,  ( 3 2 )  
k ~ 0  k = 0  

N - - 1  N - - I  
( b )  - -  BN: tz, -- ~ bkl~ k= ~ bk e x p ( + j ~ r ( 2 i - 1 ) k / N ) .  (33) 

k = 0  k = 0  

Using the additional properties (24) and (25), it can be shown that 

N - I  

A ( . a )  - -  - -  
~ ( a )  , - - , ,N- , - -  Y~ ak cos{2~r(i-- 1)k/N}, (34) 

k = O  

N - - I  

/z~ b)=/z~)--,-i = • bk COS{~r(2i-- 1)k/N}, (35) 
k = O  

Hence, the complex conjugate eigenvectors of  AN and BN will correspond to identical eigenvalues. 
The circular decomposition of  a Toeplitz matrix into two matrices with known eigenvectors does 

unfortunately not solve the problem of  the eigenvector extraction of  a symmetric Toeplitz matrix which, 
Vol. 7, No. 3, December 1984 
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in most cases, can only be solved by applying numerical iterative methods. Nevertheless, the DFT or 
DOFT will diagonalize the covariance matrix CN in the extreme cases where it is circulant or skew-circulant. 
It is therefore suggested to use either the DFT or the DOFT as a substitute of the exact eigen-decomposition 
(or Karhunen-Lo~ve transform). The approximation of the KLT by the DFT (resp. DOFT) is particularly 
effective when the matrix BN (resp. AN) given by the circular decomposition is close to diagonal. 

Considering an aribtrary positive definite Toeplitz matrix CN, it will be shown next that it is possible 
to obain real orthogonal transforms with improved performances, by simple combination of the basis 
vectors of the DFT and DOFT. 

5. Real transforms for the approximation of the KLT 

The complex even and odd Fourier transforms (DFT and DOFT) exhibit a conjugate symmetry: 

* ( m = 2 , .  ,N) ,  (36) Ui ~ • N - - i + 2 ,  • • 

v,=v*_, ,  ( m = l , . . . , N - 1 ) .  (37) 

Considering an arbitrary complex vector w and its complex conjugate w*, we have that: 

w r CNw * = ( W* ) V CNW. (38) 

ThUS, for any covariance matrix CN, the variances associated with the projection of the input data on 
two complex conjugate vectors of the DFT or DOFT are the same. This property will result in a relatively 
important residual correlation between the corresponding couples of transform coefficients. It is shown 
next, that closely related real transforms can be used to obtain better performances than the previously 
introduced complex transforms (DFT and DOFT). 

5.1. Rea l  even and odd Fourier transforms 

The DFT (resp. DOI~I ") are not the only matrices to diagonalize AN (resp. BN) since the eigenvalues 
are not unique and can be grouped as N / 2  equal pairs of eigenvalues (with complex conjugate eigenvec- 
tors). It is therefore possible to construct real transforms that also diagonalize AN (resp. BN) in choosing 
suitable linear combinations between all pairs of complex conjugate basis vectors. Consider a complex 
basis vector ui and its complex conjugate u*. The real vectors ri and si as 

1 
!", = ~ "  {exp(j 0,). u, + exp(-jO,) • u*}, (39) 

-j 
s, = ~ "  {exp(j0,). u , -  exp(-j0,),  u*}, (40) 

where 0~ is an arbitrary phase, can be shown to be orthogonal and to form a basis of the plane spanned 
by u, and u*. Using this property, it is possible to generate a family of sinusoidal/cosinusoidal orthogonal 
transforms that diagonalize AN or BN. If, for example, the 0,'s are chosen to be zero, the associated 
transform coefficients will correspond to the real and imaginary parts of the DFT (or DOFT). Of particular 
interest is the case where the 0,'s are chosen so that the vectors r~ are symmetric and the vectors si are 
skew symmetric. The corresponding transforms--referred to as the discrete real even Fourier transform 
(DREFT) and the discrete real odd Fourier transform (DROFT)--are member of the S/SS transform 
family. The associated basis vectors may be found in Table 1. 

For an arbitrary covariance matrix CN, the real sinusoidal/cosinusoidal transforms will generally lead 
to an improvement in performances when compared to the corresponding complex transforms. This can 
Signal Processing 
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Table 1 
Basis vectors of the principal complex and real transforms obtained from the circular decomposition of a symmetric Toeplitz matrix 

Transform Basis vectors 

urn(k); m = l , . . . , N ;  k = l  . . . . .  N 
o1" 

up(k) and uq(k); p= 1 . . . . .  [(N+l)/2], q=l  . . . . .  IN/2] 

Discrete Fourier 
Transform (DFT) ~NNexp{ ±j2~r(m---l)(k-l)~N J with j=x /~  

Discrete Odd Fourier 
Transform (DOFT) 

~Nexp{ +j~(2m-1)(k-1)}N 

Discrete Real Even Fourier 1 
; p= 1, Transform (DREFT) 

(symmetric/skew symmetric) 

k - - l , . . . ,N  X/~2 i I(2k-l)q'~ t ; 
q = 1 . . . . .  [(N- 1)/2] 

~ c o s {  (2k-1)(P-N 1)~}; 

p = 2 . . . . .  [(N+ 1)/2] 

1 sin{(2k_ i) 2} ' 

q = N/2 ,  (if N even) 

Discrete Real Odd Fourier 
Transform (DROFT) 
(symmetric/skew symmetric) 

2N sin ~.(2k - l)(2p - 1)'~} ; 
I. 2N 

p = 1 . . . . .  [N/2] 

f (2k- l)(2q- l)'tr) cos  
q = 1 . . . . .  IN~2] 

1 . "ff 

p = [ ( N + l ) / 2 ] ,  (if N odd) 

Discrete Cosine 1 
- - "  r e = l ,  k = l , . . . , N  Transform (DCT) ,f-~' 

~ f ~  [ (2k- l)(m- l)~r} 
cos~ 2N ; r a = l , . . . , N  

Discrete Even Sine 
Transform (DEST) • f •  . f(2k- 1)m~r) 

' I  :t ~ s i n  (2k-l) ; m = N  

be shown in the following way. The general criterion function introduced in Section 2 can be decomposed 
in a sum of sub-criterions associated with each plane spanned by a complex vector and its conjugate. 
Following the same reasoning as in appendix A, it is easily shown that the optimal value of the sub-criterion 
is obtained when the projections on the two associated basis vectors are decorrelated. On the other hand, 
the worst value of the sub-criterion is achieved when the two variances are the same--which is precisely 
the case when the complex transform is used (DFT or DOFT). These results can be summarized as: 

Proper ty  4: A l l  real sinusoidal/cosinusoidal orthogonal transforms obtained in grouping the conjugate 
vectors of an orthogonal complex transform will perform as well, or better (in the sense of a family of 
performance criterions) as the original complex transform. The best possible performance is achieved by 
the associated symmetric/skew-symmetric real transform that decorrelates all pairs of grouped components. 

VOI. 7, No .  3, D e c e m b e r  1984 
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This is illustrated in Fig. 1 which shows the improvement of performances obtained by using the DREFT 
as opposed to the real Fourier transform (real and imaginary parts) and the complex DFT for different 
correlation values of a first order Markov process. The performance criterion used is the entropy 
coefficient--the same type of graph can, of course, be obtained with any criterion function belonging to 
the family introduced in Section 2. The basis restriction errors obtained with these transforms for a first 
order Markov process with correlation 0.9, using 16 coefficients, are shown in Fig. 2. As expected, the 
best performances are obtained with the DREFT. 
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Fig. 1. Normalized entropy coefficient of  the real and complex even Fourier transforms as a function of  the correlation for a first 
order  M a r k o v  process o f  duration N = I 6 .  
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5.2. Related cosine and sine transforms 

The previously introduced transforms share the property of diagonalizing either AN or BN obtained 
from the circular decomposition of a symmetric Toeplitz matrix. Among these transforms, the DREFT 
and DROFT are shown to be the most interesting in the sense that they lead to the best performances in 
approximating the optimal Karhunen-Lo~ve expansion. These transforms belong to the S/SS transform 
family, and it is therefore possible to use property 1 to form two closely related transforms obtained in 

combining the symmetric basis vectors of the DREFT with the skew-symmetric basis vectors of the DROFT, 
and vice versa. These new transforms are also members of the S/SS transform family and have the 
interesting property of partially diagonalizing AN and BN and can be predicted to be interesting candidates 
for the approximation of the KLT. The corresponding basis vectors are given in Table 1. It is very 
interesting to note that the first transform is the well known discrete cosine transform (DCT) that has 
initially been proposed by Ahmed et al. [6]. The second transform has been introduced by Jain [7] as an 
interesting member of a very general sinusoidal transform family and has been referred to as the discrete 

even sine transform (DEST). The DCT is the most popular transform used to approximate the KLT 
transform of a wide sense stationary process and is known to provide excellent results when applied to 
the analysis of a process with an essentially lowpass spectral power density function. The DCT corresponds 
almost to the KLT of a first order markov process with correlation coefficient 0.9, see for example [6] and 
[12]. 

5.3. Performance comparison 

In order to compare these various transforms, we have considered the representation of a first order 
Markov process with correlation coefficient p. The associated N x N covariance matrix is given by eq. 
(17) with 

Ck ~- 0-2pk, (41) 

where 0 -2 is the variance of  each component.  The KLT of such a process is a member of the sinusoidal 
transform family introduced by [7]. The frequencies associated with the eigenvectors are generally 
non-harmonic and can be obtained from the solution of a transcendental equation [13]. The effectiveness 

of  the DREFT,  DROFT, DCT and DEST for the representation of  a N-component  vector with first order 
Markov statistics are compared in Figs. 3 and 4 on the basis of the normalized entropy coefficient (eq. 
(6) and (9)) and the energy criterion (eq. (8)) computed for different values of p. It is interesting to note 
that the performances of  the DCT and DEST depend on the sign of the correlation coefficient. 
The DCT provides a very close approximation of  the KLT for positive correlation values close to one 
but behaves very poorly when p is negative--this situation is reversed for the DEST. The DREFT and 
DROFT have symmetric characteristics and can be seen to be less performing than the DCT or DEST 

(depending on the sign of 0) but present the advantage of having a more constant behavior (less dependent 
on 19). The DREFT should generally be prefered to the DROFT unless /9 is known to be small. For 
comparison, the performances obtained with the discrete sine transform (DST), which is known to provide 
an excellent approximation of the KLT for small values of/9, have been included [14]. This particular 
transform performs better than the others for 1191 < 0.5. The basis restriction error associated with these 
different transforms for N = 16 and p = 0.9 is shown in Fig. 5. In this particular case, the DCT can be 
seen to be an almost perfect approximation of the KLT. When selecting a transform for a particular 
application, it should be kept in mind that it is generally more interesting to choose a transform that 
provides a close approximation of  the KLT for strongly correlated data (e.g. DCT or DREFT).  In the 
case of weakly correlated data, there is not much gain to be expected from one representation to another. 
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Fig. 3. Normalized entropy coefficient of various sinusoidal transforms as a function of the correlation for a first order Markov 
process of duration N = 16. 
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of duration N = 16. 

5.4. Computational considerations 

A n  i m p o r t a n t  a d v a n t a g e  o f  select ing a s u b o p t i m a l  s inuso ida l  t r ans fo rm o b t a i n e d  f rom the c i rcu la r  

d e c o m p o s i t i o n  o f  a symmet r i c  Toepl i tz  ma t r ix  as a subs t i tu te  o f  the  K L T  is, tha t  it is poss ib le  to c o m p u t e  

the  t r a n s f o r m e d  coefficients us ing a fast a lgo r i thm with a n u m b e r  o f  ope ra t ions  o f  the  o r d e r  o f  N l o g ( N ) .  

This  type  o f  a lgo r i t hm can  be des igned  f rom the well  k n o w n  F F T  a lgor i thm using some  aux i l i a r  c o m p u t a -  Signal Processing 
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Fig. 5. Basis restriction error of various sinusoidal transforms for a first order Markov process of duration N = 16 and correlation 
p = 0.9. 

tions [7]. It  is also possible to take full advantage of the real harmonic structure of  these transforms and 

to obtain specialized algorithms with a significant improvement  in the number  of  operations over the 
classical schemes using the FFT [15]. 

6. Asymptotic equivalence 

In terms of  some performance criterion, all the previously introduced sinusoidal/cosinusoidal  transforms 
can be shown to be asymptotically equivalent to the optimal KLT transform in the case of  an arbitrary 
wide sense stationary process. To establish this equivalence, let us first consider some definitions. 

6. I. Asymptotic equivalence--definition 

Two matrices AN and BN are said to be asymptotically equivalent if the weak (or Hilbert-Schmidt)  
norm of  the difference vanishes as N increases 

lim IAN--BNI2=O. (42) 
N ~ o o  

Theorem 1 [161. Two asymptotically equivalent symmetric real matrices AN and BN with associated bounded 
eigenvalues {ai, rv} and {/34N } are asymptotically equally distributed, i.e. 

1_ N . 1 N 
lim E F(a , .N) : - l !m- :7  ~, F (~ ,N) ,  (43) 

i = l  i = 1  

where F( .  ) is an arbitrary continuous function. 

In most applications, the choice of  the KLT is justified by the fact that it optimizes a criterion function 
or performance measure as defined in Section 2. Considering the very large class of  functions defined by 
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eq. (3), the performance criterion associated to an orthogonal transform U/v can be expressed as 

l 
G(/zi/v)" N, (44) 

, = l  , 

where I~u are the eigenvalues of the matrix C~ ) defined as 

C~ ) = U~ diag(UNCNU~) UN. (45) 

The diagonal matrix diag( UNCNU H) is formed by setting the non diagonal elements of UNCNU~ to zero. 
The matrix CN is diagonalized by the transform UN. From eq. (43) which holds for any continuous 
function F( .  ), it follows that the asymptotic equivalence between C~ ) and CN implies: 

N 

lira ~(U~cCNU~) = limoo ~'*(~NCN~¢) = fimoo Z G(A~.N), (46) 
N--~oo ~ i= l 

where Ai are the eigenvalues of the matrix CN. 
In such a situation, the transformation UN will asymptotically lead to performances equivalent to 

the optimal KLT. The asymptotic equivalence between C~ ~ and CN is a sufficient condition for (46) and 
therefore provides a relatively simple method to demonstrate the asymptotic performance equivalence 
between a transform UN and the Karhunen-Lo6ve expansion. 

6.2. Discrete complex odd and even Fourier transforms 

Let the FN and HN be the N × N even and odd DFT rotation matrices. The asymptotic equivalence 
between CN and C~ )= F~ diag(FNCNF~)FN has been established in [5] under the constraint of a 
summable covariance function. A similar procedure can be used to show the asymptotic equivalence 
between CN and C~ ) =H~ diag(HNCNH~)HN. This demonstrates that the performance degradation 
resulting from the use of the even or odd DFT (as opposed to the Karhunen-Lo~ve transform) in coding 
or filtering or data representation vanishes as N--> ~. 

The approximation matrices C~  ) and C~ ) can be shown to be related to the symmetric Toeplitz matrix 
CN by 

r?~f. ) = N - [ i  - j [  _ li - j [  _ 
C,j + ~ C, N -j, (47) 

v t ' /  N 

c<h) _-- N - l i  -Jl  
, -  N C z -  (48) 

It is easily verified that C~  ) is a circulant matrix and C~ ) a skew-circulant matrix. It is worthwhile to 
note that both matrices are symmetric Toeplitz. As it has been shown previously, C ~  ) is diagonalized by 
FN and by any real DFT obtained by choosing a suitable linear combination between all pairs of complex 
conjugate vectors of Fu with associated identical eigenvalues. The same remark is valid for C~ ) which 
is diagonalized by the complex odd DFT or any real odd DFT. 

6.3. Discrete real odd and even Fourier transform 

It has previously been shown that the use of any real odd or even orthogonal Fourier transform will 
always result in an improvement of the performance criterion when compared to the corresponding 
complex transform. For this reason, the asymptotic performance equivalence of the complex even or odd 
Signal Processing 
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Fourier t ransform with the Karhunen=Lo~ve expansion is also valid for the corresponding real transforms. 
The improvement  of the performance criterion (e.g. entropy coefficient) as N increases is demonstrated 
in Fig. 6 for the particular case where the D R E F T  is applied to a first order Markov process. 
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Fig. 6. Asymptotic convergence of the normalized entropy coefficient of the DREFT as a function of the correlation for a first order 
Markov process. 

Let GN be the N x N rotation matrix associated to a real even orthogonal Fourier transform. The 
asymptotic  equivalence of C~ and C ~  ) is a stronger condition than the asymptotic performance equivalence 
of  GN and the KLT and will be proved next. The Hilber t -Schmidt  norm between CN and C ~  ) which is 
invariant under  any similarity transform can be rewritten as 

[C  N __ c ( N g ) [ 2  = I f  N [2 __ [diag( GNCNG~)[ 2. (49) 

Let us recall that [diag(GNCNG~)[ 2 is the energy performance criterion associated to the transform GN 
and is a member  of  the criterion family introduced in Section 2. A particular implication of property 4 
is that 

[diag( GNCNGnn )[2 >~ [diag( FNCNF~ )I 2. (50) 

This equation implies that 

IcN - c~)12 <~ I c~  - c~ ) l  2. (51) 

Taking the limit as N-~  co 

l i r a  IcN - c ~ ) l ~  < ~ im IC~ - C ~ I  2 = 0, (52) 

which proves the asymptotic  equivalence of any symmetric Toeplitz matrix CN and C ~  ) . The same proof  
is also valid when GN is a real odd Fourier t ransform and when FN is substituted by HN. 
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6.4. Discrete even cosine and sine transforms 

In order to provide a simple proof for the asymptotic performance equivalence of the DCT, the DEST 
and the KLT, it is necessary to introduce the following theorem (Appendix B). 

Theorem 2. The eigenvalues of two asymptotically equivalent persymmetric real matrices A2v and BN which 
are strongly bounded (bounded eigenvalues ) can be divided into two sets of asymptotically equally distributed 
eigenvalues 

X F( t~m)=  X F( + /3~N), (53) 
i=1  i=1  

2 N/2 l~moo 2 N/2 ~ m ~  ,X F(~:.N)-- 2 F(~:.N), (54) 
i=1  

+ + 
where a ~,2v and fl ~N are the eigenvalues corresponding to the symmetric eigenvectors of AN and BN and a ~N 
and tiTaN are the eigenvalues corresponding to the skew symmetric eigenvectors of AN and BN. F( .  ) is an 
arbitrary continuous function. 

Let us consider the symmetric/skew symmetric real odd and even Fourier transforms. Applying Theorem 
2, and considering an arbitrary function G(. ) satisfying the requirements introduced in Section 3, we have: 

N/2 N/2 N/2 
~N),  (55) lim • G(a+N)= llimo Y.. G(13~-N)=Nlimoo ~. G( + 

N --~ ~o i=1  i=1  i=1  

N/2 N/2 W/2 
lim Y. G(t~T,N)=Nlimoo Y. G(fl~N)=mlimo )". G(/x~N), (56) 

/~r "~ °O i=1  i=1  i = I  

with 

N/2 NI2 
lim Y. G(/~+N)+limoo Y, G(/~N)=limoo~*LT(CN), (57) 

/~/--~ oO i=1  i=1  

where a~+N, fli+N, bt~+N (resp. a~-N, fl~N, /Z~-N) are the eigenvalues of C~  ), C~ ) and CN corresponding 
to the symmetric (resp. skew-symmetric) eigenvectors of these matrices. Recalling that the DCT (resp. 
DEST) can be obtained by taking the symmetric vectors of the DREFT (resp. DROFT) and the skew- 
symmetric basis vectors of the DROFT (resp. DREFT), it follows immediately that 

N/2 N/2 
lim ~DCT(CN)=zlIim ~ ~ G(a~.N)+l im Y. G(f l~N)=Iim~*LT(CN),  

N-~oo i=1  ' i=1  
(58) 

W / 2  W / 2  

/~m°o : D E s T ( C N ) =  Nli~l'noo iF, G(ol~"N)'~'-~m°°i~---, G([3~N)=~P°o ~ K L T ( C N ) "  (59) 

For an arbitrary wide sense stationary process, this proves that the DCT and DEST are asymptotically 
equivalent in performances to the optimal Karhunen-Lo~ve transform. This equivalence was already 
known to hold in the case of some restricted families of stationary processes such as first order Markov 
processes ([12] for the DCT) and finite p-order Markov processes ([7] for the general sinusoidal transform 
family including the DCT and DEST). The asymptotic convergence of the normalized entropy coefficient 
of the DCT, when applied to the representation of a first order Markov process, is illustrated in Fig. 7. 
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Fig. 7. Asymptotic convergence of  the normalized entropy coefficient of  the D C T a s  a function of  the correlation for a first order 
M a r k o v  process. 

The results established in this section are more general than those previously reported in the literature. 
It should also be noted that the mathematics involved are significantly simpler than what can be found 
in [12] and [7]. 

7. Conclusion 

A new approach to the approximation of  the Karhunen-Lo~ve transform of  a wide sense stationary 
process has been presented. It is based on a decomposit ion of  a symmetric Toeplitz matrix in the sum of  
a circulant and a skew circulant matrix. Various transforms (DFT, DOFT, DREFT, DROFT, DCT, DEST) 
have been shown to be cMsely related to this decomposit ion and can therefore provide efficient substitutes 
of  the KLT. These transforms have been compared on the basis of  a general family of  performance 
criterions that are optimized by the KLT. All these transforms can be computed using fast algorithm and 
are therefore useful in many signal processing applications such as data compression and pattern 
recognition. No particular restriction has been made on the class of the stationary processes whose KLT 
can be approximated by one of these transforms. Their assymptotic performance equivalence with the 
optimal KLT has been shown to be valid for an arbitrary stationary wide sense process. 

Appendix A: Optimality of the Karhunen-Lo~ve transform 

Let G( .  ) be a monotonously  concave or convex function. The problem is to find an extremum of  the 
performance criterion 

N 

~(UNCNUT)= ~" G(uTCNu~) (al) 
i=1 
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under the constraints that UN is an N x N energy preserving transform 

N 

~. uTcNu, = Tr(CN) (a2) 
i = 1  

and that its row vectors are normalized: 

u T ' u , = l ,  ( i = l , . . . , N ) .  (a3) 

Applying the Lagrange multiplier method, we define the function 

L(UNCNUTN) = G(IITCNui) - c t  uTCtcui-tr(Cr¢) + E fl,(uTu,--1) • (a4) 
i = 1  i = l  i = 1  

The optimum transform is obtained by solving: 

OG 
V,, {L( UNCNU~)}  = 2CNu, T - - ~ - 2 a C N u , -  2/3,ui = 0, where or, -2 = u~CNu,. (a5) 

OOr i 

Two distinct cases have to be considered: 

1) OG/Oo'2i-a =0, 

which in conjunction with constraint (a2) gives that 

u~CNu, = uT CNuj = Tr( CN)/ N, Vi, j. (a6) 

It can be verified that ~ is minimum (resp. maximum) if G( . )  is a monotonously increasing 
convex or decreasing concave (resp. monotonously increasing concave or decreasing convex) function: 

min{~(UN CN URN)} = N" G(tr(CN)/N).  (a7) 

2) oGIoV~-a # o. 

In this case, taking into account eq. (a3), (a5) can be rewritten as 

CNu, = ( UT CNU,) " U, = B,U,. (a8) 

The u/s solution of this equation are the eigenvectors of the matrix CN with corresponding eigenvalues 
/3i (i = 1 , . . . ,  N). This case clearly corresponds to a maximum (resp. minimum) when G(.  ) is monotonously 
increasing convex or decreasing concave (resp. monotonously increasing concave or decreasing convex) 
giving: 

N 

m a x ( ~ ( U N C N U ~ ) =  Y~ G(/3;). (a9) 
i = l  

Appendix B: Asymptotic equivalence for persymmetric real matrices 

Let us introduce the unitary transform 

1 [IN/2 : - J m 2 ]  
V N =  . . . . .  "i . . . . . .  , G n /2 J 
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which, when applied to a even persymmetric matrix AN, produces two half dimension matrices 
-I- I 

VNANVXN:[AN/2'ON/21 
LON/2, AN/2]" 

where ON/2 is the N/2 x N/2 null matrix. In the case where N is odd, a slightly modified transform 
matrix VN has to be chosen. 

Let {ai+,N}, (i = 1 , . . . ,  N/2) (resp. {a~,N}) denote the eigenvalues of the matrix A+N/2 (resp. A-N~2). It 
can easily be shown that the a~,N'S (resp. a~N) correspond to the eigenvalues of AN associated to the 
symmetric (resp. skew symmetric) eigenvectors. The asymptotic equivalence between AN and BN can be 
rewritten as 

limoo IAN -- BN[ 2 = lim lVN(aN - BN ) V~l 2 = 0 

a n d  i m p l i e s  t h a t  

lim + + 2 [AN/2 - -BN/2 I  = 0  a n d  l i m  I A N / 2 - - B N / 2 1 2 = 0 .  
N - ~ c c  N ~ o o  

The application of Theorem 1 to the m a t r i c e s  A+N/2 and B+N/2 (resp. A,-N/2 and B-N~2) results in Theorem 
2. 
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