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Abstract: This paper proposes a general system approach applicable to the automatic inspection of textured material. First, 
the input image is preprocessed in order to be independent of acquisition non-uniformities. A tone-to-texture transform is then 
performed by mapping the original grey level picture on a multivariate local feature sequence, which turns out to be normally 
distributed. More specifically, features derived with the help of the Karhunen-Lo~ve decomposition of a small neighbourhood 
of each pixel are used. A decision as to conformity with a reference texture is arrived at by thresholding the Mahalanobis 
distance for every realization of the feature vector. It is shown that this approach is optimum under the Gaussian assumption 
in the sense that it has a minimum acceptance region for a fixed probability of false rejection. 
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1. Introduction 

Image analysis techniques are being increasingly 
used to automate industrial inspection. Edge detec- 
tion techniques have been largely employed for 
conformity testing and assembly inspection. 
Various examples such as shape control, printed 
circuit boards inspection have been reported in 
[2,3,4]. Surprisingly, the field of surface or 
material checking has received relatively little at- 
tention which means that this type of control still 
has to be carried out by inspection personnel. It 
seems reasonable to believe that this type of pro- 
blem could be solved by means of a machine vision 
system using suitable image processing methods. 
The use of texture analysis techniques seems to be 
appropriate in accessing material surface quality 
[11] or detecting defects or local inhomogeneities 
[9]. 

This paper globally addresses the problem of 

defining in a very general way suitable features and 
a decision strategy applicable to the automatic in- 
spection of textured materials for inhomogeneities. 
These can be due to defects such as scratches, im- 
purities, cracks, bumps, tears, ruggedness, modifi- 
cation, overstretching, etc. It also proposes a set of 
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Fig. 1. Block diagram of a general texture inspection system. 
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features based on the Karhunen-Lobve transform 
of  a suitable neighbourhood of  a pixel. 

A general system approach for the detection of  
defects in textures has been suggested in a previous 
paper [9]. The block diagram of  a complete texture 
inspection system is shown in Fig. 1 and can be 
sub-divided into different functional blocks. First, 
the textured surface is converted into a discrete bi- 
dimensional array of  pixels with a limited number 
of  grey levels. The digitized picture is then trans- 
formed in order to be better suited for further pro- 
cessing. For this purpose, an efficient algorithm 
that compensates for illumination changes and 
spatial non-uniformities of  the sensor has been 
used. A set of  sub-images that are treated sepa- 
rately is obtained by scanning the original image 
through a rectangular analysis frame. For every 
sub-image, a set of  local statistical measures is 
computed and used for classification. The feature 
extraction process can be interpreted as a tone-to- 
texture transform that maps the original grey level 
picture onto a multivariate feature sequence. This 
point of  view will be discussed in the next section. 
When complete knowledge of  the different cate- 
gories (normal and abnormal) is available in the 
form of  some a priori probability density functions 
or large training sets of  conforming and non- 
conforming texture samples, the final decision can 
be made by applying standard statistical classifica- 
tion schemes [7]. In this study, it was assumed that 
no representative abnormal training set would be 
available due to the fact that deviation from the 
reference texture may be infrequent and appear in 
an unpredictable way. Therefore, a decision pro- 
cedure based on the reference class characterisa- 
tion alone had to be designed. An optimum de- 
cision rule, in the sense that it has a minimum ac- 
ceptance region for a fixed probability of  false re- 
jection, has been chosen rather than the usual 
heuristic solution based on the specification of  a 
tolerance interval for each feature. The application 
of  this formulation results in the definition of  a 
reference dependent discrimination or test func- 
tion summarising the information provided by a 
local feature vector. It can be used as a local 
measure of  conformity (or homogeneity). The de- 
velopment presented in Section 3 is based on the 
assumption of  a multivariate normal distribution 

for the local feature vector on a reference texture 
without defects. It has been verified experimentally 
that this condition is relatively well satisfied for a 
large family of  features that can be expressed as 
the average of  some particular function of pixels in 
a restricted neighbourhood. 

2. Feature extraction 

Texture is the term used to characterise the sur- 
face of  a given object or phenomenon and is un- 
doubtedly one of  the main features used in image 
processing and pattern recognition. Texture must 
be regarded as a neighbourhood property of an im- 
age point. An image is said to have a uniform tex- 
ture when it gives an almost homogeneous visual 
impression. The image of  a single texture type can 
be defined as a picture in which the significant in- 
formation (visual and semantic) is contained in any 
sub-image of  sufficient size. A number of  struc- 
tural or statistical approaches to texture have been 
proposed but the problem of  an efficient represen- 
tation and description is by no means solved. Re- 
cent work by Haralick provides a comprehensive 
survey of most existing techniques [6]. 

In this study, a simplified characterisation of 
texture has been chosen. Feature extraction is per- 
formed by a hierarchical two-stage procedure. At 
the lower level the texture is analysed by means of  
certain local operators operating on a micro- 
window. They produce what might be termed 
'primary'  features measuring relations between 
pixels in a restricted neighbourhood. These 
primary features are then processed at a more 
global level by averaging over a macro-window. 
The features that result are used to characterize the 
texture sample, and form the input to the 
classifier. These quantities do not pretend to pro- 
vide an exhaustive characterisation of  texture, but 
they do implicitly capture certain local textural 
properties such as coarseness, directionality, 
regularity, etc. 

2.1. Tone-to-texture transform 

A discrete texture image defined on a K x  L rec- 
tangular grid is denoted by 
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{tk, t} ( k = l , 2 , . . . , K ; l = l , 2  . . . . .  L) 

and is considered to be the realisation of  a 
bidimensional stationary and ergodic stochastic 
process. The texture image is analysed through a 
rectangular M × N  sliding window whose center is 
indexed by (k, 1). For every position of the analys- 
ing frame (macro window), a set of q features with 
the following closed form is computed: 

1 M/2 N/2 

xi(k,1 ) -  ~ ~ y i (k-k ' , l - l ' )  (1) 
M N  k'=-M/Z r= N/Z 

( i= 1 . . . . .  q), where yi(k,  l) is the result of  a trans- 
form measuring some relations between pixels in a 
very close neighbourhood (micro window). In a 
very general form, this quantity can be expressed as 

Yi (k, l) = Fi (Nk, l) 

with (2) 

Nk, t = {ti, j ( i = - ½ I + k ,  .... ½I + k; 

j = - ½ J + l ,  .... ½J+/ )}  

where Fi( ' )  is a given function of  the elements of  
a micro window defined by the set Nk, t. This do- 
main is chosen to be smaller than the analysing 
frame or averaging window. In many texture 
analyzing schemes the quantities yi(k,  1) are defin- 
ed on as few as two pixels. The local features 
xi (k , l )  are unbiased local estimates of  the 
theoretical mathematical expectations E[Yi] over 
the previously defined macro window. It should be 
pointed out that most of  the commonly used 
features in texture analysis satisfy the generic form 
(1). For example, some very popular features 
(mean, variance, correlation, average difference, 
contrast, homogeneity) usually extracted from the 
spatial grey level co-occurrence matrix proposed 
by Haralick in [5,6] can be computed by applying 
a specialized form of  Eq. (1). 

The local texture features measured in the M x N 
macro window centered on (k, l) can be arranged 
into a local feature vector 

X k ,  1 = [Xl(k,l ) xz(k , l  ) ... xq(k,l)] T. (3) 

The transformation of  the original grey level pic- 
ture {tk, t} into a multivariate local feature se- 
quence {Xk, l} is called a tone-to-texture 
transform. This procedure is illustrated in Fig. 2. 

macro-wi ndow 

input texture 

local ~(k,1) 

Fig. 2. Feature extraction procedure (tone-to-texture transform). 

The use of a recursive algorithm [10] for the 
evaluation of the local feature vector can decrease 
computation time considerably. It is particularly 
suited for real time implementation. 

In this study, a collection of  energy measures at 
the output of a bank of  so-called eigen-filters has 
been chosen as the set of  features. These features 
are particularly interesting because the filters ad- 
just automatically to the class of  textures being 
treated. Obviously they are reference dependent. 
The method and its relation to other approaches is 
described more fully elsewhere [1]. The use of  
eigen-filters fits into the very general equation (2). 
In this case, the operator F( . )  simply becomes the 
square of a weighted sum of  the grey values of  
the pixels within a micro window (typically 3 x 3 
pixels). In order to get the coefficients of  the 
filters, one has to estimate the spatial covariance 
matrix associated with the random vector formed 
by the nine grey values of  corresponding pixels. 
Scan-type numbering of  the pixels will result in a 
center-symmetric, near-to-Toeplitz, covariance 
matrix. The eigen-vectors of this matrix can be 
used as 3 × 3 filter masks and provide the weights 
for Fi(" ), i = 1 . . . . .  9. The estimated average power 
values over the M × N macro window at the output 
of  these filters are chosen as the components of  a 
feature vector Xk.t. This procedure is depicted in 
Fig. 3, which clearly shows that, in essence, the 
system is a filter bank. A similar system can be ob- 
tained by using fixed filters as, for example, those 
introduced by Laws [8]. However this last ap- 
proach does not have the property of  adapting 
automatically to a particular class of texture. 

2.2. Distribution o f  the local feature  vector 

The derivation of  an optimum decision rule is 
based on the knowledge of  the multivariate pro- 
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~ Xl(k,1) 
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Fig. 3. Running evaluation of  energy measures at the output of  
a bank of  eigen-filters. 

bability density function p (X[og)  of  the local 
feature sequence for a reference texture without 
defect. It has been verified experimentally that this 
distribution can be fairly well approximated by a 
q-dimensional multivariate Gaussian distribution 
given by 

p(X I 09) = ( 2 g )  -q /2  IC[ -1/2 

× e x p ( - ½ ( x - g ) T c  -l ( X - M ) )  
where (4) 

M = E { X }  and C = E { ( X - M ) ( X - M ) T } .  

3. Decision 

As mentioned in the introduction, the abnormal 
distribution p ( X l f f  0 is assumed to be unknown. 
In such a situation, the probability of  false accep- 
tance is not available and as a consequence the 
total probability of  misclassification cannot be 
computed and used as a criterion for the perfor- 
mance of  a given classifier. The only available 
quantity concerning the performance of such a 
system is the probability of  false rejection. On the 
other hand, it is clear that the probability of false 
acceptance will depend on the volume of the ac- 
ceptance region. Thus, it is reasonable to suppose 
that the best decision rule, for a fixed probability 
of  false rejection, is the one that has the minimum 
acceptance region. According to such a require- 
ment, the optimal decision rule is given by the 
following theorem. 

Theorem. For a fixed probability o f  false rejec- 
tion, the optimal decision rule that minimises the 
acceptance region, is given as 

Decide o) 

i f X e ~ a = { X e R q ,  p ( X [ w ) > T }  (5) 

else decide ff), 

with T chosen in order to satisfy 

P f r  = l - I p ( X  I (.o) dX. (6) 
d 

Using (4), it can be shown that the condition 

p(xlco)>r 

is equivalent to 

d(X) = ( X -  M ) T C - I ( X -  M) < T' 

with (7) 

T'  = 2 log { (27t) q/2 I C I 1/2 T}. 

The quantity d(X) is the Mahalanobis distance. 
Let ~ be a q × q matrix consisting of  the q eigen- 

vectors of  C, 

~) = [t~l ~2  "'" t~q], (8) 

and A a diagonal matrix constructed from their 
associated eigenvalues, 

[ 2j A = ! . . (9) 
0 "'" q 

By applying the linear t ransform z = ¢ T(X-- M),  
Eq. (7) can be rewritten as 

q 
d(X) = ZTA-1Z = ~ Z2/~i (10) 

i = l  

and one has the additional property that the com- 
ponents of the vector Z are mutually uncorrelated, 

E { Z Z  T} =A.  ( l l )  

The feature vector Z is normally distributed. 
Because of  the equivalence of  uncorrelatedness 
and independence for Gaussian random variables, 
it follows that the zi's are mutually independent. 

4. Training procedure 

Decision making will result from the application 
of  Eq. (7). Therefore it is first necessary to deter- 
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mine the parameters of  the distribution (mean and 
covariance matrix) and to select an appropriate 
threshold T'. 

4.1. Parameter estimation 

The distribution parameters will be estimated on 
a large sample of  preprocessed reference texture 
without defects. Let {X,.t} be a Ms × Ns multi- 
variate sequence of of local texture features 
measured on a large reference texture sample. The 
maximum likelihood estimates of  the mean and 
covariance matrix are respectively given by 

~I= 1 M, u, 
~ X~,t, (12) 

MsNs ~=1 , = ,  

1 Ms N, 
F. ~] (Xk, z-~r)(xk, z-~r) T. 

t~ - (MsNs-  1) k=, ,=1 
(13) 

4.2. Threshold selection 

The value of the threshold T (or T') is fixed by 
the probability of  false rejection. The multivariate 
integral (6) is not very convenient for the selection 
of  this quantity. Therefore,  one may do better by 
using the conditional probability density function 
associated to the one dimensional test variable 
d(X). Applying Eq. (10), it is possible to show that 
dO() is chi-square distributed with q degrees of  
freedom. For a given probability of  false rejection 
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Fig. 4. Probability of  false rejection as a function of  the 
threshold (q = 9). 

(1 - t~) the threshold T' will be chosen equal to the 
value g 2 for  which the g 2 distribution yields 

P r o b  {•2 < X2} = t~ = 1 - Pf r"  (14) 

The relation between the threshold and the pro- 
bability of  false rejection is shown in Fig. 4 in the 
case of  a set of  q = 9 features. 

5. Experiments  and results 

Some examples of  the application of  the texture 
inspection system on real world texture data are 
reported below. A vidicon camera followed by an 
A / D  converter were used to convert the texture 
samples into 256 x 256 picture arrays quantified in- 
to 256 grey levels. As one can see in the reproduc- 
tions, the uniformity of  the input data was rather 
poor because of  faulty camera adjustment 
(shading effect). This effect was suppressed and a 
proper scaling (normalisation) of  the data was ob- 
tained after preprocessing. The spatial covariance 
matrix associated with a 3 × 3 neighbourhood was 
computed on the reference texture and the nine 
resulting eigenvectors were used to form the masks 
of  the corresponding eigen-filters. The set of  nine 
energy measures was computed on a 32 x 32 sliding 
window on the preprocessed reference texture. 
These feature values were used to estimate the 
associated mean vector and covariance matrix. The 
Mahalanobis distance with respect to the reference 
texture was then computed on each texture for 
window positions with a 25°70 overlap. A zero 
order interpolation was used to generate a local 
Mahalanobis distance image, which is particularly 
well suited for interpretation. The texture defects 
are visualised as white peaks and can be easily 
detected by thresholding. The maximum values of 
the threshold that still guarantee correct detection 
of  the defects in two different examples corres- 
pond to theoretical probabilities of  false rejection 
of  10 -50 and 10 -35 respectively. 

Additional experiments for other types of tex- 
tures have also led to very encouraging results. Dif- 
ferent sets of  textural features have been used and, 
usually, have performed very well. For a good 
evaluation of the method further experiments need 
to be carried out on a large set of  texture samples. 
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Fig. 5. First example of texture inspection; (a) input reference texture; (b) preprocessed reference texture; (c) local Mahalanobis 
distance for reference texture (scaling factor 1); (d) input texture with defect; (e) preprocessed texture with defect; (f) local Mahalanobis 
distance for texture with defect (scaling factor = l,  maximum value = 248). 
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Fig. 6. Second example of texture inspection; (a) input reference texture; (b) preprocessed reference texture; (c) local Mahalanobis 
distance for reference texture (scaling factor 1.4); (d) input texture with defect; (e) preprocessed texture with defect; (f) local 
Mahalanobis distance for texture with defect (scaling factor = 1.4, maximum value = 175). 
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Nevertheless, it appears that this inspection system 
is sufficiently universal to be adapted to a variety 
of  particular applications via the choice of an ade- 
quate set of  features. For example, some relatively 
easy inspection tasks can be conducted by com- 
puting first order local features such as the mean, 
the variance, the skewness and kurtosis. 

6. Conclusion 

A flexible texture inspection system has been 
suggested. It is based on the evaluation of a se- 
quence of local textural features. A relatively large 
class of textural features produced by a hierar- 
chical two-stage procedure has been introduced. 
As an example, the energy measures at the output 

of  a bank of eigen-filters have been considered. 
These filters are of  particular interest because they 
adapt automatically to the class of  texture to be 
treated. A decision procedure that is optimal in a 
well defined sense has been introduced. The 
resulting decision function, under the assumption 
of  a Gaussian feature vector distribution, has been 
shown to be the local Mahalanobis distance. 

This work is still preliminary but the results are 
very encouraging as shown in the examples, where 
an accurate detection of the defects was possible 
with an extremely low probability of  false rejec- 
tion. We are now pursuing efforts toward an ob- 
jective evaluation of  the method and comparing 

the performances of  different sets of  features for 
specific applications. 
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